
X/Open System Verification Suite

LSB-FHS User and Installation Guide

VSXgen1.4 May 1999
LSB-FHS 2.1 April 2000

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

 1991, 1992, 1997, 1998, 1999, 2000 The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners, except as stated in the License file accompanying this release.

Motif, OSF/1, and UNIX are registered trademarks and the IT DialToneTM, The
Open GroupTM, and the ‘‘X Device’’TM are trademarks of The Open Group.

Any comments relating to the material in this document may be sent by electronic mail
to the LSB-FHS support team at:

ajosey@opengroup.org

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

1. FOREWORD
1.1 VSX DOCUMENTATION

The X/Open Verification Suite, known as VSX, enables you to build and execute test
programs which assess operating systems for conformance to standards. VSX consists
of a number of separate packages, and is constructed by combining the VSXgen
package with one or more add-on test packages to form a test suite.

This guide describes the use of VSXgen together with the following test packages to
test the Filesystem Hierarchy aspects of the Linux Standard Base:

LSB-FHS 2.1 April 2000

This guide is intended to provide in-depth information on the inner workings of
this test package and the VSXgen framework. Please consult any toplevel
README and/or INSTALL files associated with the test package for the latest
information and distribution specific installation enhancements such as wrapper
scripts to simplify test setup. Lastly, please do NOT use this guide if you wish to
test any specifications other than those listed above.

VSX uses part of a set of libraries and programs calledTET. TET has its own
documentation; this manual contains sufficient information on how to use TET in
conjunction with VSX, but issues pertaining to TET installation and use of the more
extended TET functionality will require the user to refer to the toolkit manuals.

The VSX User and Installation Guide is in four parts. Part 1 is the VSX User Guide,
which gives information about the terminology and structure used in VSX. In addition,
the User Guide tells you what resources and facilities you need to use VSX. Part 2 is the
VSX Installation Guide, which gives you all the information you need to install and run
VSX. It is a good idea to read both parts before you start installing and using VSX.
Part 3 gives additional reference information in a series of appendices. Part 4 contains
manual pages for various VSX utilities.

1.1.1 Part 1: VSX User Guide

Contents
The terms used in the VSX documentation and the structure of VSX are explained in
the User Guide, so that you are familiar with the VSX system before you start
installation. The last chapter tells you the hardware, utilities, time and skills which are
necessary to use VSX successfully.

Layout
The layout of the User Guide gives section and paragraph headings in the left margin.
Additional sub-headings are in the body of the text.

Pages are numbered in the bottom right-hand corner, although references within the
documentation are made by reference to chapter, not numbered pages. This system is
used because when you format and print the VSX documentation, the pagination will
vary between systems.

1.1.2 Part 2: VSX Installation Guide

Users
The Installation Guide is written for people who are familiar with their system and who
have some knowledge of the utilities and options available on it. The installation of
VSX should be carried out by an experienced systems administrator, because of the
wide range of implementations which can be verified by VSX.

During the stages of installation, VSX needs detailed information about your system.
On a fully compliant system the configuration details can be found from the system

The Open Group
VSXgen 1.4 Page 1

X/Open System Verification Suite LSB-FHS User and Installation Guide

header files and the Conformance Document. On other systems you may need to obtain
the information from the personnel who implemented the system.

Contents
Each chapter in the Installation Guide corresponds with a stage of installation and use
of VSX. An overview of each chapter is provided in the User Guide. Some chapters
contain supplementary information for specific test packages in the sections at the end
of the chapter. You will need to refer to these sections when the generic part of the
chapter indicates that a particular requirement only applies to some test packages, in
order to determine if it applies to any of the test packages you are using. These sections
may also describe additional procedures or requirements for each test package.

You can simply read the Installation Guide for detailed information about VSX. When
you want to install VSX on your system, follow the instructions in the Action Points at
the end of each section. Start from the first chapter and continue until you are ready to
build the testsets and execute them. The final VSX stage enables you to report on the
results of the building and execution stages. The last chapter of the Installation Guide
gives information about interpreting the results of the VSX tests.

When you are familiar with VSX, you can use the appendix entitled ‘‘Action Point
Summary’’ as a checklist.

Layout
The layout of the Installation Guide corresponds to that of the User Guide, with the
addition of Action Points for you to effect after you have read each section.

1.1.3 Part 3: VSX Appendices

The first appendix is a summary of the Action Points from the Installation Guide, which
you can use when you are familiar with installing VSX. Other appendices contain the
reference information you may need when you are using VSX.

1.1.4 Part 4:Manual Pages

The commands used to install, build and execute the test suite and to produce reports
are covered at a basic level in the installation guide. However, many of these
commands have additional features which are described only in the manual pages.

The Open Group
VSXgen 1.4 Page 2

X/Open System Verification Suite LSB-FHS User and Installation Guide

X/Open System Verification Suite

Part 1: User Guide

VSXgen1.4 May 1999

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

2. VSX TERMINOLOGY
2.1 INTRODUCTION

This chapter introduces the terms used in the VSX User and Installation Guides. The
chapter tells you about the seven stages of using VSX, the terms and naming
conventions used in describing the structure of VSX.

2.2 STAGES OF VSX
VSX is used in a series of independent stages. When you have run all of the stages, you
can read the VSX reports and interpret the results of the tests to assess the conformance
of your system. As each stage is independent, you can re-run the verification suite
starting at any of the stages without affecting any of the earlier stages in the suite.

2.2.1 Stage 1: Preparation

In this stage, you check your system has enough file space available, add entries to the
user and group databases and extract the VSX software from the distribution files for
VSXgen and one or more test packages.

2.2.2 Stage 2: Configuration

Next, the VSX configuration script interrogates your system for information and asks
you questions on the screen. From this information, VSX generates configuration
parameter files, which are used in the later stages of VSX to find out details about your
system. Additionally, for some test packages you must configure character encodings
for the VSX test locales, and install the test locales using the tools and file formats for
your system.

2.2.3 Stage 3: Installation

In this stage, VSX sets up the programs, libraries, include files and file systems which
are needed to build and execute the test suite.

2.2.4 Stage 4: Building

The building stage uses the VSX source files and the configuration parameter files to
build and install executable test programs. This stage places results in a journal file,
which is used by the reporting stage. You can choose to build the whole suite of test
programs to test your system for conformance, or selected parts. Building selected
parts is known as a partial build. In this stage you can also undo all or part of a previous
building stage, for example, when you want to rebuild using a different compiler.

2.2.5 Stage 5: Execution

When you have completed the preceding stages, you can run the tests to verify your
system. VSX executes the test programs and keeps the results in a journal file for use
by the reporting stage. You can choose to execute all of the installed tests at once, or
choose a partial execution.

2.2.6 Stage 6: Reporting

The reporting stage generates reports from the building and execution journal files.
You can also produce a summary report for management information and a report
comparing the results from several test executions.

The Open Group
VSXgen 1.4 Page 5

X/Open System Verification Suite LSB-FHS User and Installation Guide

2.2.7 Stage 7: Interpreting VSX Results

Using the report generated by VSX, the test source code and the test strategy
documentation, you can interpret the results in order to identify the causes of test
failures.

2.3 STRUCTURE
VSX uses a common structure for each of the building, execution and reporting stages
to locate the different facilities that are to be verified. This is a four-level hierarchy
consisting of the following levels:

2.3.1 Section

A section corresponds with the primary source of the definition of an interface. For
example, the LSB-FHS sectionLSB.fhs corresponds with the filesystem hierarchy
definitions relating to the Linux Standard Base.

2.3.2 Area

An area groups together test programs with a common theme, and is a sub-division of a
section. For example, in the LSB-FHS sectionLSB.fhs (filesystem hierarchy tests
for the Linux Standard Base), the arearoot holds all of the test programs for the area
related to the root directory.

2.3.3 Testset

A testset is the subdivision of an area. A testset usually relates directly to an interface
definition.

2.3.4 Test

A test tests a particular statement in a definition. A number of tests, which may depend
on each other, make up the testset to assess the conformance of a particular interface.

2.4 NAMING CONVENTIONS
The VSX naming convention numbers the tests within a testset executable sequentially,
and corresponds with the test descriptions in the VSX manual. The naming conventions
are as follows;

Section
major-section. sub-section

Area
area-name

Testset directory
testset-name.

2.5 JOURNAL FILE
A journal file is generated after the building, execution and cleanup stages, with the
results of the stage. The journal file is a text file with control information on the front
of each line. It is not usually necessary to examine these files directly, but if you do
then details of the file format may be found in the TET manuals. The reporting stage
uses the journal file as input when you are producing a formatted report.

The Open Group
VSXgen 1.4 Page 6

X/Open System Verification Suite LSB-FHS User and Installation Guide

3. VSX DIRECTORY STRUCTURE
3.1 TOP LEVEL DIRECTORY STRUCTURE
3.1.1 Introduction

There are the following directories in the top level of the VSX directory structure. This
section gives a brief description of the top level, and is followed by sections with a
detailed explanation of each directory hierarchy. These are described thus, with the
VSX directory name following the descriptive directory name.

3.1.2 Binaries: BIN

A common location for all the VSX commands you execute, for example,vrpt . You
should include this directory in the search path for your shell.

3.1.3 Manual: MAN

Manual pages for the testsets and VSX programs, and test description and strategy files.
The manual pages use theman macros package associated with[nt]roff for
formatting.

3.1.4 Results:results

A directory under which the journal files for the installation, building, execution and
cleanup stages are written.

3.1.5 Source:SRC

The source files for libraries and utilities used to configure, install and build VSX.

3.1.6 Testroot:TESTROOT

A directory containing the TESTROOT directory structure, used by default as the
directory to install the executable testsets. You can change the location when you are
configuring the parameter files.

3.1.7 Testset:tset

This directory hierarchy contains the source files which are used to build the VSX
testsets. The testset directory contains section directories.

Section
The section directories are named using the naming conventions explained in the
chapter entitled ‘‘VSX Terminology’’. Each section directory contains area directories,
below which are the testsets.

Each testset directory holds the source programs and makefile for the testset.

The Test Case Controller executes the makefile to install the relevant files in the testroot
directory.

3.2 SOURCE DIRECTORY STRUCTURE
There are the following directories at the top of the source (orSRC) directory structure.

3.2.1 Common:common

The source files compiled during the installation stage, which are used to build the
executable programvrpt and others used by VSX. In addition, this directory includes
the source for the libraries used for building the testsets.

The Open Group
VSXgen 1.4 Page 7

X/Open System Verification Suite LSB-FHS User and Installation Guide

3.2.2 Install: install

The scripts and associated files used to configure and install VSX.

3.2.3 Subsets:subsets

This directory contains subdirectories relating to each available VSX subset. The files
for each subset contain information about the subset and the test package it belongs to,
used in the configuration and installation stages of VSX.

3.2.4 Library: LIB

An empty directory, namedLIB , which is used for the libraries compiled from the
source in the directorycommon.

3.2.5 Include: INC

The unique VSXincludefiles, used to build the common software and the testsets.

3.2.6 System Include:SYSINC

A copy of the includefiles for the system, which are modified during the installation
stage to correct any deficiencies. Note that it is important to ensure that this copy
reflects any changes made to the systemincludefiles.

3.3 MANUAL DIRECTORY STRUCTURE
The manual directory contains the following directories.

3.3.1 Common:common

The manual entries for the common software elements, which correspond with the
directories under the source directory structure.

3.3.2 Testset:tset

The manual entries, test descriptions and strategies for each VSX testset. The directory
structure follows the naming conventions explained in the chapter entitled ‘‘VSX
Terminology’’. The testset entries areT. files containing the manual pages (including
test descriptions) for formatting with[nt]roff -man , and L. files containing test
descriptions and strategies used byvrpt .

3.4 TESTROOT DIRECTORY STRUCTURE
This structure contains the executable programs for each of the testsets installed. The
structure under thetset subdirectory follows the naming conventions explained in
the chapter entitled ‘‘VSX Terminology’’. Each testset entry is an executable program
and creates a matchingd. directory entry which is used to hold any temporary files
created while the testset is executing.

The BIN subdirectory is where utility programs and other binary files used by the
executable testsets are placed, and may also contain scripts which must be edited by the
user.

The Open Group
VSXgen 1.4 Page 8

X/Open System Verification Suite LSB-FHS User and Installation Guide

4. RESOURCES
4.1 INTRODUCTION

VSX requires the following major resources to run successfully:

g an adequate computer hardware environment

g the correct base utilities

g enough time to complete the task

g a system administrator with the necessary skill to run VSX.

4.2 COMPUTER HARDWARE
4.2.1 DiskSpace

Installation
VSX uses a certain amount of disk space. This is described in detail in the chapter
entitled ‘‘PREPARATION’’.

Building and Execution
To save disk space, you can build and execute selected sections of VSX. See the
chapter entitled ‘‘BUILDING VSX’’ for more information.

4.2.2 Exclusive Use

It is recommended that you have exclusive use of the machine when you execute the
tests. In particular, the operating system tests should only be executed when exclusive
use is available since these tests may affect other users of the system.

4.2.3 Devices

In order to execute all of the tests in VSX you will need the following devices to be
available on your machine. These are only required for some subsets.

1. One or more mountable file systems.

2. A terminal at which a user is logged on while the tests are executing.

4.3 UTILITIES
VSX assumes that the following utilities, which are defined in Volume 1 of XPG3, are
available on your system. VSX also assumes that the utilities work in the way described
in XPG3.

4.3.1 Bourne Shell

The configuration and installation stages use scripts which are written for the Bourne
shell, or a similar shell.

4.3.2 make

The installation and building stages usemake files.

4.3.3 Compiler

VSX requires a C compiler with the-E option, and a link editor. VSX assumes that
when these utilities execute successfully, they will return an exit value of 0 (zero).

The Open Group
VSXgen 1.4 Page 9

X/Open System Verification Suite LSB-FHS User and Installation Guide

4.3.4 Library Archiver

VSX requires a library archiver and other software to order the libraries. The ordering
software may be inherent in the library archiver, theranlib utility or the utility pair
lorder and tsort .

4.3.5 awk

The reporting stage usesawk scripts.

4.3.6 Editors

VSX uses the basic editored and the stream editorsed . The implementation of
sed can be either in the style of System V or BSD. In addition, the configuration and
installation stages use the utilitygrep extensively.

4.3.7 File Utilities

To handle files, VSX uses the basic utilitiescp , mv and rm. To handle file modes,
VSX uses the utilitieschown , chgrp and chmod and, for this reason, you must
have access to these during the installation phase of VSX.

VSX also uses a variety of other commands and utilities (as described in Volume 1 of
XPG3) during execution and uses the text formatternroff to format the
documentation.

4.3.8 Null Device

VSX assumes that the file/dev/null is readable and writable by all users and
behaves as described in XPG3.

4.4 TIME
For an experienced VSX user, the installation and execution of VSXgen and the full set
of test packages should take less than 24 hours. A longer period may be needed on
slower processors, as the building stage and the header tests make considerable use of
the compiler.

The design of VSX enables you to run the building and execution stages without
intervention and to review the results afterwards.

4.5 SKILLS
4.5.1 Using VSX

To install, build and execute the tests correctly, you must be able to give detailed
information about your system to VSX. VSX is not a product which can be loaded and
run without assistance. VSX is designed for use by an experienced systems
administrator who has considerable knowledge of the utilities available, the devices and
their associated device files on the system. For example, you may need to know whether
your system generates theEBUSYerror if you attempt to remove a busy directory.
Without this level of information, you may find difficulty in using VSX.

4.5.2 Interpreting Results

When VSX reports on the results of the tests, the report may show that a facility does
not work in the way that VSX expects. To investigate the cause of failed tests, you may
need more information than is available from the VSX report. Considerable skill and an
understanding of the operating system are necessary to gather this information and to
investigate the results thoroughly.

