JDF_1.2-color-and-dp-030623.doc [image: image107.jpg])

[image: image108.jpg]

[image: image109.jpg])

[image: image110.wmf]

ResourceLink:Transformation

process coordinate system

resource coordinate system

of input resource 2

ResourceLink:Transformation

resource coordinate system

of input resource 1

ResourceLink:Transformation

resource coordinate system

of input resource n

...

resource coordinate system

of output resource 2

resource coordinate system

of output resource

1

resource coordi

nate system

of output resource n

...

identity transformation

identity transformation

identity transformation

[image: image111.jpg]

[image: image112.jpg]

 Revision marks show proposed changes for JDF/1.2 from the Digital Printing WG, Color Workflow WG, and some from the Origination and Prepress WG.
Last updated 2003-06-23
TSC comments highlighted to show Digital Printing versus Color Workflow tbd items that need work
Note to people editing this spec with MS-WORD: The Table of Contents now inclfudes an extra line for each section that is New in JDF/1.2 or Deprecated in JDF/1.1 or JDF/1.2, as well as a change summary inside square brackets ([]) for each section with a change. New Paragraph and Characters Styles are defined for each:
 ChangeNew and New - Value, Attribute, Element, or Section added

 ChangeDeprecated and Deprecated - Value, Attribute, Elements, or Section has been Deprecated

 ChangeModified and Modified - Attribute, Element, or Section has a syntactic or intended semantic change
 ChangeClarified and Clarified - Attribute, Element, or Section clarified with niether syntactic nor intended semantic change

 ChangeSummary - summary of the changes in a section.
By redefining the Level to be a Level # or Body Text under Paragraph controls whether or not the paragraphs show up in the TOC. The ChangeSummary lines inside [] are intended not to be present in the final JDF/1.2 document, but are here to help reviewers see which sub-sections have changes and what those changes are from reading just the TOC. None of the JDF 1.1 callouts have been removed. Here is a summary of the Styles, their usage, and their current appearance in the TOC.
Y/Y means yes in the review document and yes in the published spec.

Y/N means yes in the review document but no in the published spec
N/N means neither in the review document nor the published spec
	Style
	Appearance
	After a Value?
	in Name Column?
	After Heading?
	in TOC?

	ChangeNew
	New in JDF 1.1
	Y/Y
	Y/Y
	Y/Y
	N/N

	ChangeNew
	New in JDF 1.2
	Y/Y
	Y/Y
	Y/Y
	Y/N

	ChangeDeprecated
	Deprecated in JDF 1.1
	Y/Y
	Y/Y
	Y/Y
	Y/N

	ChangeDeprecated
	Deprecated in JDF 1.2
	Y/Y
	Y/Y
	Y/Y
	Y/N

	ChangeModified
	Modified in JDF 1.1
	N/N
	Y/Y
	N/N
	N/N

	ChangeModified
	Modified in JDF 1.2
	N/N
	Y/Y
	Y/Y
	N/N

	ChangeClarified
	Clarified in JDF 1.2
	N/N
	Y/Y
	Y/Y
	N/N

	ChangeSummary
	[summary of change]
	N/N
	N/N
	Y/N
	Y/N

	ChangeSummary
	[summary of change]
	N/N
	N/N
	Y/N
	Y/N

Items highlighted in green like this are the color and imaging additions or clarifications proposed by the Digital Printing WG, the Color Workflow WG, and the Origination and Prepress WG. See the green highlighted entries in the Table of Contents to see which sections have color additions or clarifications.
Items highlighted in light blue like this are non-color additions or clarification proposed by the Digital Printing WG. See the lightblue highlighted entries in the Table of Contents to see which sections have non-color additions or clarifications.
ISSUES start with the word “ISSUE:” and are highlighted in yellow like this. In the Table of Contents, ISSUEs are indicated with the Green or Blue color as to their source. Some ISSUES have names assigned to them. So far WG names include “Digital Printing WG” (meaning Digital Printing WG - was meant for face to face in Washington, April 2-4), “Color WG”, “Color, DP, O&P WGs” (meaning 3-way WG resolution). Individual names include: “Rainer”, and “Craig”.
ACTIONS start with the phrase “ACTION (name):” where name indicates a person or WG to perform the indicated adction and are highlighted in yellow like this. So far names includes: “Jim”, “Rainer”, “Tom”, “Ann”, and “Rick”. See the yellow highlighted entries in the Table of Contents to see which sections have ACTIONS.
Copyright Notice

Copyright © 2000-2003, International Cooperation for Integration of Processes in Prepress, Press and Postpress, hereinafter referred to as CIP4. All Rights Reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of the Specification and associated documentation files (the “Specification”) to deal in the Specification, including without limitation the rights to use, copy, publish, distribute, and/or sublicense copies of the Specification, and to permit persons to whom the Specification is furnished to do so, subject to the following conditions. The above copyright notice and this permission notice must be included in all copies or substantial portions of the Specification.

