
2003/06/17 Open Printing WG Japan/Asia 1

Open Printing Working Group
Japan/Asia

Activities Update

2003/06/17

Osamu MIHARA <mihara.osamu@fxpsc.co.jp>

Yasumasa TORATANI <toratani.yasumasa@canon.co.jp>

2003/06/17 Open Printing WG Japan/Asia 2

n 1. Status

n 2. Bi-di plug-in API

n 3. Vector Device Driver API
– Idea#1 : X print service for Vector Device Support.

– Idea#2 : API based on PS, PDF and SVG

n Schedule

2003/06/17 Open Printing WG Japan/Asia 3

Oct,2003 meeting and Status

n Oct, 2002 Architecture Group Meeting
– Attendees:
ØMark Hamzy(IBM), Mihara(FUJI XEROX),

Kido, Shimamura, Irie, Furusawa(IBM Japan),
Kato, Nomura(EPSON), Sakashita(AXE), Yoshiyama(NEC),
Shida, Toratani(Canon)

– Proposals we’ve made at the meeting:
ØAPI between the bi-di plug-in module and the upper modules.

– Bi-di plug-in API.

ØGeneric interface between the renderer and driver.

– Vector Printer Driver API.

n Status
– Both groups were suspended from the beginning of 2003.

– Mihara and I had some discussion and started again since May.

2003/06/17 Open Printing WG Japan/Asia 4

Bi-di plug-in (1)
n Background:

– Each printer has a different command to readback the printer
status.

– Lack of the standard way / format to send the local printer status /
capabilities to the upper system.

n Features:
– Obtain the printer status, e.g. Ink level, Paper jam, etc. and send

them to the upper modules in the standard format.
– Obtain the printer dynamic capabilities, e.g. Stapler, Sorter, etc.

and send them to the upper modules in the standard format.

n Objective:
– Aim to be used in each printing system; CUPS, lpr, LPRng, LP,

and the customized printing systems of each vendor, etc... as the
common small plug-in to reduce the development time.

2003/06/17 Open Printing WG Japan/Asia 5

Bi-di plug-in (2)
n The idea of the API:

– Quite simple API for obtaining the printer info.
– Example for the caller;

// Link the bi-di module or fork the bi-di process.
BidiC *pBidi = bidiNew(“bidi_module_name”, fd);

:
while(....) {

// Obtain the printer info. and convert it to the standard format.
bidiRead(pBidi, pBuf, nBufBytes);

:
// Send the standard format info. in the buffer to the upper system.

} :
// Unlink the bi-di module or kill the bi-di process.
bidiDestroy(pBidi);

2003/06/17 Open Printing WG Japan/Asia 6

Bi-di plug-in (3)
n CUPS 1.1.x w/o plug-in:

– Customized backend for each device and each printer model.
Ø # of backends = (# of devices; usb, parallel,etc.) x (# of printer model)

status data

printing data

Application

Scheduler

Berkeley commands

PPD files

config files

SystemV commands

CUPS imaging

Customized
backend for X printer X

CUPS API Lib.

filters

other info.

2003/06/17 Open Printing WG Japan/Asia 7

Bi-di plug-in (4)
n Use case.1: CUPS 1.1.x w/ plug-in:

– Vendor backend for each device and bi-di plug-in for each printer model.
Ø # of vendor backends = # of devices; usb, parallel,etc.

status data

printing data

Application

Scheduler

Berkeley commands

PPD files

config files

SystemV commands

CUPS imaging

Vendor
backend

printer X

CUPS API Lib.

filters

other info.

Bi-di plug-in
for Printer X

2003/06/17 Open Printing WG Japan/Asia 8

Bi-di plug-in (5)
n Use case.2: CUPS 1.2? w/ plug-in:

– CUPS standard backends.

– Vendor monitor and bi-di plug-in for each printer model.

status data

printing data

Application

Scheduler

Berkeley commands

PPD files

config files

SystemV commands

CUPS imaging

CUPS standard
backend printer X

CUPS API Lib.

filters

other info.