The Open Group
VSXgen 1.4 Page 10

X/Open System Verification Suite LSB-FHS User and Installation Guide

X/Open System Verification Suite

Part 2: Installation Guide

VSXgen1.4 May 1999
LSB-FHS 2.1 April 2000

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

5. PREPARATION
5.1 INTRODUCTION

Before you install VSX you must first check there is file space available and then create
the user accounts. When you are ready to load the VSX distribution, you must unpack
the distribution files and then check that the contents were extracted correctly. Finally,
you can optionally remove any unwanted parts of the distribution.

5.2 PREPARING YOUR SYSTEM
5.2.1 FileSpace Requirements

The target file system must have enough free space available to build and execute the
test suite. The amount of space required by each test package is given in the package-
specific sections at the end of this chapter. In addition VSXgen itself requires
approximately 5 to 8 Mb free space, of which less than 1 Mb is for theTESTROOT
directory.

Note the following points:

1. The TESTROOT directory may be on a different file system, but it must be one
that allows privileged access (e.g., it cannot be on a remote file system where user
ID 0 will be mapped to an ‘anonymous’ user ID).

2. The disk usage is much greater on RISC systems due to the larger size of object
and executable files. Where a range is given the higher figure is for a typical
RISC system, but some systems have been known to require up to three times this
amount.

3. You will need space to hold the reports. Allow 2Mb minimum.

4. The archiver and compiler may also use some temporary file space.

5. Disk usage inTESTROOTwill be less if the executables use shared libraries.

hhh

Action Points

1. Check there is enough free space available to unpack and install the software.

5.2.2 VSX User Accounts

You must add one or more group names and one or more user names to the group and
user databases on your system. The precise requirements vary between test packages.
Refer to the package-specific sections at the end of this chapter for details.

The only requirements common to all packages are the user namevsx0 and the group
name vsxg0 . The home directory for uservsx0 must be a subdirectory of your
TET_ROOT directory. (If you do not have TET installed, you must first create a
directory to be designated as yourTET_ROOT directory.)

The home directories of usersvsx1 and vsx2 (if needed) must differ from that of
vsx0 .

The user vsx0 must have a login shell. The user ID and group ID values chosen must
not exceed the value ofINT_MAX for the system.

If your system has extensions which are enabled by environment variables, and the
default settings of these variables would cause behaviour to differ from that required for
compliance, you must ensure that these variables are set so as to disable the extensions

The Open Group
VSXgen 1.4 Page 13

X/Open System Verification Suite LSB-FHS User and Installation Guide

in the login script for user vsx0 . For example, if the setting of theLANG
environment variable is such that processes have a locale setting other than the C or
POSIX locale on entry tomain() then this would typically be disabled by adding the
line

unset LANG

to the .profile for user vsx0 .

hhh

Action Points

1. Check for the file INSTALL.LSB-FHS. This contains important information
about installing the particular distribution of the LSB-FHS test suite.

2. Create a distinct group entry forvsxg0 and (if required by one of the test
packages) distinct group entries forvsxg1 and vsxg2 ; usually in the file
/etc/group .

3. If you do not already have TET installed, create a directory you wish to designate
as yourTET_ROOT directory.

4. Create a distinct user entry forvsx0 in group vsxg0 , with home directory
located under yourTET_ROOT, and with a login shell; usually in the file
/etc/passwd .

5. Make sure that the uservsx0 has write permission in theTET_ROOT
directory.

6. Add $HOME/BIN and $HOME/../bin to the command search path for user
vsx0 , and include it in thePATH environment variable set in the login script for
user vsx0 .

7. Ensure that any extensions enabled by environment variables that would cause
non-compliant behaviour are disabled in the login script for uservsx0 .

8. For some test packages, if the implementation supports supplementary groups,
the user vsx0 should have the maximum number of supplementary groups
associated with it. These supplementary groups must exclude the groupsvsxg1
and vsxg2 . The group ID values chosen must not exceed the value of
INT_MAX for the system.

9. If required by one of the test packages, create a distinct user entry forvsx1 in
group vsxg1 , in the password file. The home directory must differ from that of
user vsx0 .

10. If required by one of the test packages, create a distinct user entry forvsx2 in
group vsxg2 , in the password file. The home directory must differ from that of
user vsx0 .

5.3 LOADING THE VSX DISTRIBUTION
5.3.1 Unpacking the Distribution Files

The sources for VSXgen and each VSX test package may be distributed separately as
compressedcpio or tar archives, or a single archive.

When you unpack the distribution files, the contents are installed in a hierarchy which
starts from the current working directory. Make sure you log in as the uservsx0 and
unpack the files in thetet directory (the directory above the home directory), to
ensure that the access permissions and locations for the files are correct.

The Open Group
VSXgen 1.4 Page 14

X/Open System Verification Suite LSB-FHS User and Installation Guide

hhh

Action Points

1. Log in to the test system as the uservsx0 , who must be the owner of all the
loaded files.

2. Ensure you are working in thevsx0 home directory and that you have write
permission in that directory.

3. Unpack the distribution files for VSXgen and the test packages you wish to use,
using appropriate commands to decompress each file and extract all files from the
resulting POSIX cpio or tar archive, e.g. for the the LSB-FHS2.1-X test
suite which is distributed as a single archive comprising the TET and VSXgen
framework (vtools and vsxgen), as well as the LSB-FHS testset in tar format:

cd /home/tet/tests
tar zxvf LSB-FHS2.1-1.tar.gz

5.3.2 Checking the Contents

When you have finished unpacking the files, the following main directories should be in
the vsx0 home directory:

Directory Name Summary of contents

BIN VSX user commands
MAN VSX user manuals (on-line)
results a directory tree for journal files
SRC general source tree
SUPPORT Not relevant in POSIX or FIPS modes
TESTROOT executable testsets tree
tset testset source tree

In addition, a number of other files should be in thevsx0 home directory. The most
important ones to look for are the test package release identification files, called
pkgrel num, wherepkg is the package name (e.g.LSB-FHS) andnum is the release
number of the package. This is the last file written to each test package archive. Its
presence tells you that all the contents of the archive have been read.

hhh

Action Points

1. Change to thevsx0 home directory (usingcd) and list the directory. Check
the expected subdirectories and the release identification files for each test
package are there.

If they are not, check that there were no read errors while the archives were being
read and that there is space available on the file system.

2. Check that the release numbers given in the test-package specific Action Points
for this chapter correspond with the release identification files.

The Open Group
VSXgen 1.4 Page 15

X/Open System Verification Suite LSB-FHS User and Installation Guide

5.4 REMOVING UNWANTED VSX DATA (OPTIONAL)
When you want to save space on your system and you do not want to install the tests for
some sections, you can remove parts of the VSX distribution. Refer to the package-
specific sections at the end of this chapter to identify which parts of each test package
you might be able to remove.

hhh

Action Points

1. Remove any unwanted sections from the directoriestset and MAN/tset .

The Open Group
VSXgen 1.4 Page 16

X/Open System Verification Suite LSB-FHS User and Installation Guide

5.5 LSB-FHS PREPARATION
5.5.1 FileSpace Requirements

The LSB-FHS test package requires in the region of 2 to 10 Mb of free space, of which
2 Mb is for the TESTROOTdirectory.

5.5.2 VSX User Accounts

hhh

Action Points

1. (This feature of testset merging is not supported in LSB-FHS 2.1, but maybe in a
future release). If this testset is going to be merged with the VSX-PCTS subset,
the vsx0 home directory must be calledvsx4 otherwise the requirement is
only that the directory be below the TET directory.

2. It is recommended for LSB-FHS 2.1 that the testsuite be installed within a
directory called /home/tet/tests/lsb-fhs .

5.5.3 Loading The LSB-FHS Distribution

hhh

Action Points

1. The name of the LSB-FHS release is determined by the identification file which is
the last file in the archive, and takes the form LSB-FHSrelX.Y-Z where X.Y is
the FHS specification revision number for this test suite and Z is the release level.
See the release notes for the current release level.

The Open Group
LSB-FHS Page 17

X/Open System Verification Suite LSB-FHS User and Installation Guide

6. CONFIGURING VSX
6.1 INTRODUCTION

When you receive VSX, the source code is written to run even when your system does
not yet conform fully to the specification. The construction of VSX enables it to run on
a wide range of implementations, by including a configuration stage.

During the configuration stage, VSX finds out the specific details about your system and
uses the information to generate parameter files for the system. VSX finds the
information both by interrogating your system and by asking you questions.

Before you start, you must establish an installation directory and find out the
information which is needed for configuration. Read this chapter and write the
information for your system next to each action point. When you have finished
configuring VSX, check the parameter files are correct for your system.

6.2 INSTALLATION DIRECTORY
The directory you use to install the testsets may be on a different file system from the
distribution directory. The file system must have enough space available for the
executable testsets. A default installation directory is provided, namedTESTROOTin
the vsx0 home directory. If you choose a directory that does not already exist, it will
be created by the VSX installation procedure.

For some test packages (as indicated in the package-specific sections at the end of this
chapter), if you are testing for conformance to FIPS 151 the installation directory must
support the inheritance of parent directory group ID. The method of achieving this (if it
is not the default) is implementation dependent, but will typically be either an option
when the file system is created, or a mode setting on the individual directories which
support the feature. If the method used involves the setting being inherited by
subdirectories when they are created and there is an existing directory hierarchy under
the installation directory which is not set up to support the inheritance of parent
directory group ID, then you must remove thetset subdirectory and everything
below it.

It is recommended that you set the environment variableTET_EXECUTEto the
pathname of the installation directory in your login script. For example, if you are
using a Bourne-type shell and the default location for the installation directory, include
the lines

TET_EXECUTE=$HOME/TESTROOT
export TET_EXECUTE

in the .profile for the vsx0 login.

hhh

Action Points

1. Choose a directory for the installation of testset executables. The default is
TESTROOTunder the vsx0 home directory.

2. Set the environment variableTET_EXECUTEin the vsx0 login script to the
pathname of the testroot directory. If you are using the LSB-FHS 2.1 distribution
and installing the test suite in the recommended location of
/home/tet/tests/lsb-fhs you can dot in the profile provided in the file
called /home/tet/tests/lsb-fhs/profile . This file will setup the
environment needed to run the test suite and also provide some useful shell
functions.

The Open Group
VSXgen 1.4 Page 18

X/Open System Verification Suite LSB-FHS User and Installation Guide

3. If you are using the LSB-FHS 2.1 distribution , a configuration and installation
wrapper is provided to guide you through the complete installation:

sh install_wrapper.sh

6.3 PARAMETERS
6.3.1 Introduction

The shell script included with VSX for configuration interrogates your system and asks
you questions on the screen. There are VSX default values which you can use, or you
can choose to start with the defaults in a parameter file which has already been set up. A
list of the parameter files available is given when the configuration script starts. See also
the section entitled ‘‘CREATING PARAMETER FILES’’ at the end of the chapter.

6.3.2 Libraries

When VSX interrogates your system, it searches libraries in an order which ensures that
the standard C library is checked last. Give the names of other libraries to search in the
order you want VSX to use them. Note that if loadable objects with the same name
appear in different libraries, problems may occur when you are compiling if the
libraries are searched in the wrong order.

6.4 VSX CONFIGURATION SCRIPT
6.4.1 Introduction

The configuration script finds or requests information about the following subjects.
When the configuration script asks a question on the screen, you can use the default
value, shown in brackets, or type the answer for your system. The sections on the
following pages tell you what information VSX is looking for. The package-specific
sections at the end of this chapter may indicate additional requirements or restrictions
on the answers you give to some of these questions.

Note that the defaults (shown in parentheses) in the text on the following pages are the
VSX defaults. When you use a parameter file which has already been set up, the
defaults on the screen will be taken from the parameter file you chose. When you re-
run the configuration script later, the defaults are taken from the previous run unless
you use a parameter file.

6.4.2 General Information

Parameter File
Choose a parameter file from the list shown on the screen. Alternatively, press
RETURNto start with values from a previous run if any, otherwise the VSX defaults.

Mode
This determines which test mode you wish to run. Some or all of the following modes
will be offered, depending on which test packages are available:

g POSIX90 — tests compliance to POSIX.1-1990, the lsb-fhs testset can be run in
this mode.

g POSIX96 — tests compliance to POSIX.1-1996, the lsb-fhs testset can be run in
this mode.

Subset
A list of the subsets that support the chosen test mode from each available test package
is displayed. Enter a space-separated list of the subsets which contain tests you wish to
run (default: all subsets that support the chosen test mode).

The Open Group
VSXgen 1.4 Page 19

X/Open System Verification Suite LSB-FHS User and Installation Guide

If only one subset supports the chosen test mode, its name is displayed and the question
is not asked.

Name
Your name in the way you want it shown on reports.

Agency
Your agency name, to use on reports.

System
The operating system name and the release number, to use on reports.

Installation Directory
The name of the installation directory for the executable testsets (default:
$HOME/TESTROOT). You can choose any other directory you want to use, to make
the best use of the file space available. The installation directory is also known as the
testroot directory.

Machine Speed
The speed of your machine, in the range 1–10, where 1 is very fast and 10 is slow
(default: 5). For example, the speed of an average workstation is rated 5 on this scale.
It is better to underestimate the speed of your machine than to overestimate it.

The speed rating is used to determine how much time to allow a test before timing out,
usually in cases where a test has failed. The speed rating does not affect the execution
time for VSX significantly.

Include Files
The system’sincludedirectories in order of searching (default:/usr/include).

C Compiler
The name of the C compiler (default:c89 or cc).

C Compiler Special Command Line Options
This question prompts for special command line options for your C compiler. If you
want to compile parts of the suite with special options, you can specify them when you
build the parts with the Test Case Controller. The code is not usually optimised.

If the list of systeminclude directories specified earlier is not the default for the
C compiler, then add-I/ directoryoptions as necessary.

C Compiler Special Link Editor Options
The next question prompts for special link editor options for your compiler. The
default options are usually adequate. However, it should be noted that the C compiler
special command line options arenot used on the link command line, and thus some of
these special options may need to be repeated here.

Libraries
The location of the library maintenance utilitiesar , lorder , tsort and ranlib .
This is requested when they are not in the user’sPATH .

Files
The location of the commands to change file ownership, file group ownership and file
modes; namelychown , chgrp and chmod. This is requested when they are not in
the user’sPATH .

Additional Libraries
Libraries, other than the C library and specific libraries asked for individually, used by
your system for some of the routines (for example-lmalloc). Give one library
name each time the question is asked.

The Open Group
VSXgen 1.4 Page 20

X/Open System Verification Suite LSB-FHS User and Installation Guide

Note that some questions about specific libraries may be askedafter this question, if
they are only needed by certain subsets.

ANSI vprintf Function
Whether the ANSI functionsvprintf() and vfprintf() are supported (y/n,
default: y).

6.4.3 Compiler Characteristics and Libraries

VSX uses a series of small C programs to test your compiler and libraries.

6.4.4 Subset-specific Information

Information needed by individual subsets is asked at this point. Refer to the package-
specific sections at the end of this chapter for details.

6.4.5 Optional Information

The following questions are only asked if the information is needed by one or more of
the subsets you have selected. The package-specific sections at the end of this chapter
indicate which questions apply to the subsets and test mode you have selected.

Maths Library
The location of the archive library which contains your maths library routines if there is
one (default: -lm).

6.4.6 Running the Configuration Script

When you execute the configuration script and answer the questions, messages appear
on the screen which tell you when the script is updating the parameter files.

hhh

Action Points

1. Read through the configuration script section and write down any information
you will need to use which is different from the defaults.