The Specification is provided “as is”, without warranty of any kind, express, implied, or otherwise, including but not limited to the warranties of merchantability, fitness for a particular purpose

and noninfringement. In no event will CIP4 be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of, or in connection with the Specification or the use or other dealings in the Specification.

Except as contained in this notice or as allowed by membership in CIP4, the name of CIP4 must not be used in advertising or otherwise to promote the use or other dealings in this Specification without prior written authorization from CIP4.
Licenses and Trademarks

International Cooperation for Integration of Processes in Prepress, Press and Postpress, CIP4, Job Definition
Format, JDF and the CIP4 logo are trademarks of CIP4.

Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we are using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention of infringement of the trademark.

Page Intentionally Left Blank.

JDF Preface and User Overview

This specification is immense … there little doubt about that … but it is also a keystone standard for the future of graphic communications. The members of CIP4 believe that users and developers alike should have a clear understanding of what the objectives of the Job Definition Format (JDF) are as well as an understanding of its value and purpose. To that end we thought you would find a “non-standard” preface and user overview helpful.

Before we get into the overview, we remind you that JDF is a living specification. We would value your comments and input. There are several ways to contact the International Cooperation for the Integration of Processes in Prepress, Press and Postpress (CIP4) association and to receive ongoing information about CIP4 activities. To get a list of contacts, join the JDF developers form, or sign up for email updates, visit the contact page at http://www.cip4.org/. (Of course, we’d love to have you as a CIP4 member too! Be sure to review the membership page when you visit the CIP4 Website.)

You will also find callouts throughout this document that are identified by three different icons. These callouts, provided for your convenience, are not normative parts of the standard (i.e., they’re not technically a part of the standard). They provide references to external sources, executive summaries of complex technical concepts, and some thoughts or strategies you may want to consider as you formulate your JDF implementation plan. Look for these callout icons:
	Icon
	Callout Type

	[image: image1.jpg])

	External references to online resources, related standards, tutorials, and helpful information.

	[image: image2.jpg]

	Executive-style summaries of technical concepts in easy to understand language.

	[image: image3.jpg]

	Thoughts to ponder and strategy ideas for formulating JDF implementation programs.

Value. This revision of JDF is significant because it builds upon the first version of JDF (v.1.0) to deliver a fully functional and mature standard. As such, this revision includes elements from which executives, shop managers, and technicians will all benefit equally, though in different ways. In the next few years it is our belief that this specification will positively effect everyone involved in the creation and production of printing; regardless of form (offset, digital, flexographic, and so on) or function (direct mail, periodical publication, packaging, and so on). Furthermore, JDF will be of value to companies both large and small. Some of the benefits that JDF may provide include:
· A common language for describing a print job across enterprises, departments, and software and systems;

· A tool for verifying the accuracy and completeness of job tools;

· A systems interface language that can be used to benchmark the performance of new equipment (hardware and software) and that can reduce the cost of expensive custom integration for printers, prepress services, and others;

· [image: image113.jpg]

A basis for total workflow automation that incorporates all aspects of production: human, machine, and computer;

· A standard that can be applied to eliminate wasteful rekeying and redundancy of information; and

· A common computer language for printing and related industries as well as a platform for more effective communication.

Most importantly, JDF provides an opportunity for users of graphic arts equipment to get a better return on their technology investment and an opportunity to create a print production and distribution workflow that is more competitive with broadcast media in terms of time-to-market.

XML and Schema: Why? The Extensible Markup Language (XML) is the standard language that is employed by JDF. JDF is also constructed to the World Wide Web Consortium’s (W3C) recommendation for the construction of schema. Why is this important and, in layman’s terms, what does it do for you?

First of all, it is helpful to understand how MIS professionals around the world use XML today. Although there are some systems that manage and process XML directly, it is primarily used as an exchange language or “middleware” element to create the “glue” that ties integrated systems together.

[image: image114.jpg])

 For instance, complex systems such as enterprise resource planning (ERP), data warehousing, or E-commerce systems often tap into numerous legacy databases and application environments. A manager may wish to have a “view” of corporate information that is actually an aggregate of information that may come from various sources such as billing and invoicing, sales management, inventory, and other systems. Rather than merge these systems into a single, monstrous and centralized system, an operator queries the legacy systems and the results are wrapped in XML. This allows programmers to deal with one exchange language or data format instead of a multitude of proprietary data formats.