Bi-di plug-in
for Printer X

Vendor
monitor

2003/06/17 Open Printing WG Japan/Asia 9

Bi-di plug-in (6)
n Use case.3: Other traditional printing system:

lpr lpd rendererfilterApplication

status data

printing data

Bi-di plug-in
for Printer X

printer X

2003/06/17 Open Printing WG Japan/Asia 10

Bi-di plug-in (7)
n Issue:

– Standard format of the printer status/info. sending back
to the upper system.
ØXML based text format like other standards?

ØKey-Value strings pares separated by space or “,”?

ØFormat adapted to IPP?

– Standard back channel from the bi-di plug-in to the
uppser system.
Østderr ?

Ønamed pipe or socket?

ØOthers?

2003/06/17 Open Printing WG Japan/Asia 11

Bi-di plug-in (8)
n Steps:

– Define the API of bi-di plug-in.

– Define the standard data format.

– Develop a prototype bi-di plug-in.

n Schedule:
– TBD.

2003/06/17 Open Printing WG Japan/Asia 12

Vector Printer Driver API (1)
n Background:

– Lack of performance under the bitmap based driver framework.
Ø Lack of use of acceleration in printer controller
Ø Large data size
Ø Lack of color optimization based on graphic primitives

– Lack of support for non-PS, non-PCL PDL printers.
Ø Need for the drivers for the high performance generic Vector printers.

– Firmly linked with the renderer.
– Depend on each renderer.

Ø Need for the dynamic loading mechanism for the Vector printers.
Ø Need for the renderer independent API.

n Features:
– Generic API for UNIX/Linux.
– Generic API for each PDL; PS, PDF and SVG.
– Generic API for each renderer for each PDL above.
– Generic API for shared library driver as well as IPC driver.

2003/06/17 Open Printing WG Japan/Asia 13

Vector Printer Driver API (2)
n Issue:

– Vector Printer Driver API is...
ØAPI between the renderer and each vector printer driver.

– Renderer depends on the metafile format that the applications
generate, since the renderer deals with the operators in the
metafile.

– Which metafile format will we use mainly as the standard under
Linux/Unix in the future?

– Keep using PS and PDF, and use SVG in the future?

– Keep using PS and PDF, and change to the new metafile based on
X with the print extension in the future?

2003/06/17 Open Printing WG Japan/Asia 14

Vector Printer Driver API (3)
n General Structure of Vector Driver

– Job Control Functions
Ø StartDoc/EndDoc
Ø StartPage/EndPage
Ø Cancel

– Graphics Context Control
Ø FGcolor/BGcolor
Ø Pen/Brush
Ø Raster Operation (ROP)
Ø Font
Ø etc.

– Graphics Drawing Functions
Ø DrawPath
Ø Bitmap Manupilation
Ø DrawText
Ø etc.

– Pass-through data (for PS/EPS)
– Band Control Functions
– Job Property Control

Ø Media/tray/finishing...
– Device Configuration Management

Ø Installed Options
– etc.

Driver API

Driver

Print ContextPrint Context

2003/06/17 Open Printing WG Japan/Asia 15

Idea #1: “X Print Service” for Vector support

n Propose “X Print Service” as vector printer driver
framework and API.

n X Print Service
– X Server with X Print Service

Extension
– Extension: operation on

Context, Job, Page, Attributes,
…

– Graphics: Same service as
regular X server

– Print DDX for PCL
(mono/color), PostScript and
Raster are included in XC
distribution

– OpenOffice & Mozilla
Supports X Print.
xprint.mozdev.org

Print
Dialog

Manger
X Application

DIX + OS + Fonts + Other Print Extension

Print DDX

Print Contexts
Job, Document & Page attributes

Server & Printer attributes

XpGetPrinterList
XpGetCreateContext
XpStartJob
 X rendering…
XpEndJob

XpNotifyPdm

Printers config file (config needed)
Printer model files (provided by printer vendors)
Printer attribute files (some config needed)
DDX config files (provided by DDX vendors)

Print Spooler

2003/06/17 Open Printing WG Japan/Asia 16

“X Print Service” as a Vector Driver Framework

n Bunch of Merits
– Good affinity with X applications.