2. Execute the shell scriptconfig.sh which is in the BIN directory. When you
have included this directory in yourPATH , you can execute the command from
any location.

3. Answer the questions which the configuration script asks.

6.5 CHECKING THE PARAMETER FILES
When you have run the configuration script and answered the questions, VSX generates
two files in the SRCdirectory. One contains configuration parameters and the other is
a header file containingincludefile elements.

6.5.1 Configuration Parameters File

The parameters file, namedvsxparams , contains the configuration constants for your
system which VSX uses during the installation and building stages. The installation
stage uses the parameters file to modify makefiles to suit your system and to generate
the files tetbuild.cfg , tetexec.cfg and tetclean.cfg which are used
by the Test Case Controller. The parameters file contains a set of parameters which are
defined in a format suitable for inclusion in a Bourne shell script:

parameter−name=" parameter−value"

Note that you must include the quotation marks. A description of the use and possible
values for the parameter precedes each parameter setting. You can change the values of
parameters in the file without re-running the configuration script.

The Open Group
VSXgen 1.4 Page 21

X/Open System Verification Suite LSB-FHS User and Installation Guide

hhh

Action Points

1. Check the values in the configuration parameters fileSRC/vsxparams and
edit theparameter−namelines if necessary.

6.5.2 Configuration Header File

The source files used in the installation and building stages of VSX will not compile
unless your header files contain the definitions used by the source code for the subsets
you have selected. The configuration script checks your system header files for these
definitions and, when some are missing, creates a header file, namedvsxconfig.h ,
with a list of the definitions which are missing from your system.

Note that VSX usesNSIG in signal.h , which is not in POSIX.1. However, this is
required to find the highest signal number. This must be set to the highest number that
a signal can take plus one.

When the configuration script adds a definition to this file, a message appears on the
screen.

Definitions
The list may contain missing elements of the following types:

1. Where the value of a defined constant is unlikely to vary between systems, the
configuration header file uses the most common value.

2. Where the value of a defined constant is likely to vary between systems, the
configuration header file uses a value of−1. You can change the value to one
which is more suitable for your system, or leave it as−1. However, VSX only
functions correctly when all of these values have been changed to the correct
values for your system. Some tests will fail when values are left as−1. For
example if your signal.h file does not include the signalSIGABRT, you can
map it onto the signalSIGIOT in the configuration header file, by adding the
definition

#define SIGABRT SIGIOT

3. Where defined constants are missing from the filelimits.h , the configuration
header file uses the minimum acceptable value.

4. Where type definitions are missing the configuration header file will contain a
dummy typedef statement. You should replace the token<type> with the
correct type for your system. If a type definition appears in more than one header
file, it must be protected against redefinition in the same way in all the headers
that define it, otherwise it must be protected against multiple inclusions of the
header that defines it. You may also need to move the type definition so that it
appears before any declarations that use the type name.

5. Where structure definitions are missing the configuration header file will contain
a dummy struct statement. You should replace the token<members> with
the correct structure members for your system.

6. Where extern declarations are missing the configuration header file will
contain the correct declaration.

hhh

The Open Group
VSXgen 1.4 Page 22

X/Open System Verification Suite LSB-FHS User and Installation Guide

Action Points

1. Check the SRC/vsxconfig.h file to ensure that the values are correct for
your system. If you are using the LSB-FHS 2.1 distribution, and the
install_wrapper.sh script it will edit this file automatically patching up
the value for NSIG to be _NSIG.

2. Check that the values of all the varying defined constants have been changed
from −1 to the values for your system.

3. Check that the values of the other defined constants are correct for your system.

4. Check that all dummy statements have been changed to valid ones.

5. If you re-run config.sh at a later time, it will overwrite
SRC/vsxconfig.h , so make sure you copy it first.

6.5.3 IMPORTANT

When VSX creates the configuration header file with a list of definitions, the indication
is that your system does not conform to POSIX.1. If you are unable to give the correct
values for the definitions in the file, you may find that some of the VSX sources do not
compile and that some of the tests fail.

You must check all the values for the definitions added to this file, to ensure that they
are suitable for your system. Incorrect values may cause particular tests to function
incorrectly. If this happens, it is much more difficult to ascertain the cause of the error.
As this information is not available to all users, you may need assistance from the
personnel who implemented your system.

6.6 CREATING PARAMETER FILES
You can create a new parameter file by copying thevsxparams file to the directory
install/params.data . If you re-run the configuration script, you can choose to
use any of the files in this directory to provide the default values for your system. The
default values are taken from the fileSRC/vsxparams unless you choose a different
parameter file.

6.7 TOP LEVEL MAKEFILE
The VSX configuration script generates aMakefile in the vsx0 home directory.
This contains commands to be executed in the installation stage. Many of the
commands needed are implementation-specific and so must be configured by the user.
Only the commands needed for the subsets and test mode you have selected are placed
in the templateMakefile .

The operations that must be performed by the configured commands are described in
the following sections. You need only refer to the descriptions of the targets that appear
in the template that has been created byconfig.sh .

The Makefile is provided for convenience should the installation stage need to be
repeated. However, as the configured commands must be executed as a privileged user,
you may, if you prefer, choose not to use theMakefile and execute the necessary
commands by hand instead.

6.7.1 Privilege Check

The privchk target checks thatmake has been executed with the necessary
privileges. The default commands assume that these privileges are associated with user
ID 0 and use the commandsid and grep to check the current user ID value.

The Open Group
VSXgen 1.4 Page 23

X/Open System Verification Suite LSB-FHS User and Installation Guide

6.7.2 Parent Directory Group ID

The dirgid target sets up the testroot directory to support the inheritance of parent
directory group ID. The default commands assume that this is done by setting the
S_ISGID bit on the directory.

6.7.3 Execute Install Script as Uservsx0

The install target executes the VSX installation scriptinstall.sh with the
user ID of user vsx0 . Since the script expects the environment variableHOME to
contain the vsx0 home directory, these commands must ensure that it is set
appropriately.

6.7.4 Assign Privileges tochmog Program

The chmogpriv target gives the programchmog the appropriate privilege to
change the mode, owner and group of any file and to assign privileges to executable
files. The default commands make the program setuidroot .

6.7.5 Additional Subset-specific Targets

The Makefile may also contain additional targets that are specific to the subsets you
have selected. Refer to the package-specific sections at the end of this chapter for
details.

6.7.6 Non-configured Commands

The top level Makefile may also perform some of the following operations, using
commands that do not need to be configured by the user:

g Creates the testroot directory if it does not already exist.

g Additional subset-specific operations.

hhh

Action Points

1. Edit the Makefile in the vsx0 home directory.

2. Configure the implementation-specific installation commands correctly for your
system.

3. If you re-run config.sh at a later time, it will overwrite Makefile , so
make sure you copy it first.

6.8 USER-SUPPLIED INTERFACE ROUTINES
6.8.1 Introduction

There should be no need to adjust the default supplied with the LSB-FHS 2.1
distribution.

Depending on the test mode selected, VSX needs to use a variety of functions which are
not in the corresponding specification in order to set up the conditions required to
execute tests of system interfaces which are. Since this functionality can be defined in
any way a system implementor requires, VSX has a file which needs to be edited to
define these functions prior to the compilation of the test suite.

For example, VSX needs to obtainappropriate privilegesin many tests. Since the
means of obtaining these privileges is not specified in POSIX.1, it is configurable in the
file SRC/userintf.c .

As supplied with VSX, these routines make use of system interfaces commonly found
on many systems. The file contains sensible defaults and if, after reviewing these, you

The Open Group
VSXgen 1.4 Page 24

X/Open System Verification Suite LSB-FHS User and Installation Guide

decide that they are not appropriate for your system, you should modify the routines as
necessary before the VSX test suite is installed.

Only the routines needed for the subsets and test mode you have selected are placed in
the template userintf.c file. Descriptions of the individual interfaces may be
found below. You need only refer to the descriptions of the routines that appear in the
template that has been created byconfig.sh .

6.8.2 setprv()

setprv() provides the current process withappropriate privileges. The argument
specifies what privilege is being requested from the following set:

PRV_SETID to perform privilegedsetuid() and setgid() calls

PRV_MOUNT to mount and unmount file systems

PRV_LINKDIR to create and remove links to directories

PRV_ACCESS to gain unrestricted access to files

PRV_CHOWN to perform privilegedchown() and chmod() calls

PRV_SETGRPS to set supplementary group IDs

PRV_NEWROOT to set the root directory of the process

PRV_KILL to perform privilegedkill() calls

PRV_DEVICE to access device files

PRV_ASSIGN to assign privileges to an executable file

PRV_IPC to allow unrestricted IPC access

PRV_NICE to perform privilegednice() calls

PRV_ULIMIT to perform privileged setlimit() or ulimit()
calls

PRV_LIMITS to perform privilegedsetrlimit() calls

PRV_MEMLOCK to obtain memory locking privileges

PRV_SETTIME to set (real-time) clocks

PRV_SETRTSCHED to set (real-time) process scheduling parameters

PRV_GETRTSCHED to get privileged (real-time) process scheduling
parameters

PRV_SETTHRSCHED to set threads scheduling parameters

PRV_GETTHRSCHED to get privileged threads scheduling parameters

The mapping of this privilege set to the set of privileges on the implementation may not
be one-to-one. If distinction between individual privileges is not considered important,
then the simplest mapping is to give the calling process all possible privileges on each
call to setprv() .
setprv() returns 0 for success,−1 for failure.

6.8.3 unsetprv()

unsetprv() removes the specified privilege from the current process. The argument
specifies what privilege is to be removed; the values are the same as those used with
setprv() .
unsetprv() returns 0 for success,−1 for failure. (If the process already does not

The Open Group
VSXgen 1.4 Page 25

X/Open System Verification Suite LSB-FHS User and Installation Guide

have the privilege, this is considered success).

6.8.4 prv_assign()

prv_assign() assignsappropriate privilegesto an executable file. The arguments
are the file name and a zero-terminated array of the privileges to be assigned. Privilege
values are the same as those used withsetprv() . If a process with effective user ID
of root automatically has the requested privilege, no action is necessary. When the
file is executed it will make calls tosetprv() to activate the assigned privileges. If
privileges assigned withprv_assign() are automatically active when the file is
executed, thensetprv() should just check that the requested privilege is in effect.
prv_assign() is only called after setprv(PRV_ASSIGN) since assigning
privilege is a privileged operation.
prv_assign() returns 0 for success,−1 for failure.

6.8.5 mnt_rw()

mnt_rw() mounts the file system specified byspecon to the directorydir for reading
and writing.
mnt_rw() returns 0 for success,−1 for failure.

6.8.6 mnt_ro()

mnt_ro() mounts the file system specified byspecon to the directorydir for reading
only.
mnt_ro() returns 0 for success,−1 for failure.

6.8.7 unmnt()

unmnt() unmounts the file system specified byspecfrom the directorydir where it
has previously been mounted.
unmnt() returns 0 for success,−1 for failure.

6.8.8 Additional Subset-specific Routines

The package-specific sections at the end of this chapter describe any additional routines
that may have been added touserintf.c for the subsets you have selected.

hhh

Action Points

1. Review the fileSRC/userintf.c and identify if it needs to be modified.

2. Modify the file to meet your system’s requirements.

3. If you re-run config.sh at a later time, it will overwriteSRC/userintf.c
with the default version, so make sure you copy it first.

The Open Group
VSXgen 1.4 Page 26

X/Open System Verification Suite LSB-FHS User and Installation Guide

6.9 CONFIGURING LSB-FHS
6.9.1 Installation Directory

hhh

Action Points

1. The requirement for the installation directory to support the inheritance of parent
directory group ID only applies if you intend to merge this testset with the VSX-
PCTS subset (this is not supported in the LSB-FHS 2.1 distribution, but may be
added in a future release).

2. If you are first time user of the LSB-FHS 2.1 distribution, it is recommended that
you use the install_wrapper.sh script to guide you through the
configure, install, build and execute process.

6.9.2 VSX Configuration Script

Note the following points regarding the configuration script questions described in the
generic part of this chapter:

Subset
You can select the following subset only:

g lsb-fhs – the LSB tests for the filesystem hierarchy layout.

The Open Group
LSB-FHS Page 27

X/Open System Verification Suite LSB-FHS User and Installation Guide

7. INSTALLING VSX
7.1 INTRODUCTION

When you have configured VSX for your system, you can proceed to the VSX
installation stage. This is where the installation commands configured in the top level
Makefile are executed and the VSX utilities and libraries are built.

The major part of the installation procedure is performed by a script which is executed
with the user ID of uservsx0 from the top level Makefile . The installation script
applies the parameters and definitions in the filesvsxparams and vsxconfig.h
to the VSX source files. The script generates a report with details of the success of each
step in a journal file in theresults directory. The journal files from successive runs
of the installation script are numbered sequentially.

The installation script includes the following steps:

7.1.1 VSX Header Files

The file SRC/INC/std.h is updated with values fromvsxparams which are
needed in C compilations.

7.1.2 Include Files

The set of your system include files is copied intoSRC/SYSINC and each file is
updated with any extra definitions required, from the filevsxconfig.h . The VSX
include files are used to install and build the VSX software, but not in the execution of
header file tests.

7.1.3 Directory Routines

The installation script checks the directory routinesopendir() and readdir()
are working. When the directory routines are not functioning correctly, the script gives
a warning, both on the screen and in the install journal.

7.1.4 Variable Argument Routines

The installation script checks whether variable argument functions work correctly,
using either <varargs.h> or <stdarg.h> depending on the test mode selected
and whether the compiler defines the symbol__STDC__. Note that the contents of
these headers is not checked during the configuration stage, when the other system
headers are checked. If the header file contents are found to be incorrect, and you do
not wish to alter the file in the system include directory, you can copy it in to
SRC/SYSINCand correct the problem there.

7.1.5 Testroot Initialisation

The install script creates the testroot directory structure under the testroot directory.

7.1.6 Configuration Files

The building and cleaning configuration files, tetbuild.cfg and
tetclean.cfg are created in the home directory, using the information from the
configuration stage. The execution configuration file,tetexec.cfg is created in the
testroot directory with some of the parameters set up with the information from the
configuration stage. However, you must add the values for most of the parameters in
the execution file manually. See the chapter entitled ‘‘EXECUTING VSX’’ for details.

These files contain the parameters which are used during the building, execution and
cleanup stages respectively.

If these configuration files already exist, they are first renamed tooldbuild.cfg ,
oldclean.cfg and oldexec.cfg before being created. Parameter values from

The Open Group
VSXgen 1.4 Page 28

X/Open System Verification Suite LSB-FHS User and Installation Guide

the old tetexec.cfg are copied to the new file before it is updated with information
from the configuration stage.

7.1.7 Scenario Files

The install script creates the scenario filesscen.bld and scen.exec in the home
directory. These are used by TET to determine which tests are built and executed,
respectively.

7.1.8 Update Common Software Files

Firstly, userintf.c is copied into SRC/common/vport . Then the
Makefile s in the various sub-directories ofSRC/common are updated with
information from the configuration stage.

7.1.9 Subset-specific Install Scripts

Any additional procedures needed for the subsets and test mode you have selected are
performed at this point. For example, additional subset-specific values may be added to
SRC/INC/std.h .

7.1.10 Build Common Software

The installation script builds the VSX libraries and utility programs. The install journal
gives a success/failure indication for each directory in whichmake is executed. You
must investigate and correct any failures which occur during building before continuing
any further.

hhh

Action Points

1. Obtain the necessary privileges for execution of the installation commands you
have configured in the top levelMakefile and executemake in the vsx0
home directory. E.g.

su root -c make

2. When make has completed, check the installation log in theresults
directory to ensure that no errors have occurred. Ifmake encountered any
errors, or there are errors in the log, you must correct them and re-runmake.