XML is not a functional computer language like JAVA, C++ or FORTRAN — it is incapable of manipulating data in anyway; rather, it is a descriptive computer language that can be used to describe your information including its structure, interrelationships, and to some extent, its intended usage. For this reason, modern program languages such as JAVA provide intrinsic support for XML processing. Most modern database applications also provide methods for receiving and delivering XML.

[image: image115.jpg])

Early XML, based solely upon the XML 1.0 specification, had a few limitations that prevented it from being used widely as a transactional data format across enterprises, as opposed to within enterprises (where it found its niche as described above.) For example, there is probably a database behind each of your major systems and applications. If your database has reserved a fixed space a data particular field and a supplier provides a transaction with a data element larger than that field, you have a problem. The data limitations of XML 1.0 cannot effectively deal with this. The XML Schema specification solved this problem and others.

The Pluses of Parsing. Schemas also provide one other feature that is perhaps the greatest benefit. Tagged documents or transactions (called “instances” in XML parlance) are parsible. Schemas, such as JDF, establish rules for structuring your information. A parser is a software application that reads those rules, checks documents and transactions, and then validates that they conform to the rules as established in your schema … sort of like preflighting but for XML instances rather than your layout pages.

[image: image116.jpg]

Parsers can play many roles. Like preflighting software, parsers can be run as standalone applications, but they can also be found embedded into other applications. Some of the roles parsers may play in your JDF-enabled workflow include:

1. Acceptance checking of client job tickets.

2. Validation of JDF prior to or following transformation of data into and out of databases.

3. Ensuring that source job information is collected as a document is created. (Embedded in document layout software.)

4. Determining if equipment reads and writes Job Messaging Format (JMF) commands, a subset of JDF, as part of equipment benchmarking and testing software.

5. Controlling the movement of workflow information and controls within workflow software, from process to process and as a specific JDF job ticket requires.

6. Working as a middleware component to communicate between JDF-enabled software and systems and your legacy Management Information System (MIS) and corporate applications environments.

It is worth mentioning that parsing can be time consuming and computer intensive. But parsers don’t have to be the gatekeepers everywhere in a JDF-enabled workflow. Equipment that is JDF-enabled and part of a company’s internal production operations need not parse every communication. It can be limited to equipment evaluation and problem solving applications. The role of JDF parser-enabled software in a printing plant that uses tightly coupled JDF-enabled print production equipment might look like this:

[image: image4.jpg]Gustomers

\/ 2
JOF
Parser

——

Other Document Sources
(Propress services,
39 Party Designars, atc.)

Management
Ropering

intng &
al Sysems

JDF Enabled Prepress, Press, and Postpress Operations

Global Printing Company

il

Suppliers

Parser

Dirbiton

The JDF Concept. The JDF schema is quite complex and detailed — something best left to programmers, MIS personnel, and XML experts. But the language and concepts behind JDF are quite simple and straightforward. The schema itself can be downloaded from the CIP4 Website, but is not part of this specification. Instead, this is your “cookbook.” It provides an explanation of each of the components of JDF, its meaning, and intended usage. You will want to use the components of JDF that fit best with your workflow and the needs of your customers. To start, a basic understanding of the concepts behind JDF is in order. There are three primary components to JDF:
1. JDF itself,

2. The Job Messaging Format (JMF), and

3. The MIS system.

JDF is simply an exchange format for instructions and job parameters. You can use PDF, or its standard variant (PDF/X), to relay production files from one platform to another. You can do the same with JDF to relay job parameters and instructions. JDF can be used to describe a printing job logically, as you would in exchanging a job description with a client within an estimate. It can also be used to describe a job in terms of individual production processes and the materials or other process inputs required to complete a job.

There is no such thing as a standard print workflow. In fact, printing is the ultimate form of flexible manufacturing. This makes process automation quite a challenge for our industry. What you’ll find in this standard are XML element definitions that describe all the production processes and material types you’re likely to encounter, regardless of your workflow. These are the building blocks that you can use to emulate your workflow with JDF. As a matter of convention, processes such as preflighting, scanning, printing, cutting, and so on are referred to as process nodes. Every process in the print production workflow requires input resources starting with the client’s files or artwork and ending with the final bound, packaged, and labeled print product. For example, before you can print, you need paper, ink, and plates, and before you can send a document to a bindery line, you need printed and cut signatures.