Ø X graphic model is natural in PC Unix world - X Tool kits (Gnome and KDE…) uses Xlib for
drawing after all. X print enables same interface for printing

Ø Application does not need worry about metafiles format.
– No need to reinvent the wheel.

Ø Past achievement as Graphic API set of X11 interface. - We can reuse know-how and efforts
Ø Some sample implementations already exist (PCL, PostScript, Raster, PDF, etc.)
Ø Ongoing project (http://xprint.mozdev.org/) … Mozilla & OpenOffice support X print service.

– No license woes
Ø Xlib (MIT license) – no problem on linking with GPL rendering programs such as Ghostscript
Ø Interface between client and server is RPC based on TCP/IP
Ø X Server is MIT license – printer vendor can distribute their own printer driver (DDX) in

binary.

n Demerits we have to conquer
– Old design as graphics API. Need extension for strong graphic capabilities

Ø Bezier curve, raster operation, color matching
– Only supports 16 bits (i.e. short type) coordinates system – cannot print on A0 size or

banner paper in high resolution.
n Need to verify…

– Performance – assured for video control, but need to verify with printers (higher
resolution than video)

– Required resource – code size, memory (for embedded systems and PDA’s)

2003/06/17 Open Printing WG Japan/Asia 17

First Step: Vector Support on Ghostscript using X Print

n How…
– Built-in X print client as a

vector driver into Ghostscript
– The client translates GS vector

operation into X operations.
– The client communicate with X

Print Server to generate PDL.

n So what?
– Support APPs which generate

PostScript for printing
– No visibility change for APPs.
– Faster printing on high end

laser printers.

n Extension
– Job Attribute via Job Ticket

PDL PDL

PostScript Parser

graphics processing core

renderer

IJS
client

raster

X Print Client

X Print Server
(Printer Driver)

X Protocol IJS protocol

PDL

IJS Server

GS Vector API

libX11 libXp+ext.

X Graphics API

PostScript

raster
printer
driver

raster

2003/06/17 Open Printing WG Japan/Asia 18

-Xp reinforcement for
support of OpenPrinting JT
-X Graphics capability
reinforcement (Bezier…)

-Promote use of X print to
APP writers
-Further reinforcement of X
graphics capabilities (font,
color…)

-Definition of X-protocol-
based metafile
-Extend libX11/libXp to
generate metafile
-Metafile playback

Strategy for higher level graphics printer driver support

GS
spooler

Raster Driver

APP

printer

PS

PS
lpr

PDL

PDL

Current

PAPI

GS
spooler

X Print Service

APP

printer

PS

PS+JT

PDL

PDL

Vector Driver Support

spooler

APP

printer

X Print Service

PDL

PDL

X+Xp Ext.
API

PAPI

Vector API for APP

spooler

APP

printer

libX11/libXp

PDL

Metafile based
on X Protocol

Metafile
Playback

X Print Server

PDL

PAPI

X+Xp Ext.
API

Target

Printing based on PS
graphic model

Unified graphic model
for display and print

(WYSIWYG)

2003/06/17 Open Printing WG Japan/Asia 19

To-do's for 1st Step
n Clarification of requirement and

spec.
– Study current Xp spec.
– Extension to take in OpenPrint

spec. such as JTAPI.
– Extension to X Server

Graphics capability
– Dynamic configuration

Ø Dynamic loading of X Print
DDX

Ø Device Configuration
Ø Device Status
Ø Interaction with User

Interface settings
– Coordination in OpenPrinting

Architecture
Ø Legacy AP support
Ø Data flow
Ø Metafile?

n Implementation
– Client

Ø Integrate Xp Client into
Ghostscript

– Server
Ø Extension of Xp protocol
Ø Dynamic Configuration

Management
Ø Spooler interface

n Verification
– Performance
– Application
– Usability

n Standardization and Cooperation
– FSG OpenPrinting WG
– X Consortium?
– X Print Project? (mozdev.org)
– XFree86?