The Open Group
VSXgen 1.4 Page 29

X/Open System Verification Suite LSB-FHS User and Installation Guide

8. BUILDING VSX
8.1 INTRODUCTION

When you have configured and installed VSX, the next stage builds a series of
executable programs in yourTESTROOTdirectory. These programs make up the VSX
test suite, which you run in the execution stage to verify your system.

You can choose to build all the testsets you have configured. Alternately, you can
choose the section or area you want to build and, optionally, build single testsets. When
building the tests, you can specify options to use an alternative configuration file and to
modify parameters on the command line, among others. In addition, you can use the
output from the building stage in a VSX journal file for the VSX reporting stage.

8.2 BUILDING ALL REQUIRED TESTSETS
8.2.1 Introduction

Invoking the Test Case Controller with the command

tcc -b -s scen.bld

will cause all the testsets for the options selected during the configuration stage to be
built. If you have not set the environment variableTET_EXECUTE to the pathname
of your testroot directory, you must specify it on thetcc command line. For example,
to specify the default testroot location, append

-a TESTROOT

to the command given above. The remaining example commands in this chapter
assume thatTET_EXECUTE is set in the environment.

The build parameters are found in thetetbuild.cfg file in the vsx0 home
directory. This file is created during the installation phase.

Journal File
The results from the building stage are placed in a journal file under theresults
directory. The name of this file is output by thetcc on startup. VSX provides
utilities to produce reports from these files — see the chapter entitled ‘‘REPORTING’’
for further details.

8.3 BUILDING SELECTED TESTSETS (OPTIONAL)
8.3.1 Sections and Areas

The package-specific sections at the end of this chapter give details about the parts of
the test suite you can build. To build individual testsets and use other options for the
tcc command, see the sections marked ‘‘OPTIONAL’’ later in the chapter.

8.3.2 Building Selected Parts of a Scenario

To build selected parts of the test suite, you can use the-y and -n options of the
tcc to select which lines of the filescen.bld you wish to include (-y) or exclude
(-n). You can use as many of these options as you like in one command. If a scenario
line matches both a-y string and a-n string it will be excluded.

For example, to build just theLSB.fhs section, use the command:

tcc -b -s scen.bld -y LSB.fhs

or to build everything except the tests for the root section, use the command:

tcc -b -s scen.bld -n /root/

The Open Group
VSXgen 1.4 Page 30

X/Open System Verification Suite LSB-FHS User and Installation Guide

or to build the tmp areas in all the sections that have one, but excluding tests of
/var/tmp , use the command:

tcc -b -s scen.bld -y tmp -n /var

The journal file for a partial execution is handled correctly by the report writer.

8.3.3 Building Individual Testsets

If the list of testsets you wish to build is too varied to be specified easily using-y and
-n options, simply edit a copy of the scenario filescen.bld to reflect the testsets
you wish to build.

Examples
If the file myscen.bld contains an edited copy ofscen.bld then use the
command

tcc -b -s myscen.bld

to build just the testsets contained in the file.

8.3.4 Additional Options

The tcc manual page gives full details of the additional options you can use with the
tcc command. The following options are some of the most useful.

1. To see a running progress report, include the-p option. The tcc will then
output a line to the terminal as it starts building each testset.

2. To use an alternative configuration file totetbuild.cfg, include the
-g filenameoption. The file must be in the same format astetbuild.cfg .

3. To override a parameter in the build parameters file, include the-v option. For
example, to use the operator name ‘‘A N Other’’ rather than the value defined in
tetbuild.cfg , use the command

tcc -b -v VSX_OPER="A N Other" rest−of−command

4. In order to build testsets which failed to build in a previous build, use

tcc -b -s scen.bld -r FAIL old−journal−file

whereold−journal−file is the journal file from which the codes are extracted.

hhh

Action Points

1. Log in as the uservsx0 .

2. Give the command

tcc -b -s scen.bld

with the other options you want to use. Use the command

../bin/tcc -b -s scen.bld

from the vsx0 home directory if $HOME/../bin is not in yourPATH .

The Open Group
VSXgen 1.4 Page 31

X/Open System Verification Suite LSB-FHS User and Installation Guide

8.4 REMOVING BUILT TESTSETS
When you want to remove all of the object files and executable programs for the whole
test suite or part of it, you can use the-c option of the tcc command. This option
works in exactly the same way as the-b option except that, instead of building the test
suite, this option returns the system to the state it was in before you started the building
stage.

Use this option when you want to re-build VSX using a different compiler.

8.5 REPORTING
You can produce reports from the journal files output bytcc by using the procedures
described in the chapter entitled ‘‘REPORTING’’. These reports show you where any
compilation failures have occurred.

8.6 TROUBLESHOOTING
You may encounter some of the following problems when you build tests withtcc .
This section lists common problems and gives notes explaining how to overcome them.

1. tcc cannot create lock files.

There may be lock files left over from a previous run. Whenever possibletcc
always removes its lock files, however if it is terminated by an uncatchable signal
or the system crashes then lock files may be left behind. Check for files named
tet_lock in both the source and testroot directory hierarchies at the testset
level. The tet_lock file may itself be the lock file, or it may be a directory
containing lock files.

The Open Group
VSXgen 1.4 Page 32

X/Open System Verification Suite LSB-FHS User and Installation Guide

8.7 BUILDING LSB-FHS
8.7.1 Sections and Areas

LSB Subset
The sections in thebase subset contain the following areas:

root
Areas: boot, bin, dev, etc, etc-opt, etc-x11, home, lib,
mnt, opt, root, sbin, and tmp

usr
Area: bin, include, lib , local, sbin, share, share-dict,
share-man, share-misc, src, x11r6, and x386.

var
Areas: account , cache , cache-font , cache-man , crash , games,
lib , lib-misc , lock , log , mail , opt , run , spool , spool-lpd ,
spool-rwho , state , tmp , var , and yp .

linux
Area: dev , proc , root , sbin , usr-include , usr-src , and var-
spool-cron .

The Open Group
LSB-FHS Page 33

X/Open System Verification Suite LSB-FHS User and Installation Guide

9. EXECUTING VSX
9.1 INTRODUCTION

Before you run the testsets you have built, you must set up the file containing execution
parameters. When you are ready to execute the VSX testsets, you can choose to run the
entire selection of testsets you have configured or, optionally, execute sections, areas,
single testsets and individual invocable components. In addition, you can use options to
change parameters on the command line and to re-execute failed testsets from old
journal files, among others. You can use the output from the execution stage in a
journal file for the VSX reporting stage.

9.2 THE EXECUTION PARAMETERS FILE
9.2.1 Introduction

During the testset execution stage, the VSX testsets find information about your system
from the execution parameters file. This file contains lines which define the parameters
and give their values. If the testset cannot find the information, it either uses a default
value or reports that the parameter is not set in the test results for the tests that use that
parameter.

9.2.2 Setting the Execution Parameters

VSX looks for the execution parameters file,tetexec.cfg , in the testroot directory
when you execute the Test Case Controller. During the installation stage, VSX
generates an execution parameters file in the testroot directory, but some of the values
in the file are INCORRECT for your system.

Format
Each line in the execution parameters file is either a comment line, beginning with the
hash character (#), or a parameter line. Parameter lines use the following format:

parameter−name=parameter−value

The contents of the generated file vary according to the subsets you have selected. The
section below lists the parameter names that are always present. Additional parameters
required only for one subset are listed in the package-specific sections at the end of this
chapter.

The value given to each parameter may be any sequence of characters which is valid for
the associated parameter. When you leave the value blank after the equals sign (=), the
parameter is set to its default value, if it has one.

hhh

Action Points

1. Check the execution parameters filetetexec.cfg before you start the VSX
execution stage and edit any values which are not correct for your system.

2. If you use the install_wrapper.sh script provided with the LSB-FHS 2.1
distribution and answer the questions, this will automatically parameterize the
tetexec.cfg file.

The Open Group
VSXgen 1.4 Page 34

X/Open System Verification Suite LSB-FHS User and Installation Guide

9.3 EXECUTION PARAMETER NAMES
Check or set the values for the following parameters, and any additional subset-specific
parameters, in the execution parameters file before you start the VSX execution stage.
Note that the order of these parameters is the same as they are in the file where you will
edit them.

9.3.1 General Parameters

TEST_MODE
The testing mode selected whenconfig.sh was run. The value is set
automatically by the installation procedure and should not be altered.

TEST_PACKAGES
A list of the test packages being used. The value is set automatically by the
installation procedure and should not be altered.

VSXDIR
The source directory for the VSX source software.

Where Used
vbuild (vprog)

Default Value
None

VSX_DBUG_FLAGS
The debugging flags used to determine the level of debugging information
generated upon execution of tests.

Where Used
All testsets

Default Value
If this parameter is not set, no debugging output is produced.

VSX_DBUG_FILE
The default destination for debug and path tracing output. This file is used if
none is specified in the debug flags inVSX_DBUG_FLAGS. Output is
appended to the file on each run, so an existing file should be saved or deleted
before running tcc with debugging enabled. Use of relative path names is
not recommended, as the directory in which test programs are executed
varies. This parameter is usually set toyour−testroot−directory/dbug.out .

Where Used
All testsets

Default Value
If this parameter is not set, debug output is sent to the standard error stream.
Note that this often causes incorrect test results in cases where the interface
being tested usesstderr . For this reason, it is advisable to direct
debugging output to a file.

VSX_NAME
The test run name; that is, what this particular test run will be called in the
final vrpt and/or prpt output.

The Open Group
VSXgen 1.4 Page 35

X/Open System Verification Suite LSB-FHS User and Installation Guide

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

VSX_OPER
The name of the operator for this test run.

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

VSX_ORG
Name of the agency running the tests/for whom the tests are being run.

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

VSX_PATH
Used to set thePATH environment variable during execution of testsets in
the header file sections. This will be used to locate the C compiler and the
executable object produced by it. This parameter should always include the
current directory.

Where Used
driver.hdr (drivers)
driver.C (drivers)

Default Value
:/bin:/usr/bin ; that is: your current directory, then/bin , then
/usr/bin .

VSX_SYS
The test system name; that is, the name of the system being tested.

Where Used
vrpt (vprog)
prpt (vprog)

Default Value
No default value is assigned.

VSX_UID0, VSX_UID1, VSX_UID2
These are the user IDs associated with the usersvsx0 , vsx1 and vsx2
respectively.
These must not be privileged users.

The Open Group
VSXgen 1.4 Page 36

X/Open System Verification Suite LSB-FHS User and Installation Guide

Where Used
uids (genlib)

Default Value
If not defined, each of the tests that uses these parameters is reported as
unresolved or uninitiated .

VSX_GID0, VSX_GID1, VSX_GID2
These are the group IDs associated with the groupsvsxg0 , vsxg1 and
vsxg2 respectively.
These must not be privileged groups.

Where Used
uids (genlib)

Default Value
If not defined, each of the tests that uses these parameters is reported as
unresolved or uninitiated .

TET_SIG_IGN
A list of the signal numbers that are to be ignored during testing. This should
be a comma-separated list of (non-POSIX) signal numbers. Many systems
will need to include the signal number for SIGSYS.

Where Used
TET API

Default Value
No default value is assigned.

TET_SIG_LEAVE
A list of the signal numbers that are to be left alone during testing. These are
most often signals which cause problems both if they are set to be caught and
if they are ignored viaTET_SIG_IGN . This should be a comma-separated
list of (non-POSIX) signal numbers.

Where Used
setsigs (vlib)
TET API

Default Value
No default value is assigned.

9.3.2 Compiler Characteristics

These parameters are only required if one or more selected subsets contain C language
tests, or header tests which use the generic driverdriver.hdr . Some test packages
may build alternative header test drivers, which use different parameters.

VSX_CC
The full path name of the C compiler to be used in header and C language
tests. This is normally set to the same value asCC in SRC/vsxparams .
The file named byVSX_CC may be a shell script or an executable file.

Where Used
driver.hdr (drivers)
driver.C (drivers)

The Open Group
VSXgen 1.4 Page 37

X/Open System Verification Suite LSB-FHS User and Installation Guide

Default Value
/bin/cc

VSX_CFLAGS
The flags to be passed to the C compiler (VSX_CC). This is normally set to
the same value asCOPTS in SRC/vsxparams .

These flags must not define any of the feature test macros
_XOPEN_SOURCE, _XOPEN_SOURCE_EXTENDED, _POSIX_SOURCE
or _POSIX_C_SOURCE.

Where Used
driver.hdr (drivers)
driver.C (drivers)

Default Value
NULL; that is, no string.

VSX_LIBS
Libraries and linker flags to be passed to the C compiler (VSX_CC).

These will usually include any subset-specific libraries named individually in
parameters in SRC/vsxparams , any libraries specified inSYSLIBS in
SRC/vsxparams , and any link editor command line options specified in
LDFLAGS in SRC/vsxparams .

Where Used
driver.hdr (drivers)
driver.C (drivers)

Default Value
-lm

9.4 EXECUTING THE VSX TEST SUITE
9.4.1 Introduction

The TET test case controller,tcc , controls the execution of the test suite. The driver
executes all the testsets or those for the part you have requested. The results from the
execution stage are placed in a journal file under theresults directory. The name of
this file is output by thetcc on startup.

The sections below give details about the parts of the test suite you can execute and how
to execute them. To execute individual testsets and use other options for the test suite
driver, see the sections marked ‘‘OPTIONAL’’ later in this chapter.

Note that tcc cannot be run usingnohup as this would break the association with
the login terminal specified in theVSX_TTYNAME parameter. If you wish to leave
tcc to run unattended but do not want the terminal to be left logged in when it finishes
you can use the shell’sexec command to executetcc in place of the login shell.
This will cause the terminal to be logged out whentcc exits.

9.4.2 Executing All Required Tests

To execute all the tests for the options selected during the configuration stage, invoke
the test case controller with the command:

tcc -e -s scen.exec

If you have not set the environment variableTET_EXECUTE to the pathname of your
testroot directory, you must specify it on thetcc command line. For example, to
specify the default testroot location, append

The Open Group
VSXgen 1.4 Page 38

X/Open System Verification Suite LSB-FHS User and Installation Guide

-a TESTROOT

to the command given above. The remaining example commands in this chapter
assume thatTET_EXECUTE is set in the environment.

The following sections contain details on executing selected parts of the test suite. Note
that if you make changes to your system to correct the faults diagnosed by VSX, it is
not sufficient just to re-build and re-run the tests that failed and see that they now pass.
The whole of VSX must be re-built and re-run to ensure that the changes have not had
an adverse effect on any other tests.

hhh

Action Points

1. Log in as the uservsx0 .

2. Give the command

tcc -e -s scen.exec

with the other options you want to use. Use the command

../bin/tcc -e -s scen.exec

from the home directory if$HOME/../bin is not in yourPATH .

9.4.3 Executing Selected Parts of a Scenario (OPTIONAL)

To execute selected parts of the test suite, you can use the-y and -n options of the
tcc to select which lines of the filescen.exec you wish to include (-y) or exclude
(-n). You can use as many of these options as you like in one command. If a scenario
line matches both a-y string and a-n string it will be excluded.

For example, to execute just theLSB.fhs section, use the command:

tcc -e -s scen.exec -y LSB.fhs

or to execute everything except the tmp tests, use the command:

tcc -e -s scen.exec -n /tmp/

or to execute thesbin areas in all the sections that have one, use the command:

tcc -e -s scen.exec -y /sbin/

The journal file for a partial execution is handled correctly by the report writer.