[image: image117.jpg]

Process nodes and resources are the basic elements within JDF. They can be strung together to meet the requirements of each job. The output of one process becomes the input of the following process, and a process doesn’t begin until its input resources are available:

[image: image118.jpg]

This specification provides details on how to use these building blocks to describe concurrent processes, spawned processes, dynamic processes, and so on. To realize the capabilities of JDF, there are two other things you will need: a way of controlling the flow of process and a way of communicating commands to equipment on the shop floor.

JMF is a subset of JDF that handles communication with equipment on the shop floor. This may include major equipment, such as platesetters, or subsystems, such as in-line color measurement devices. JMF can be used to establish a queue, discover the capabilities of a JDF-enabled device, determine the status of a device (e.g., “RIP’ing,” “Idle”), and so on.
[image: image119.jpg]

 Although, theoretically, you can string together equipment that supports JMF directly to one another, in almost all cases you will want your production equipment to communicate with your MIS system. This way it is the MIS system that controls the scheduling, execution, and control of work in progress. The role of the MIS system is described within this standard, but it isn’t highly defined. In fact, the JDF standard does not dictate how a JDF system should be built. Many printers, prepress services, and other graphic arts shops will already have MIS systems in place. JDF enabled workflow and MIS systems, custom-tailored to print production requirements, will soon be available on the market. However, many printers already have MIS and workflow systems that have been customized or developed for their own environments. In most cases these legacy systems can be modified to work with the new JDF workflows and JDF enabled equipment. There are a variety of XML support tools available on the market to address the databases underlying all MIS systems.

Table of Contents

iCopyright Notice

iLicenses and Trademarks

iiiJDF Preface and User Overview

ixTable of Contents

xxviTable of Figures

1Chapter 1
Introduction

11.1
Background on JDF

11.2
Document References

1[2 ISSUEs (Ann), ACTION (Jim)]

31.3
Conventions Used in This Specification

31.3.1
Call-Outs

3New in JDF 1.2

31.3.2
Text Styles

41.3.3
Specification of Cardinality

41.4
Glossary of Terminology

4[Added term: Slave Controller]

61.4.1
Conformance Terminology

61.4.2
Conformance Requirements for JDF Entities

71.4.2.1
Conformance Requirements for Support of Attributes and Attribute Values

71.4.2.2
Conformance Requirements for Support of Resources

71.4.2.3
Conformance Requirements for Support of Processes

71.4.2.4
Conformance Requirements for Support of Combined Processes

81.5
Data Structures

8[Added references to [rfc1738] for the “file:” URL scheme.]

91.6
Units

11Chapter 2
Overview of JDF

112.1
System Components

112.1.1
Job Components

112.1.1.1
Jobs and Nodes

112.1.1.2
Elements

112.1.1.3
Attributes

112.1.1.4
Relationships

122.1.1.5
Links

122.1.2
Workflow Component Roles

122.1.2.1
Machines

122.1.2.2
Devices

122.1.2.3
Agents

132.1.2.4
Controllers

132.1.2.5
Management Information Systems—MIS

132.1.2.6
System Interaction

142.2
JDF Workflow

152.2.1
Job Structure

172.3
Hierarchical Tree Structure and Networks in JDF

182.4
Role of Messaging in JDF

192.5
Coordinate Systems in JDF

192.5.1
Introduction

202.5.2
How and Where Coordinates and Transformations Are Used/Defined in JDF

202.5.3
Coordinate Systems of Resources and Processes

222.5.3.1
Coordinate Systems in Combined processes

22[Clarification]

222.5.4
Product Example: Simple Brochure

262.5.5
General Rules

272.5.6
Homogeneous Coordinates

29Chapter 3
Structure of JDF Nodes and Jobs

313.1
JDF Nodes

313.1.1
Generic Contents of JDF Elements

31[Added a clarification to Attribute. Added 3 new values, JobDescription, OperatorText and TemplateDescription, to Comment element Name attribute.]

333.1.2
Fundamental JDF Attributes and Elements

33[Added 2 new attributes, TemplateID and TemplateVersion, to Contents of a JDF Node. Added clarification to TemplateID and Version. 1 ISSUE]

373.2
Common Node Types

383.2.1
Product Intent Nodes

383.2.2
Process Group Nodes

393.2.3
Combined Process Nodes

39[Clarified the order of the Types attribute]

403.2.3.1
Combined Process Nodes with Multiple Processes of the Same Type

403.2.3.2
Examples of Combined Process Nodes

413.2.4
Process Nodes

413.3
AncestorPool

423.4
Customer Information

42[Added CustomerJobDescription attribute to go along with CustomerJobName. ISSUE: OK?]