2003/06/17 Open Printing WG Japan/Asia 20

Idea #2: API based on PS, PDF and SVG

n Graphics Model’s viewpoint:
– PS, PDF and SVG have the similar Graphics Model.
Ø Path: moveto, lineto, curveto, closepath, etc...
Ø Painting: fill, stroke, etc...

– Graphics model of PS, PDF and SVG are wider than that of the
original X.
ØWider model can support the restricted model.
Ø Restricted model can’t support the wider model.

n Renderer’s viewpoint:
– Major PS renderer, e.g. Ghostscript, has the function entries of

each operator to register each vector device’s functions.
Ø beginpath, moveto, lineto, curveto, closepath, endpath. etc...

– SVG renderer will have the similar function entries.

2003/06/17 Open Printing WG Japan/Asia 21

API based on PS, PDF and SVG (2)
n API design policy:

– Prepare the common function entries called from the renderer.
Ø newpath, moveto, lineto, curveto, closepath, endpath, etc. (TBD)
Ø setlinewidth, setcolor, setjoin, setcap, setmiterlimit, etc. (TBD)

– Glue code linked to the renderer converts the renderer’s request
to call the appropriate APIs of the driver.

– Prepare the common callback entries from the driver to the renderer.
ØDriver can call the renderer’s function.
ØGlue code prepare the callback entries.

– Hide the renderer dependent stuff to keep the driver generic.
Ø Pass the renderer’s stuff to the driver as the generic context including

the pointer to the renderer’s stuff.
ØDriver obtains several properties in the renderer’s stuff by using the

common callback entries.

2003/06/17 Open Printing WG Japan/Asia 22

API based on PS, PDF and SVG (3)

n API design policy (cont):
– Not restrict the printer’s features.
Ø If some printer support the command of “curveto”, API will support

its function.

2003/06/17 Open Printing WG Japan/Asia 23

API based on PS, PDF and SVG (4)

n Basic Diagram: Renderer, Glue code and Driver.

Renderer
function_entries[]=
{
 moveto
 lineto
 curveto
 closepath
 :
};

Glue code

glue_moveto

glue_lineto

glue_curveto

glue_closepath

 :
glue_get_colordepth

Driver

driver_begin_path

driver_moveto

driver_lineto

driver_curveto

driver_closepath

driver_endpath
 :
driver_get_colordepth

Application

Printing
System

ps, pdf, svg

ps, pdf, svg

backend

Printer

printer commands

function call

printing data

register

- Glue Code for each renderer.
- Driver for each printer model.

2003/06/17 Open Printing WG Japan/Asia 24

API based on PS, PDF and SVG (5)

n IPC Extension:

Renderer
function_entries[]=
{
 moveto
 lineto
 curveto
 closepath
 :
};

Glue code

glue_moveto

glue_lineto

glue_curveto

glue_closepath

 :
glue_get_colordepth

Driver

driver_begin_path

driver_moveto

driver_lineto

driver_curveto

driver_closepath

driver_endpath
 :
driver_get_colordepth

Application

Printing
System

ps, pdf, svg

ps, pdf, svg

backend

Printer

printer commands

function call

printing data

register

Driver IPC wrapper

Glue code IPC wrapper

IPC protocol

2003/06/17 Open Printing WG Japan/Asia 25

API based on PS, PDF and SVG (6)

n Steps:
– Make a list of the function entries that renderer needs.
Ø1st implementation is Ghostscript.

– Make a list of the function entries that printers need.

– Select the Xprint model or PS/PDF/SVG model.
– Define the API.

– Define the IPC protocol.

– Develop a prototype glue code and driver.

2003/06/17 Open Printing WG Japan/Asia 26

Schedule
n End of July Select the architecture Xprint or

“API based on PS,PDF and SVG”

n End of Sep. Define API.

n Oct. Trial implementation for GS.

2003/06/17 Open Printing WG Japan/Asia 27

Thank you for your time and interest.

This presentation data will be stored in;

ftp://ftp.pwg.org/pub/pwg/fsg/June2003_meeting_slides/

OpenPrintWGJapan030617.ppt