9.4.4 Executing Individual Testsets (OPTIONAL)

If the list of testsets you wish to execute is too varied to be specified easily using-y
and -n options, simply edit a copy of the scenario filescen.exec to reflect the
testsets you wish to build.

Examples
If the file myscen.exec contains an edited copy ofscen.exec then use the
command

tcc -e -s myscen.exec

to execute just the testsets contained in the file.

The Open Group
VSXgen 1.4 Page 39

X/Open System Verification Suite LSB-FHS User and Installation Guide

9.4.5 Executing Individual Tests (OPTIONAL)

The lowest level of granularity in VSX allows you to execute individual tests. Most
tests can be executed in this way, but some are dependent upon execution of earlier tests
in the testset, in which case only groups of dependent tests may be executed as a single
unit. Also, the header and C language tests can only be executed as whole testsets.

The mechanism for executing individual tests is the TETinvocable component(IC)
facility. Where no dependencies between tests exist the IC numbers are the same as the
test numbers. Where dependencies exist, the IC number for a group of dependent tests
is the same as the test number of the first test in the group. For example if a testset
contains four tests and test 3 is dependent on test 2, the IC numbers will be as follows:

Test number IC number

1 1
2 2
3 2
4 4

If IC number 2 is requested, then tests 2 and 3 will both be executed.

Note that even where no explicit dependency has been identified, some tests may
behave differently when executed individually than when executed in the normal testset
sequence. For this reason, it is always advisable to re-execute the whole testset once
individual testing has been completed.

To execute selected invocable components from one or more testsets add a comma-
separated list of the IC numbers in curly braces on the end of the associated scenario
lines. For example, the scenario file

all
/tset/LSB.fhs/root/bin/bin-tc{3,7,8}

will execute only IC numbers 3,7 and 8 in thebin-tc testset.

Alternatively, a one-off execution of selected IC numbers from a single testset can be
performed using the-l option of tcc . For example, the above execution could also
be achieved by the command

tcc -e -l /tset/LSB.fhs/root/bin/bin-tc{3,7,8}

Some shells may require the braces to be quoted.

Multiple -l options may be specified to execute more than one testset.

9.4.6 Additional Options (OPTIONAL)

The tcc manual page gives full details of the additional options you can use with the
tcc command. The following options are some of the most useful:

1. To see a running progress report, include the-p option. The tcc will then
output a line to the terminal as it starts executing each testset.

2. To use an alternative configuration file totetexec.cfg , include the
-x filenameoption. The file must be in the same format astetexec.cfg .

3. To override a parameter in the execution parameters file, include the-v option.
For example, to use the run nameXYZ123 rather than the value defined in
tetexec.cfg , use the command

tcc -e -v VSX_NAME=XYZ123 rest−of−command

The Open Group
VSXgen 1.4 Page 40

X/Open System Verification Suite LSB-FHS User and Installation Guide

4. In order to execute testsets which failed during a previous run, use

tcc -e -r code−list other−options old−journal−file

where code−list is a comma-separated list of result codes to be re-executed,
other−optionsare the othertcc options (e.g., -y or -n) andold−journal−file
is the journal file from which the codes are extracted. For example, to re-execute
all the tests that failed withFAIL , UNRESOLVEDand UNINITIATED codes
from journal file results/0002e/journal , use the following command:3

cd results
tcc -e -r FAIL,UNRESOLVED,UNINITIATED \

-s ../scen.exec 0002e/journal

9.4.7 Executing Tests Directly (OPTIONAL)

When debugging tests it is sometimes useful to execute them directly instead of under
the control of tcc . When tests are executed in this way the current directory must be
the location of the testset executable file. Also the variablesTET_CONFIG and
TET_CODE must be set in the environment. Once the tests have been executed the
results are found in a file calledtet_xres .

For example to execute the tests forwrite() directly you would use the commands:

TET_CONFIG=$TET_EXECUTE/tetexec.cfg
TET_CODE=$HOME/tet_code
export TET_CONFIG TET_CODE

cd $TET_EXECUTE/tset/POSIX.os/ioprim/write
./T.write
more tet_xres

This will execute all the tests in the testset. If you want to execute only specified ICs,
give the IC list as an argument:

./T.write 1-3,7

9.5 TROUBLESHOOTING
You may encounter some of the following problems when you execute tests withtcc .
This section lists common problems and gives notes explaining how to overcome them.

1. tcc refuses to find testsets.

Ensure you have either set the environment variableTET_EXECUTE to the full
pathname of the testroot directory, or used the-a option of the tcc to specify
the testroot directory.

2. Tests appear to hang for long periods.

Some tests do require a long time, as they must wait for timeouts. If the test is not
simply waiting but is using processor time, it may be receiving a signal
repeatedly. If you interrupt thetcc program with a SIGINT (e.g., by typing
DEL or CTRL-C on the terminal wheretcc is running), it will terminate the
current testset and start the next one. You can also do this by sending a
SIGTERMsignal to the stuck process.

hhhhhhhhhhhhhhhhhh

3. The long line in this example has been folded at the\ character for formatting purposes. The command can be typed all on one
line, in which case the\ character must be omitted.

The Open Group
VSXgen 1.4 Page 41

X/Open System Verification Suite LSB-FHS User and Installation Guide

3. The messageIC number not defined for this test casein journal files.

There may be a dependency. See journal from whole testset execution to identify
IC numbers.

The Open Group
VSXgen 1.4 Page 42

X/Open System Verification Suite LSB-FHS User and Installation Guide

9.6 EXECUTING LSB-FHS
9.6.1 General Parameters

9.6.2 Compiler Characteristics

All of the parameters in this section oftetexec.cfg are needed.

Its recommended thatcc or gcc is used for the name of the compiler.

9.6.3 Operating System Characteristics for LSB-FHS Subset Only

The following additional parameters are required for thelsb-fhs subset in the LSB
test mode.

LSB_BIN_SHELL_BASH
Denotes whether the implementation under test provides a /bin/sh as bash.

Where Used
LSB.fhs/root/bin

Default Value
In the case no value is specified, tests using this parameter will be reported as
unsupported.

LSB_C_SHELL_SUPP
Denotes whether the implementation under test provides a C shell.

Where Used
LSB.fhs/root/bin
LSB.fhs/root/etc

Default Value
In the case no value is specified, tests using this parameter will be reported as
unsupported.

LSB_KERNEL_NAME
The name of the kernel.

Where Used
LSB.fhs/root/boot

Default Value
None. This should be set to either vmlinux or vmlinuz. In the case no value is
specified, tests using this parameter will be reported asunresolved.

LSB_USER_DEV_CREATE
Does the implementation support users creating devices using the
MAKEDEV script?

Where Used
LSB.fhs/root/dev

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

The Open Group
LSB-FHS Page 43

X/Open System Verification Suite LSB-FHS User and Installation Guide

LSB_FILE_ASCII
The system provides the file /usr/share/misc/ascii

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_FILE_MAGIC
The system provides the file /usr/share/misc/magic

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_FILE_TERMCAP
The system provides the file /usr/share/misc/termcap

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_FILE_TERMCAPDB
The system provides the file /usr/share/misc/termcap.db

Where Used
LSB.fhs/usr/share-misc

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_PROCESS_ACCOUNTING
The implementation supports process accounting.

Where Used
LSB.fhs/var/account

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_C_COMPILER_SUPPORTED
Denotes whether a C or C++ compiler is provided with the implementation.

Where Used
LSB.fhs/linux/usr-include
LSB.fhs/linux/usr-src

The Open Group
LSB-FHS Page 44

X/Open System Verification Suite LSB-FHS User and Installation Guide

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

LSB_NIS_SUPPORTED
Denotes whether NIS is supported by the implementation.

Where Used
LSB.fhs/var/yp

Default Value
None. In the case no value is specified, tests using this parameter will be
reported asunsupported.

The Open Group
LSB-FHS Page 45

X/Open System Verification Suite LSB-FHS User and Installation Guide

10. REPORTING
10.1 INTRODUCTION

You can use the VSX reporting program to format reports from the results of the
building and execution stages. You can generate reports from a complete journal file or
from the results for the part you want to use. In addition, you can generate summary
reports which summarise the results for testsets in a given section, area or testset. When
you use the reporting program, you can use other options to control the length and
width of the text on the page.

When you want to compare the results in several journal files, you can use the
comparative reporting program, explained at the end of this chapter.

10.2 THE REPORTING PROGRAM
The VSX reporting program,vrpt , formats the results in the VSX journal files
generated by the building and execution stages. When you usevrpt , the environment
variablePATH must be correctly set so that commands can be executed. The reporting
program and its subsidiary programs are located in the directoryBIN below the vsx0
home directory. Include this directory in yourPATH.

10.3 REPORTING PROGRAM USAGE SUMMARY
vrpt [-l level] [-r coverage] [-f file] [-v] [-H] [-p] [-P] [-L len]
[-W wid] [file ...]

10.4 REPORTING PROGRAM OPTIONS
10.4.1 Reporting on the Entire Journal

To generate a report on an entire journal file, use the command:

vrpt journal−file

10.4.2 Reporting on a Section or Area (OPTIONAL)

The names of the sections and areas are the same as those listed in the building chapter.

By default, the reporting program generates a report from the complete journal file. To
produce a report from results for part of the test suite, use the-r option of vrpt ,
followed by the name of the section or area you want to use. For example, to report on
the POSIX.os testset results in the latest journal file, use the command:

vrpt -r POSIX.os journal−file

To report on thestreamio area within theANSI.os section, use the command:

vrpt -r ANSI.os/streamio journal−file

Note that the Conformance Summary produced as part of the cover pages on validation
test reports always contains the complete results for the journal file(s) being processed.
Only the body of the report is affected by the-r option.

10.4.3 Reporting on Individual Testsets (OPTIONAL)

You can also use the-r option for vrpt to report on the results of individual
testsets, or a range of testsets. The-P option is useful here to stop the cover pages
being produced. For example, to report on the results of a single testset for the system
interface write() , use the command:

vrpt -r POSIX.os/ioprim/write -P journal−file

The Open Group
VSXgen 1.4 Page 46

X/Open System Verification Suite LSB-FHS User and Installation Guide

To report on the results from all the testsets between the system callsread() and
write() , use the following command:4

vrpt -r POSIX.os/ioprim/read:POSIX.os/ioprim/write \
-P journal−file

10.4.4 Summary Reports (OPTIONAL)

To generate a report which summarises the testset results by section or area, use the-l
option. The area summary report, which is useful as a management summary, is given
in tabular format. For example, to generate a summary report at section level, use the
command:

vrpt -l sect journal−file

For area level reports, use the command:

vrpt -l area journal−file

10.4.5 Varying the Text Format (OPTIONAL)

You can use the-L page length and-W page width options to format the text in
reports according to your paper size. When you reduce the page width, long output lines
are automatically wrapped onto the next line of the report. Note that the Conformance
Summary produced as part of the cover pages contains a wide table which does not get
wrapped, so if you are using a page width of less than the default 80 characters, you will
probably want to disable the cover pages by using the-P option. For example, to
format the text using a page length of 50 lines and width of 64 characters, use the
command:

vrpt -L50 -W64 -P journal−file

10.4.6 Additional Options (OPTIONAL)

The vrpt user manual, in part 4 of this guide, gives full details of the additional
options you can use with thevrpt reporting program.

hhh

Action Points

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrpt with the options you want to use, on a journal file
generated from the results of running thetcc .

hhhhhhhhhhhhhhhhhh

4. The long line in this example has been folded at the\ character for formatting purposes. The command can be typed all on one
line, in which case the\ character must be omitted.

The Open Group
VSXgen 1.4 Page 47

X/Open System Verification Suite LSB-FHS User and Installation Guide

10.5 COMPARATIVE REPORTING
You can use an alternative reporting program to compare the results in a number of
different journal files. The reporting programvrptm enables you to compare the
results from tests on a range of machines, or from a series of execution runs on the
same machine with different software releases.

The comparative reporting program handles results from up to five journal files on the
default page width of 80 columns (more on wider pages). The successes and failures
are printed in tables, without any extra information about the reasons for tests failing.
Use the standard reporting programvrpt to generate reports with the details of test
failures.

Options
You can use the-W and -L options, for page width and page length, withvrptm .

hhh

Action Points

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrptm with the options you want to use, on journal files
generated from the results of running thetcc .

The Open Group
VSXgen 1.4 Page 48

X/Open System Verification Suite LSB-FHS User and Installation Guide

10.6 SAMPLE REPORT OUTPUT
10.6.1 vrpt Sample Output

Conformance Summary Information

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

CONFORMANCE Summary

This is to certify that this system when tested for conformance
to POSIX.1-1990 achieved the results below.

| TOTALS Succeeded Warnings Unresolved Unsupported NotInUse|
Section | Expect Actual Failed FIP Uninitiated Untested |
____________|___|

| |
ANSI.hdr | 586 586 260 18 0 0 0 0 307 0 1 |
ANSI.os F | 1676 1676 1638 6 2 0 0 0 3 0 27 |
ANSI.os M | 1676 1676 97 0 0 0 0 0 0 0 1579 |
POSIX.hdr | 450 450 233 13 0 0 0 0 198 0 6 |
POSIX.os F | 1434 1434 1330 9 0 3 0 0 57 1 34 |
POSIX.os M | 1434 1434 4 0 0 0 0 0 0 0 1430 |
TOTAL | 7256 7256 3562 46 2 3 0 0 565 1 3077 |
____________|___|

Number of amendments ____________

Signature/Date

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 4

The Open Group
VSXgen 1.4 Page 49

X/Open System Verification Suite LSB-FHS User and Installation Guide

Test Results

Test-Set Summary Test-Set Summary

Test-Set Results:

Test-Set Started: 19:55:04

Test-Set Ended: 19:55:06

Test-Set Results Summary:

1 Tests Executed
1 Tests Succeeded

Test-Set Name: /tset/ANSI.os/charhandle/Miscntrl/T.iscntrl
--

Test-Set Results:

Test-Set Started: 19:55:07

Test-Set Ended: 19:55:08

Test-Set Results Summary:

2 Tests Executed
2 Tests Succeeded

Test-Set Name: /tset/ANSI.os/charhandle/Miscntrl_X/T.iscntrl_X
--

Test-Set Results:

Test-Set Started: 19:55:09

Test-Set Ended: 19:55:11

Test-Set Results Summary:

1 Tests Executed
1 Tests Succeeded

Test-Set Name: /tset/ANSI.os/charhandle/Misdigit/T.isdigit
--

Test-Set Results:

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 6

The Open Group
VSXgen 1.4 Page 50

X/Open System Verification Suite LSB-FHS User and Installation Guide

Summary Information

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

Section Name: ANSI.os

Section Started: 19:54:56

Section Ended: 22:35:59

Section Results Summary:

10 Areas Containing 296 Test-Sets Completed

3352 Tests Executed
1735 Tests Succeeded

6 Tests Failed
2 Tests Warning
3 Tests Unsupported

1606 Tests Not In Use

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 119

The Open Group
VSXgen 1.4 Page 51

X/Open System Verification Suite LSB-FHS User and Installation Guide

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

Test Parameters:
TET_OUTPUT_CAPTURE = False
TET_RESCODES_FILE = tet_code
TET_VERSION = 1.10
TEST_MODE = POSIX90
TEST_PACKAGES = VSX4.4.1
VSXDIR = /user4/TET/vsx4/SRC
VSX_DBUG_FLAGS =
VSX_DBUG_FILE = /user4/TET/vsx4/TESTROOT/dbug.out
VSX_NAME =
VSX_OPER = Joe Programmer
VSX_ORG = UniSoft
VSX_PATH =
VSX_SYS = oursys
VSX_UID0 = 146
VSX_UID1 = 147
VSX_UID2 = 149
VSX_GID0 = 200
VSX_GID1 = 201
VSX_GID2 = 202
TET_SIG_IGN = 12
TET_SIG_LEAVE =
VSX_AL_ACCURACY =
VSX_BLKDEV_FILE = /dev/mt/1m
VSX_CHRDEV_FILE = /dev/rmt/1m
VSX_CLOCK_ERR =
VSX_CLOSEDIR_EBADF = Y
VSX_FCNTL_MAXLOCK = 400
VSX_FP_SOFTWARE =
VSX_INVALID_GID =
VSX_INVALID_GNAME =
VSX_INVALID_PC =
VSX_INVALID_PNAME =
VSX_INVALID_SC =
VSX_INVALID_UID =
VSX_INVAL_SIG =
VSX_LINK_DIR_SUPP = Y
VSX_LINK_FILESYS_SUPP = N
VSX_MOUNT_DEV = /dev/dsk/c1d0s6
VSX_NONEXEC_FILE = .
VSX_NOSPC_DEV = /dev/dsk/c1d0s6
VSX_PRIV_ACCESS_SUPP = Y
VSX_PRIV_CHOWN_SUPP = Y
VSX_READDIR_EBADF = Y
VSX_REMOVE_DIR_EBUSY = S
VSX_RENAME_DIR_EBUSY = S
VSX_RENAME_DIR_WPERM_REQD = N
VSX_ROFS = /dev/dsk/c1d0s6
VSX_SET_ID_MODES_SUPP = Y
VSX_SETPGID_SUPPORTED = Y
VSX_SIGSET_EINVAL = Y
VSX_SYS_OPEN_MAX = 600
VSX_TTYNAME = /dev/tty0p3
VSX_TTYUSER = vsx0

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 120

The Open Group
VSXgen 1.4 Page 52

X/Open System Verification Suite LSB-FHS User and Installation Guide

Test Failure Information

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

Test-Set Name: /tset/POSIX.os/procprim/sigaddset/T.sigaddset
--

Test-Set Results:

Test-Set Started: 02:18:15

Test-Set Ended: 02:18:16

Test-Set Results Summary:

2 Tests Executed
2 Tests Succeeded

Test-Set Name: /tset/POSIX.os/procprim/sigconcept/T.sigconcept
--

Test-Set Results:

Test-Set Started: 02:18:16

Test Results:

**
/tset/POSIX.os/procprim/sigconcept/T.sigconcept 22 Failed

Test Description:
If _POSIX_JOB_CONTROL is defined, setting a signal action to SIG_DFL
for a SIGCHLD signal that is pending shall cause the pending signal to
be discarded.
Posix Ref: Component Signal Concepts Assertion 3.3.1.3-29(C)

Test Strategy:
FORK a child process
CHILD process:

SET the SIGCHLD signal action to signal catching function
BLOCK the SIGCHLD signal and send to itself
VERIFY the SIGCHLD signal is not received
VERIFY the SIGCHLD signal is pending
SET the SIGCHLD signal action to SIG_DFL
VERIFY the SIGCHLD signal is not pending
UNBLOCK the SIGCHLD signal
EXIT with the exit code set to the number of any caught signal,
otherwise 0

PARENT process:
VERIFY the SIGCHLD signal was discarded

Test Information:

Test Agency: UniSoft System Tested: oursys
Test Date: Apr 11, 1997 Page 23

The Open Group
VSXgen 1.4 Page 53

X/Open System Verification Suite LSB-FHS User and Installation Guide

X/OPEN Verification Suite
Test-Set Summary Test-Set Summary

signal 18 (SIGCHLD) still pending after sigaction()
deletion reason: waitsync() failed, errno 4
**

Test-Set Ended: 03:16:35

Test-Set Results Summary:

37 Tests Executed
36 Tests Succeeded

1 Tests Failed

10.7 TROUBLESHOOTING
This section lists known problems, and gives notes on how to overcome them. You
may encounter the following problem when you runvrpt .

1. vrpt gives the error message ‘‘received SIGPIPE’’.

If the vrpt output was not being piped to another process, e.g. a pager, which
exited before reading all the output, then this may be due toawk becoming
overwhelmed and dumping core. Try using the-t option to truncate test failure
information to a manageable number of lines. Ifawk still dumps core, replacing
awk with nawk or gawk may cure the problem.

The Open Group
VSXgen 1.4 Page 54

X/Open System Verification Suite LSB-FHS User and Installation Guide

11. INTERPRETING VSX RESULTS
11.1 INTRODUCTION

To interpret the results of the VSX tests, you must review each test and the test results
from your system. To review the test results, you must generate a report from the VSX
journal file, as explained in the chapter entitled ‘‘REPORTING’’. Test descriptions and
strategy are include in reports generated withvrpt for failed tests. Test descriptions
are also provided as a VSX manual page, to be found under theMAN/tset directory,
which you can print out using the utility [nt]roff -man .

11.2 TEST RESULTS
11.2.1 Failed

The test source code for failed operating system tests is located in the appropriate testset
directory, in the directory hierarchy starting fromtset . To analyse the results of
these tests fully, you must be able to examine the test source code to understand the test
strategy and identify the conditions which led to the test failure. This level of expertise
requires the skills of an operating system specialist; non-specialist staff should not
attempt to interpret these results.

11.2.2 Uninitiated or Unresolved

Uninitiatedmeans that the particular test in question did not start to execute.

Unresolvedmeans that the test started but did not reach the point where the test was
able to report success or failure.

When a test is reported asuninitiated or unresolved you must identify the
reason why the test was not completed. These may be because of incorrect parameters,
preceding failures or external events, which are described in the following paragraphs.

Incorrect Parameters
Most tests reported this way cannot be run because a parameter is not set correctly in
the execution parameters filetetexec.cfg . The test report always identifies the
tests which cannot run because of incorrect parameters. For some tests, you can correct
the parameter and re-run the tests. For others, you may not be able to correct the
parameter because the resources required are not available on your system.

Incorrect Entries in userintf.c (Implementation Specific Routines)
Tests may be reported asunresolved or uninitiated because of incorrect
entries in SRC/userintf.c . If failures of user-supplied functions are reported, you
will need to check this file. See ‘‘User-supplied Interface Routines’’ in the chapter
entitled ‘‘CONFIGURING VSX’’ for more details.

Preceding Failures
When earlier tests have failed, some tests cannot be performed. Before you can re-run
the tests, you must resolve the problem in the preceding failed tests.

External Events
When an external event occurs unexpectedly, tests may not be performed. Investigate
the reason the test has not been run as for a failed test.

11.2.3 Unreported

When a test is marked asunreported a major error has occurred during the testset
execution. VSX tries to avoid such errors as far as possible. However, if you terminate a
testset with the signalSIGTERM, tests will be unreported . Investigate the cause
of the major error as for a failed test.

The Open Group
VSXgen 1.4 Page 55

X/Open System Verification Suite LSB-FHS User and Installation Guide

11.2.4 Warning

Whenever a warning is given, the functionality is acceptable, but you should be aware
that later revisions of the relevant standards or specifications may change the
requirements in this area. See the appendix entitled ‘‘TESTS GIVING WARNINGS’’
for a list of the tests which may give warnings and the reasons for them.

11.2.5 FIP (Further Information Provided)

When a test has succeeded, additional information may sometimes be given which
needs to be inspected. Where information cannot be checked automatically by a test it
is given for you to validate. For example, the system name and node name are given by
the VSX4 uname testset.

11.2.6 Unsupported

Unsupportedmeans that an optional feature is not available or supported in the
implementation under test.

For example, in some modes the job control features are optional. VSX will recognise
that they are unsupported on a particular system and report this.

11.2.7 Not In Use

Where no macro version of an interface exists, or separate macro and function testing is
not required, the macro version of the testset will report all tests as not in use. Also,
some tests within a testset may not be required in a particular test mode. For example,
tests for POSIX.1-1996 functionality when running in POSIX90 mode. These are not
failures and require no further work.

11.2.8 Untested

This occurs because there is no test written to check a particular feature, or an optional
facility needed to perform a test is not available on the system.

For example, it is not possible to check that session IDs are inherited across afork()
when job control is not available.

These are generally listed on the manual pages under ‘‘Untestable Aspects’’.

11.2.9 Succeeded

This means the test has been executed correctly and to completion without any kind of
problem.

The Open Group
VSXgen 1.4 Page 56

X/Open System Verification Suite LSB-FHS User and Installation Guide

X/Open System Verification Suite

Part 3: Appendices

VSXgen1.4 May 1999
LSB-FHS 2.1 April 2000

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

The Open Group

X/Open System Verification Suite LSB-FHS User and Installation Guide

A. ACTION POINT SUMMARY
A.1 PREPARATION
A.1.1 PREPARING YOUR SYSTEM

File Space Requirements

1. Check there is enough free space available to unpack and install the software.

VSX User Accounts

1. Check for the file INSTALL.LSB-FHS. This contains important information
about installing the particular distribution of the LSB-FHS test suite.

2. Create a distinct group entry forvsxg0 and (if required by one of the test
packages) distinct group entries forvsxg1 and vsxg2 ; usually in the file
/etc/group .

3. If you do not already have TET installed, create a directory you wish to designate
as yourTET_ROOT directory.

4. Create a distinct user entry forvsx0 in group vsxg0 , with home directory
located under yourTET_ROOT, and with a login shell; usually in the file
/etc/passwd .

5. Make sure that the uservsx0 has write permission in theTET_ROOT
directory.

6. Add $HOME/BIN and $HOME/../bin to the command search path for user
vsx0 , and include it in thePATH environment variable set in the login script for
user vsx0 .

7. Ensure that any extensions enabled by environment variables that would cause
non-compliant behaviour are disabled in the login script for uservsx0 .

8. For some test packages, if the implementation supports supplementary groups,
the user vsx0 should have the maximum number of supplementary groups
associated with it. These supplementary groups must exclude the groupsvsxg1
and vsxg2 . The group ID values chosen must not exceed the value of
INT_MAX for the system.

9. If required by one of the test packages, create a distinct user entry forvsx1 in
group vsxg1 , in the password file. The home directory must differ from that of
user vsx0 .

10. If required by one of the test packages, create a distinct user entry forvsx2 in
group vsxg2 , in the password file. The home directory must differ from that of
user vsx0 .

A.1.2 LOADING THE VSX DISTRIBUTION

Unpacking the Distribution Files

1. Log in to the test system as the uservsx0 , who must be the owner of all the
loaded files.

2. Ensure you are working in thevsx0 home directory and that you have write
permission in that directory.

3. Unpack the distribution files for VSXgen and the test packages you wish to use,
using appropriate commands to decompress each file and extract all files from the
resulting POSIX cpio or tar archive, e.g. for the the LSB-FHS2.1-X test
suite which is distributed as a single archive comprising the TET and VSXgen

The Open Group
Page 59

X/Open System Verification Suite LSB-FHS User and Installation Guide

framework (vtools and vsxgen), as well as the LSB-FHS testset in tar format:

cd /home/tet/tests
tar zxvf LSB-FHS2.1-1.tar.gz

Checking the Contents

1. Change to thevsx0 home directory (usingcd) and list the directory. Check
the expected subdirectories and the release identification files for each test
package are there.

If they are not, check that there were no read errors while the archives were being
read and that there is space available on the file system.

2. Check that the release numbers given in the test-package specific Action Points
for this chapter correspond with the release identification files.

A.1.3 REMOVING UNWANTED VSX DATA (OPTIONAL)

1. Remove any unwanted sections from the directoriestset and MAN/tset .

A.1.4 LSB-FHS PREPARATION

VSX User Accounts

1. (This feature of testset merging is not supported in LSB-FHS 2.1, but maybe in a
future release). If this testset is going to be merged with the VSX-PCTS subset,
the vsx0 home directory must be calledvsx4 otherwise the requirement is
only that the directory be below the TET directory.

2. It is recommended for LSB-FHS 2.1 that the testsuite be installed within a
directory called /home/tet/tests/lsb-fhs .

Loading The LSB-FHS Distribution

1. The name of the LSB-FHS release is determined by the identification file which is
the last file in the archive, and takes the form LSB-FHSrelX.Y-Z where X.Y is
the FHS specification revision number for this test suite and Z is the release level.
See the release notes for the current release level.

A.2 CONFIGURING VSX
A.2.1 INSTALLATION DIRECTORY

1. Choose a directory for the installation of testset executables. The default is
TESTROOTunder the vsx0 home directory.

2. Set the environment variableTET_EXECUTEin the vsx0 login script to the
pathname of the testroot directory. If you are using the LSB-FHS 2.1 distribution
and installing the test suite in the recommended location of
/home/tet/tests/lsb-fhs you can dot in the profile provided in the file
called /home/tet/tests/lsb-fhs/profile . This file will setup the
environment needed to run the test suite and also provide some useful shell
functions.

3. If you are using the LSB-FHS 2.1 distribution , a configuration and installation
wrapper is provided to guide you through the complete installation:

The Open Group
Page 60

X/Open System Verification Suite LSB-FHS User and Installation Guide

sh install_wrapper.sh

A.2.2 VSX CONFIGURATION SCRIPT

Running the Configuration Script

1. Read through the configuration script section and write down any information
you will need to use which is different from the defaults.

2. Execute the shell scriptconfig.sh which is in the BIN directory. When you
have included this directory in yourPATH , you can execute the command from
any location.

3. Answer the questions which the configuration script asks.

A.2.3 CHECKING THE PARAMETER FILES

Configuration Parameters File

1. Check the values in the configuration parameters fileSRC/vsxparams and
edit theparameter−namelines if necessary.

Configuration Header File

1. Check the SRC/vsxconfig.h file to ensure that the values are correct for
your system. If you are using the LSB-FHS 2.1 distribution, and the
install_wrapper.sh script it will edit this file automatically patching up
the value for NSIG to be _NSIG.

2. Check that the values of all the varying defined constants have been changed
from −1 to the values for your system.

3. Check that the values of the other defined constants are correct for your system.

4. Check that all dummy statements have been changed to valid ones.

5. If you re-run config.sh at a later time, it will overwrite
SRC/vsxconfig.h , so make sure you copy it first.

A.2.4 TOP LEVEL MAKEFILE

1. Edit the Makefile in the vsx0 home directory.

2. Configure the implementation-specific installation commands correctly for your
system.

3. If you re-run config.sh at a later time, it will overwrite Makefile , so
make sure you copy it first.

A.2.5 USER-SUPPLIED INTERFACE ROUTINES

1. Review the fileSRC/userintf.c and identify if it needs to be modified.

2. Modify the file to meet your system’s requirements.

3. If you re-run config.sh at a later time, it will overwriteSRC/userintf.c
with the default version, so make sure you copy it first.

A.2.6 CONFIGURING LSB-FHS

Installation Directory

1. The requirement for the installation directory to support the inheritance of parent
directory group ID only applies if you intend to merge this testset with the VSX-
PCTS subset (this is not supported in the LSB-FHS 2.1 distribution, but may be
added in a future release).

The Open Group
Page 61

X/Open System Verification Suite LSB-FHS User and Installation Guide

2. If you are first time user of the LSB-FHS 2.1 distribution, it is recommended that
you use the install_wrapper.sh script to guide you through the
configure, install, build and execute process.

A.3 INSTALLING VSX
A.3.1 INTRODUCTION

1. Obtain the necessary privileges for execution of the installation commands you
have configured in the top levelMakefile and executemake in the vsx0
home directory. E.g.

su root -c make

2. When make has completed, check the installation log in theresults
directory to ensure that no errors have occurred. Ifmake encountered any
errors, or there are errors in the log, you must correct them and re-runmake.

A.4 BUILDING VSX
1. Log in as the uservsx0 .

2. Give the command

tcc -b -s scen.bld

with the other options you want to use. Use the command

../bin/tcc -b -s scen.bld

from the vsx0 home directory if $HOME/../bin is not in yourPATH .

A.5 EXECUTING VSX
A.5.1 THE EXECUTION PARAMETERS FILE

Setting the Execution Parameters

1. Check the execution parameters filetetexec.cfg before you start the VSX
execution stage and edit any values which are not correct for your system.

2. If you use the install_wrapper.sh script provided with the LSB-FHS 2.1
distribution and answer the questions, this will automatically parameterize the
tetexec.cfg file.

A.5.2 EXECUTING THE VSX TEST SUITE

1. Log in as the uservsx0 .

2. Give the command

tcc -e -s scen.exec

with the other options you want to use. Use the command

../bin/tcc -e -s scen.exec

from the home directory if$HOME/../bin is not in yourPATH .

The Open Group
Page 62

X/Open System Verification Suite LSB-FHS User and Installation Guide

A.6 REPORTING
A.6.1 REPORTING PROGRAM OPTIONS

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrpt with the options you want to use, on a journal file
generated from the results of running thetcc .

A.6.2 COMPARATIVE REPORTING

1. Log in as the uservsx0 .

2. Check that the environment variable PATH is set correctly.

3. Change to the directoryresults if required.

4. Give the commandvrptm with the options you want to use, on journal files
generated from the results of running thetcc .

The Open Group
Page 63

X/Open System Verification Suite LSB-FHS User and Installation Guide

The Open Group
Page 64

X/Open System Verification Suite LSB-FHS User and Installation Guide

X/Open System Verification Suite

Part 4: Manual Pages

VSXgen1.4 May 1999

The Open Group

tcc(1) USER COMMANDS tcc(1)

NAME

tcc− TET test case controller

SYNOPSIS

tcc −{ bec} [options] [test-suite[scenario]]

tcc −{ bec} −m codelist[options] old-journal-file[test-suite[scenario]]

tcc −{ bec} −r codelist[options] old-journal-file[test-suite[scenario]]

DESCRIPTION

tcc is the TET test case controller. It provides support for the building, execution and clean-up of
test scenarios.

When TET-Lite is built, scenarios may only contain test cases which are to be executed on the
local system andtcc performs all the actions required to process such test cases itself. When
Distributed TET is built, scenarios can contain local, remote and distributed test cases. The
distributed version oftcc does not perform the actions required to process test cases itself but
instead sends requests to the test case controller daemontccd which runs on the local system and
also on each participating remote system (see thetccd(1) manual page for details).

Apart from the scenario directives which relate to the processing of remote and distributed test
cases, the user interface totcc is the same irrespective of whether TET-Lite or Distributed TET is
being used.

tcc has three modes of operation, namelybuild , executeandclean, which may be invoked singly
or in any combination. These modes are specified by the−b, −e and−c command-line options, at
least one of which must appear. All of the other options modify the behaviour oftcc in one or
more of these operational modes. Each mode (with optionally modified behaviour) is applied to
the test cases and invocable components selected for processing.

By default,tcc builds, executes or cleans test cases in the namedscenariocontained in the scenario
file tet_scen, which is located in the test suite root directory fortest-suite(seeDIRECTORIES
below). If no scenario is specified, the default scenario namedall is used. If notest-suiteis
specified,tcc attempts to deduce a default test suite name using the following rules:

1. If the TET_SUITE_ROOT environment variable is set and the current directory lies
under the directory hierarchy specified by this variable, then the test suite is the
component of the current directory’s path name which lies immediately below
$TET_SUITE_ROOT. For example, if$TET_SUITE_ROOT is /usr/tet3 and the
current directory is/usr/tet3/suite1/results, then the name of the default test suite is
suite1.

2. If the TET_SUITE_ROOT environment variable is not set and the current directory
lies under the directory hierarchy specified by theTET_ROOT environment variable,
then the test suite is the component of the current directory’s path name which lies
immediately below$TET_ROOT.

3. If the current directory lies outside of the directory hierarchy specified by the
TET_SUITE_ROOT environment variable (if set) or theTET_ROOT environment
variable (if TET_SUITE_ROOT is not set), then no default test suite name can be
deduced.

The Open Group Page 66

tcc(1) USER COMMANDS tcc(1)

DIRECTORIES

By default,tcc interprets test case names relative to thetest suite rootdirectory. The location of
this directory is determined as follows on the local system:

1. If theTET_SUITE_ROOT environment variable is set, thetest suite rootdirectory is
determined by the test suite name, relative to$TET_SUITE_ROOT.

2. If the TET_SUITE_ROOT environment variable is not set, thetest suite root
directory is determined by the test suite name, relative to$TET_ROOT.

3. If theTET_RUN environment variable is set, then the directory subtree below thetest
suite root (determined as described above) is copied to the location below$TET_RUN
and this location becomes the newtest suite rootdirectory.

However, an alternate execution directory on the master system may be specified by the
TET_EXECUTE environment variable or by a command-line option (seeOPTIONSbelow). If an
alternate execution directory is specified,tcc interprets test case names relative to this directory
when operating in execute mode.

By default, tcc creates a directory calledtet_tmp_dir below the test suite root directory.
However, a different temporary directory name on the local system may be specified by the
TET_TMP_DIR environment variable. Each invocation oftcc creates a unique subdirectory
below the temporary directory on startup and removes it and its contents on normal completion.

CONFIGURATION FILES

During execution,tcc reads configuration variables from certain configuration files on both the
local and the remote systems (if any). By default, the name of the build mode configuration file is
tetbuild.cfg, that of the execute mode configuration file istetexec.cfgand that of the clean mode
configuration file istetclean.cfg. The build and clean mode configuration files reside in the test
suite root directory on each system. The execute mode configuration file resides in the alternate
execution directory if one has been specified, otherwise in the test suite root directory.

The Distributed version oftcc reads distributed configuration variables are read from the file
namedtetdist.cfg in the test suite root directory on the local system. This file must at least contain
definitions for thetet root and test suite root directories for any remote systems that are specified
in the scenario being processed.

JOURNAL FILE

By default, tcc creates a sequentially numbered directory below theresults directory in the test
suite root directory for the namedtest-suiteon the local system, and places the journal file and
saved intermediate result files there. On startup,tcc writes the name of the journal file being used
to the standard output.

RESULT CODES

tcc uses a table of result codes to interpret the results generated by API-conforming test cases. A
default table containing standard codes is built in totcc. It is possible to specify additional codes
in user-supplied result codes files located below thetet root and test suite root directories on the
local system. These files are optional but, if they exist, the codes specified in them are added to the
table of standard codes. The default name for each of these files istet_codebut this name can be
changed by means of the TET_RESCODES_FILE configuration variable.

The Open Group Page 67

tcc(1) USER COMMANDS tcc(1)

OPTIONS

The followingoptionsalter the default behaviour described above:

−I Enable interactive journal trace. Journal lines which indicate the start and end of
processing of each test case in each of the chosen modes of operation are written to the
standard error as well as being written to the journal file.

−a directory
Use directory as the alternate execution directory instead of the one specified by the
TET_EXECUTE environment variable (if any).

−f file Usefile as the clean mode configuration file instead of the default.

−g file
Usefile as the build mode configuration file instead of the default.

−i directory
Place the default journal file and saved intermediate results files indirectory instead of in
the default location.

−j file Usefile as the journal file instead of the default.

−l scenario-line
Processscenario-lineas if it appeared in a scenario file below a scenario namedall. More
than one−l option may be specified; thescenario-linesare processed in the order in
which they appear on the command line.scenario-linemust be presented as a single
argument so it must be quoted if it contains embedded spaces. If a scenario file is
specified by a−s option, anyscenario-linesare processed before that scenario file is read.
If no −soption is specified, the default scenario filetet_scenis not read when−l is used.

−n string
Do not process test case names that containstring. More than one−n option may appear.

−p Enable progress reporting. As each build, execute or clean operation is started, a line
indicating the time, mode and scenario line being processed is printed on the standard
output.

−s file
Usefile as the scenario file instead of the default.

−t timeout
Terminate the build, execute or clean of an individual test case if processing would
continue for more thantimeoutseconds.

−v variable=value
The specified configurationvariable is set tovalue, overriding any assignment in the
configuration file for the current mode. It is probably best to surroundvaluewith single
quotes if it contains characters which have special meaning to the Shell. More than one
−v option may appear.

−x file
Usefile as the execute mode configuration file instead of the default.

The Open Group Page 68

tcc(1) USER COMMANDS tcc(1)

−y string
Only process test case names that containstring. More than one−y option may appear.
The−n option has higher precedence than the−y option; thus, a test case is not processed
if its name is matched bystringsspecified with both the−n and the−y options.

RERUN AND RESUME OPTIONS

The following options are mutually exclusive:

−m code-list
Causestcc to resume the previous run of the specifiedscenarioin the namedtest-suite
whose results are inold-journal-file. code-listspecifies the point in the previous run from
which processing is to be resumed and may consist of a comma-separated list of result
codes, or of one or more of the lettersb, e and c to specify failures in particular
processing modes. Ifcode-listconsists of result codes, then processing resumes at the
first invocable component whose result in the previous run matched one of those in the
list. If code-listspecifies processing modes, then processing resumes at the first test case
which failed to build or clean or the first invocable component which, when executed, did
not report PASS in the previous run.

For example:

tcc −b −m b

Resume building from the first test case that failed to build.

tcc −e−m FAIL,UNRESOLVED

Resume execution from the first invocable component that reported FAIL or
UNRESOLVED.

tcc −bec−m b,e

Resume building, execution and cleaning from the first test case which failed to build or
from the first invocable component that did not report PASS.

−r code-list
Causestcc to re-run individual test cases and invocable components from the specified
scenarioin the namedtest-suitewhose results are inold-journal-file. code-listspecifies
the elements that are to be re-run and may consist of a comma-separated list of result
codes, or of one or more of the lettersb, e and c to specify failures in particular
processing modes. Ifcode-listconsists of result codes, then test cases and invocable
components are re-run if the corresponding result in the previous run matched one of the
result codes in the list. Ifcode-listspecifies processing modes, then a test case is re-run if
it failed to build or clean and an invocable component is re-run if it did not report PASS
when it was executed in the previous run.

For example:

tcc −b −r b

Re-build test cases that previously failed to build.

The Open Group Page 69

tcc(1) USER COMMANDS tcc(1)

tcc −e−r FAIL,UNRESOLVED

Re-execute all invocable components that previously reported FAIL or UNRESOLVED.

tcc −bec−r b,e

Re-build, execute and clean all test cases that previously failed to build or execute, and all
invocable components that did not previously report PASS when executed.

FILES

test-suite-root/tet_scen
Default scenario file. In Distributed TET, only required on the local system.

test-suite-root/tetbuild.cfg
Default build mode configuration file.

alt-exec-dir/tetexec.cfg
Optional default execute mode configuration file when an alternate execution directory
has been specified.

test-suite-root/tetexec.cfg
Default execute mode configuration file whenalt-exec-dir/tetexec.cfgdoes not exist or an
alternate execution directory has not been specified.

test-suite-root/tetclean.cfg
Default clean mode configuration file.

test-suite-root/tetdist.cfg
The distributed configuration file. Not used by TET-Lite. In Distributed TET, only
required on the local system.

$TET_ROOT/tet_code
test-suite-root/tet_code

Default result code files. In Distributed TET, only accessed on the local system.

test-suite-root/tet_tmp_dir
Default temporary directory hierarchy.

test-suite-root/results/nnnn{ bec}
Default results and saved files directory.

results-dir/REMOTEnnn
In Distributed TET on the local system, the saved files directory for systemnnn.

results-dir/journal
Default journal file. In Distributed TET, only created on the local system.

The Open Group Page 70

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

NAME

vrpt - validation test report generator

USAGE

vrpt [-llevel] [-rcoverage] [-ffile] [-v] [-H] [-P] [-p]
[-L len] [-Wwid] [-tlines] [jnlfile...]

DESCRIPTION

Vrpt generates a report from journal files specified by thejnlfile argument. Reports are generated
on the standard output.

Reports can be generated at one of threelevels- thesection, area, andtestsetlevels - and covering
a specified range of sections, areas or testsets within these levels.

At the section level, for each section specified by thecoverageparameter, a section report is
produced listing section start and end times, and a section summary listing the number of areas and
testsets run and the number of test/make results in each category. Test result categories are:
Succeeded, Failed, Warning, FIP (Further Information Provided), Unresolved, Uninitiated,
Unsupported, Untested and Not In Use. Make result categories are: Succeeded, Failed and
Unsupported.

At the area level, for each area specified by thecoverageparameter, an area report is produced
giving area start and end time, a table showing the number of results in each category (see list
above) for each testset run, a list of all unsuccessful tests under result category headings, and an
area summary listing the number of testsets run and the number of results in each category. A
section summary is produced after the area reports in each section.

At the testset level, for each testset specified by thecoverageparameter, a report is produced
listing testset start and end time, detailed testset results, and a summary listing the number of
results in each category (see list above). The detailed results list each unsuccessful test/make with
its result category and any supplementary information produced by the test/make stage. In verbose
mode (-v flag given) all successful and "Not In Use" tests/makes are also listed. Area and section
summaries are produced after the testset reports in each area/section.

Each section, area, or testset level individual report starts with the section/area/testset identifier as
passed through from the test/make stage.

Each validation test report run is normally prefaced by cover pages giving a contents list, an
operational summary and a conformance summary. Details are described under the "-P" flag
description below.

Any input thatvrpt does not understand will be ignored, with a warning being issued for the first of
a sequence of lines not understood. Processing will attempt to continue normally from the first
understandable line.

PARAMETERS

VSXgen release 1.4 UniSoft Ltd. Page 71

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

Command Line

-llevel generate report atlevel. Levelcan be one of "sect", "area", or "tset", for section, area,
and testset levels respectively.
leveldefaults totset if no -l parameter given.

-rcoverage
report only on the specified range of tcc output within the level specified above. Note that
the tables in the conformance summary cover page always give the complete results for
the journal files being processed - only the detailed reports are affected when a reduced
coverage is specified.

Coverage can be specified as follows:
1) as a list in the format "name1 name2 ... namen", where a report will be generated for each
section/area/testset (depending on report level) whose name appears in the list;
2) as a range, in the format "name1:name2", where reporting will start with the section/area/testset
(depending on report level) named name1 and will continue until the report for section/area/testset
name2 is completed; note that ordering of sections/areas/testsets within each journal file depends
on the scenario files, and may differ between runs; or,
3) a combination of the above, in the format "name1:name2 name3 name4 name5:name6", etc -
with the combination of the above meanings.

It is notan error if specified names do not actually appear in the journal files.

If range names are specified to a greater level than the level as given in the -l option, then the extra
levels are ignored. E.g.-l sect -r section1/area1will be processed the same as-l sect -r section1.

Vrpt defaults to reporting on every section/area/testset in the journal files if no -r list is specified.

-ffile take the coverage specifier list fromfile; this file should contain a list of
section/area/testset identifiers or names one per line.

The -f and the-r parameters can be used together - the two lists are merged, and the
resulting list used, ignoring repetitions.

-v Verbose mode - list names of successful and "Not In Use" tests/makes in testset level
reports. Without the -v flag, detailed output at this level is produced only for unsuccessful
tests/makes.

-H Disable page headers and footers.Vrpt will normally print page headers and footers
whose placement and size depend on the page size flags given below. They contain the
report level, system and agency names, test/make date, and page number.

Vrpt produces headers and footers by default if no -H flag is given.

-P Do not print the cover pages normally produced with reports, or the parameter list at the
end of all reports. Test cover pages consist of a banner page; a contents page; an
operational summary listing test date, test agency and operator, report date, report level
and coverage, and the journal files reported on; and, a conformance summary showing
tables of the total number of tests in each result category for each section, over the whole
of the journal files being processed (not just the coverage specified with -r).

Report date is determined from the host system at the time of vrpt invocation. Report
level and coverage are as given on the vrpt command line. All other items are determined
from the journal files.

VSXgen release 1.4 UniSoft Ltd. Page 72

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

The -P parameter implies -p, so that progressive report output is generated.

Vrpt defaults to producing the cover pages and parameter list if the -P flag is not given.

-p Disable "Page n of N" page numbering style.Vrpt will normally report the page numbers
in the style "Page 4 of 40". However, this means that no output is generated all the pages
have been prepared.-p allows the user to disable this feature, and thus allowing
progressive report output.

Vrpt will produce footers with the "Page n of N" page numbering, and generates a
progress message every 25 pages on stderr, if the -p flag is not given.

-L len Page length islen lines - used to place headers and footers properly on the output pages.
Defaults to 66 lines if no -L flag given.

-Wwid
Page width iswid columns - used to generate headers and footers and to wrap long lines
in the journal file. Defaults to 80 columns if no -W flag given.

-tlines Truncate test failure information after the specified number of lines. Some tests can
produce hundreds of lines of failure information. This option may be used to reduce the
size of a full report, with the complete test information for tests of interest subsequently
being obtained by using the-r option. The default is no truncation.

Environment

VSXBIN
specifies the directory where vrpt executables and scripts reside. IfVSXBIN is not set
this directory is assumed to be$HOME/BIN.

RETURNS

0 Report terminated successfully

1 Unknown option argument

2 Unrecoverable error during report generation

DIAGNOSTICS

"warning: input does not start with control sequence"
- input file was probably not a correctly formed test/make journal file (i.e. file did not start
with the special "start report" sequence); this is not fatal, but may produce some strange
output.

"warning - line XXX: line ignored"
vrpt ignores lines it does not expect to see at that point, or that appear to be malformed.
Not fatal, and only produced for the first such error in each sequence of malformed lines
in the input file.

VSXgen release 1.4 UniSoft Ltd. Page 73

vrpt(vprog) VSX USER MANUAL vrpt(vprog)

EXAMPLES

vrpt foo
Generate a validation report from the journal file named foo, using default levels and
coverage (testset/all), producing page headers and footers and a parameter list, and put the
report onto standard output.

vrpt -H -P -larea -r’area1 area3:area7’ journal[12]
Generate a validation report from the vtest journal files "journal1" and "journal2", at the
area level, for the area "area1" and every area from "area3" to area7" inclusive; don’t
produce any page headers or footers or cover pages.

SEE ALSO

prpt(vprog)
vrptm(vprog)

AUTHORS

Hamish Reid, UniSoft Ltd.
Stuart Boutell, UniSoft Ltd.
J. A. Nave, UniSoft Ltd.

RELEASE

VSXgen 1.4

VSXgen release 1.4 UniSoft Ltd. Page 74

vrptm(vprog) VSX USER MANUAL vrptm(vprog)

NAME

vrptm - multiple test run comparison report generator

USAGE

vrptm [-H] [-L len] [-Wwid] file1 file2 ...

DESCRIPTION

Vrptm produces a report comparing the results of two or more VSX validation test runs. It takes
as input the test journal files from the runs to be compared. The file names given on the command
line are used in the report to identify the results from the corresponding runs. Reports are
produced on the standard output.

Each report is prefaced by several cover pages, one for each test journal file being processed,
listing information from the file as follows: file name, validation test name, test date, test agency
and system, test operator and all test parameters.

The cover pages are followed by tables of test results, one table per testset, showing the results for
each test across all the input files. The tables contain one word entries giving the test result
category (Succeeded, Failed, Warning, FIP (Further Information Provided), Unresolved,
Uninitiated, Unsupported, Untested or Not In Use). A ’-’ character in the table indicates that no
result was found for that test in the corresponding file. Any additional test information in the
journal file is not reproduced.

PARAMETERS

Command Line

-H Disable page headers and footers.Vrptm will normally print page headers and footers
whose placement and size depend on the page size flags given below. They contain the
page number, report date and report type. The report date is determined from the host
system at the time of vrptm invocation. Headers and footers include blank lines between
each header and footer and page text.

Vrptm produces headers and footers by default if no -H flag is given.

-L len Page length islen lines - used to place headers and footers properly on the output pages.
Defaults to 66 lines if no -L flag given.

-Wwid
Page width iswid columns - used to generate headers and footers and to wrap long lines
in the journal file. Defaults to 80 columns if no -W flag given.

Environment

VSXBIN
specifies the directory where vrptm executables and scripts reside. IfVSXBIN is not set
this directory is assumed to be$HOME/BIN.

VSXgen release 1.4 UniSoft Ltd. Page 75

vrptm(vprog) VSX USER MANUAL vrptm(vprog)

RETURNS

0 Report terminated successfully

1 Unknown option argument or command line usage error

2 Unreadable file or other unrecoverable error during report generation

DIAGNOSTICS

"cannot read input file <filename>"
An input file given on the command line could not be opened.

"insufficient page width for number of files - using <wid>"
The page width specified with the -W option was less than the minimum required for the
number of input files being processed. The program will produce the report using <wid>
instead of the requested width.

EXAMPLES

vrptm journal1 journal[45]
Generate a report comparing test results from journal files journal1, journal4 and journal5,
using the default page size with page headers and footers, and put the report onto the
standard output.

vrptm -H -W132 jo*
Generate a report comparing test results from all "journal" files in the current directory,
using the default page length, a page width of 132 columns, and with no page headers or
footers.

SEE ALSO

vrpt(vprog)
prpt(vprog)

AUTHORS

Geoff Clare, UniSoft Ltd.
Stuart Boutell, UniSoft Ltd.

RELEASE

VSXgen 1.4

VSXgen release 1.4 UniSoft Ltd. Page 76

CONTENTS

1. FOREWORD . 1
1.1 VSX DOCUMENTATION 1

1.1.1 Part 1: VSX User Guide 1
1.1.2 Part 2: VSX Installation Guide 1
1.1.3 Part 3: VSX Appendices. 2
1.1.4 Part 4: Manual Pages. 2

2. VSX TERMINOLOGY . 5
2.1 INTRODUCTION . 5
2.2 STAGES OF VSX . 5

2.2.1 Stage 1: Preparation 5
2.2.2 Stage 2: Configuration. 5
2.2.3 Stage 3: Installation 5
2.2.4 Stage 4: Building . 5
2.2.5 Stage 5: Execution. 5
2.2.6 Stage 6: Reporting. 5
2.2.7 Stage 7: Interpreting VSX Results. 6

2.3 STRUCTURE . 6
2.3.1 Section . 6
2.3.2 Area . 6
2.3.3 Testset . 6
2.3.4 Test . 6

2.4 NAMING CONVENTIONS 6
2.5 JOURNAL FILE . 6

3. VSX DIRECTORY STRUCTURE 7
3.1 TOP LEVEL DIRECTORY STRUCTURE. 7

3.1.1 Introduction . 7
3.1.2 Binaries:BIN . 7
3.1.3 Manual:MAN . 7
3.1.4 Results:results 7
3.1.5 Source:SRC . 7
3.1.6 Testroot:TESTROOT. 7
3.1.7 Testset:tset . 7

3.2 SOURCE DIRECTORY STRUCTURE. 7
3.2.1 Common:common 7
3.2.2 Install: install . 8
3.2.3 Subsets:subsets 8
3.2.4 Library: LIB . 8
3.2.5 Include: INC . 8
3.2.6 System Include:SYSINC 8

3.3 MANUAL DIRECTORY STRUCTURE 8
3.3.1 Common:common 8
3.3.2 Testset:tset . 8

3.4 TESTROOT DIRECTORY STRUCTURE. 8

4. RESOURCES . 9
4.1 INTRODUCTION . 9
4.2 COMPUTER HARDWARE 9

4.2.1 Disk Space . 9
4.2.2 Exclusive Use . 9
4.2.3 Devices . 9

4.3 UTILITIES . 9
4.3.1 Bourne Shell . 9

- i -

4.3.2 make . 9
4.3.3 Compiler . 9
4.3.4 Library Archiver . 10
4.3.5 awk . 10
4.3.6 Editors . 10
4.3.7 File Utilities . 10
4.3.8 Null Device . 10

4.4 TIME . 10
4.5 SKILLS . 10

4.5.1 Using VSX . 10
4.5.2 Interpreting Results 10

5. PREPARATION . 13
5.1 INTRODUCTION . 13
5.2 PREPARING YOUR SYSTEM 13

5.2.1 File Space Requirements. 13
5.2.2 VSX User Accounts 13

5.3 LOADING THE VSX DISTRIBUTION 14
5.3.1 Unpacking the Distribution Files 14
5.3.2 Checking the Contents 15

5.4 REMOVING UNWANTED VSX DATA (OPTIONAL) 16
5.5 LSB-FHS PREPARATION 17

5.5.1 File Space Requirements. 17
5.5.2 VSX User Accounts 17
5.5.3 Loading The LSB-FHS Distribution 17

6. CONFIGURING VSX . 18
6.1 INTRODUCTION . 18
6.2 INSTALLATION DIRECTORY 18
6.3 PARAMETERS . 19

6.3.1 Introduction . 19
6.3.2 Libraries . 19

6.4 VSX CONFIGURATION SCRIPT 19
6.4.1 Introduction . 19
6.4.2 General Information 19
6.4.3 Compiler Characteristics and Libraries. 21
6.4.4 Subset-specific Information. 21
6.4.5 Optional Information 21
6.4.6 Running the Configuration Script 21

6.5 CHECKING THE PARAMETER FILES 21
6.5.1 Configuration Parameters File 21
6.5.2 Configuration Header File 22
6.5.3 IMPORTANT . 23

6.6 CREATING PARAMETER FILES 23
6.7 TOP LEVEL MAKEFILE . 23

6.7.1 Privilege Check. 23
6.7.2 Parent Directory Group ID 24
6.7.3 Execute Install Script as Uservsx0 24
6.7.4 Assign Privileges tochmog Program 24
6.7.5 Additional Subset-specific Targets. 24
6.7.6 Non-configured Commands. 24

6.8 USER-SUPPLIED INTERFACE ROUTINES. 24
6.8.1 Introduction . 24
6.8.2 setprv() . 25
6.8.3 unsetprv() . 25
6.8.4 prv_assign() . 26

- ii -

6.8.5 mnt_rw() . 26
6.8.6 mnt_ro() . 26
6.8.7 unmnt() . 26
6.8.8 Additional Subset-specific Routines. 26

6.9 CONFIGURING LSB-FHS 27
6.9.1 Installation Directory 27
6.9.2 VSX Configuration Script 27

7. INSTALLING VSX . 28
7.1 INTRODUCTION . 28

7.1.1 VSX Header Files . 28
7.1.2 Include Files . 28
7.1.3 Directory Routines. 28
7.1.4 Variable Argument Routines. 28
7.1.5 Testroot Initialisation 28
7.1.6 Configuration Files 28
7.1.7 Scenario Files . 29
7.1.8 Update Common Software Files. 29
7.1.9 Subset-specific Install Scripts 29
7.1.10 Build Common Software. 29

8. BUILDING VSX . 30
8.1 INTRODUCTION . 30
8.2 BUILDING ALL REQUIRED TESTSETS 30

8.2.1 Introduction . 30
8.3 BUILDING SELECTED TESTSETS (OPTIONAL) 30

8.3.1 Sections and Areas. 30
8.3.2 Building Selected Parts of a Scenario. 30
8.3.3 Building Individual Testsets. 31
8.3.4 Additional Options. 31

8.4 REMOVING BUILT TESTSETS 32
8.5 REPORTING . 32
8.6 TROUBLESHOOTING . 32
8.7 BUILDING LSB-FHS . 33

8.7.1 Sections and Areas. 33

9. EXECUTING VSX . 34
9.1 INTRODUCTION . 34
9.2 THE EXECUTION PARAMETERS FILE 34

9.2.1 Introduction . 34
9.2.2 Setting the Execution Parameters. 34

9.3 EXECUTION PARAMETER NAMES 35
9.3.1 General Parameters 35
9.3.2 Compiler Characteristics. 37

9.4 EXECUTING THE VSX TEST SUITE 38
9.4.1 Introduction . 38
9.4.2 Executing All Required Tests 38
9.4.3 Executing Selected Parts of a Scenario (OPTIONAL). 39
9.4.4 Executing Individual Testsets (OPTIONAL). 39
9.4.5 Executing Individual Tests (OPTIONAL). 40
9.4.6 Additional Options (OPTIONAL) 40
9.4.7 Executing Tests Directly (OPTIONAL) 41

9.5 TROUBLESHOOTING . 41
9.6 EXECUTING LSB-FHS . 43

9.6.1 General Parameters 43
9.6.2 Compiler Characteristics. 43

- iii -

9.6.3 Operating System Characteristics for LSB-FHS Subset Only. 43

10. REPORTING . 46
10.1 INTRODUCTION . 46
10.2 THE REPORTING PROGRAM 46
10.3 REPORTING PROGRAM USAGESUMMARY 46
10.4 REPORTING PROGRAM OPTIONS 46

10.4.1 Reporting on the Entire Journal. 46
10.4.2 Reporting on a Section or Area (OPTIONAL). 46
10.4.3 Reporting on Individual Testsets (OPTIONAL). 46
10.4.4 Summary Reports (OPTIONAL) 47
10.4.5 Varying the Text Format (OPTIONAL) 47
10.4.6 Additional Options (OPTIONAL) 47

10.5 COMPARATIVE REPORTING 48
10.6 SAMPLE REPORT OUTPUT 49

10.6.1 vrpt Sample Output 49
10.7 TROUBLESHOOTING . 54

11. INTERPRETING VSX RESULTS 55
11.1 INTRODUCTION . 55
11.2 TEST RESULTS . 55

11.2.1 Failed . 55
11.2.2 Uninitiated or Unresolved 55
11.2.3 Unreported . 55
11.2.4 Warning . 56
11.2.5 FIP (Further Information Provided). 56
11.2.6 Unsupported . 56
11.2.7 Not In Use . 56
11.2.8 Untested. 56
11.2.9 Succeeded . 56

A. ACTION POINT SUMMARY . 59
A.1 PREPARATION . 59

A.1.1 PREPARING YOUR SYSTEM 59
A.1.2 LOADING THE VSX DISTRIBUTION 59
A.1.3 REMOVING UNWANTED VSX DATA (OPTIONAL) 60
A.1.4 LSB-FHS PREPARATION 60

A.2 CONFIGURING VSX . 60
A.2.1 INSTALLATION DIRECTORY 60
A.2.2 VSX CONFIGURATION SCRIPT 61
A.2.3 CHECKING THE PARAMETER FILES 61
A.2.4 TOP LEVEL MAKEFILE 61
A.2.5 USER-SUPPLIED INTERFACE ROUTINES 61
A.2.6 CONFIGURING LSB-FHS 61

A.3 INSTALLING VSX . 62
A.3.1 INTRODUCTION . 62

A.4 BUILDING VSX . 62
A.5 EXECUTING VSX . 62

A.5.1 THE EXECUTION PARAMETERS FILE 62
A.5.2 EXECUTING THE VSX TEST SUITE 62

A.6 REPORTING . 63
A.6.1 REPORTING PROGRAM OPTIONS. 63
A.6.2 COMPARATIVE REPORTING. 63

- iv -