433.5
Node Information

453.6
StatusPool

453.7
Resources

483.7.1
Resource Classes

483.7.1.1
Parameter Resources

493.7.1.2
Intent Resources

493.7.1.3
Implementation Resources

493.7.1.4
Physical Resources (Consumable, Quantity, Handling)

49[Clarified Brand attribute]

503.7.1.5
PlaceHolder Resources

513.7.1.6
Selector Resources

513.7.2
Position of Resources within JDF Nodes

513.7.3
Pipe Resources

513.7.4
ResourceUpdate Elements

51[3 typos in example, clarify that a Resource can have an UpdateID too. ISSUE are the clarifications correct?]

523.8
Resource Links

52[correction]

573.8.1
Links to Parameter Resources

573.8.2
Links to Implementation Resources

583.8.3
Links to Physical Resources

603.8.4
Links to PlaceHolder Resources

603.8.5
Links to Intent Resources

603.8.6
Inter-Resource Linking Using ResourceRef

613.8.6.1
Status of Resources That Contain rRef References

613.8.6.2
Alignment of ResourceLink and ResourceRef

623.9
Subsets of Resources

623.9.1
Resource Amount

633.9.2
Description of Partitionable Resources

63[Added BundleItemIndex value to PartIDKeys attribute. 2 ISSUES: Data type of RunPage and the difference between RunIndex and RunPage]

693.9.2.1
Options in Intent Resources

693.9.2.2
Locations of Physical Resources

69[Removed Table 3-26 Locations within Printers. Added new table, Printer input tray names. Added Continuous, Roll, and/or Disc (for printing on CD/DVD) values to LocationName attribute.]

723.9.3
Linking to Subsets of Resources

723.9.3.1
Handling Amount in a ResourceLink to a Partitioned Resource

723.9.3.2
Referencing Partitioned Resources from Nodes That Allow Multiple ResourceLinks.

733.9.4
Splitting and Combining Resources

743.10
AuditPool

773.10.1
Audit Elements

77[ISSUE: How to bring this JDFX stuff into JDF/1.2 as real JDF/1.2 attributes?]

773.10.1.1
ProcessRun

783.10.1.2
Notification

793.10.1.3
PhaseTime

813.10.1.4
ResourceAudit

833.10.1.5
Created

833.10.1.6
Modified

833.10.1.7
Spawned

843.10.1.8
Merged

843.11
JDF Extensibility

853.11.1
Namespaces in XML

853.11.1.1
JDF Namespace

853.11.1.2
JDF Extension Namespace

863.11.2
Extending Process Types

863.11.3
Extending Existing Resources

863.11.4
Extending NMTOKEN Lists

86[Clarified the processing of unknown NMTOKEN extensions]

873.11.5
Creating New Resources

873.11.6
Future JDF Extensions

873.11.7
Maintaining Extensions

873.11.8
Processing Unknown Extensions

883.11.9
Derivation of Types in XMLSchema

89Chapter 4
Life Cycle of JDF

894.1
Creation and Modification

894.1.1
Product Intent Constructs

904.1.1.1
Representation of Product Intent

904.1.1.2
Representation of Product Binding

904.1.2
Defining Business Objects Using Intent Resources

924.1.3
Specification of Delivery of End Products

924.1.4
Specification of Process Specifics for Product Intent Nodes

934.2
Process Routing

944.2.1
Determining Executable Nodes

944.2.2
Distributing Processing to Work Centers or Devices

954.2.3
Device / Controller Selection

954.3
Execution Model

954.3.1
Serial Processing

964.3.2
Overlapping Processing Using Pipes

984.3.2.1
Pipes of Partitionable Resources

994.3.2.2
Dynamic Pipes

994.3.2.3
Comparison of Non-Dynamic and Dynamic Pipes

1004.3.3
Parallel Processing

1004.3.4
Iterative Processing

1014.3.4.1
Informal Iterative Processing

1014.3.4.2
Formal Iterative Processing

1014.3.5
Proofing and Verification

101ISSUE (Color, DP, and O&P): Is this description of the use of the Approval process for proofing OK?]

1014.4
Spawning and Merging

1034.4.1
Case 1: Standard Spawning and Merging

103[Typo]

1044.4.2
Case 2: Spawning and Merging with Resource Copying

1044.4.2.1
Spawning of Resources with Inter-Resource Links

1054.4.3
Case 3: Parallel Spawning and Merging of Partitioned Resources

1054.4.4
Case 4: Nested Spawning and Merging in Reverse Sequence

1064.4.5
Case 5: Spawning and Merging of Independent Jobs

1084.4.6
Case 6: Simultaneous Spawning and Merging of Multiple Nodes

1084.5
Node and Resource IDs

108[Clarified pureID]

1084.6
Error Handling

1094.6.1
Classification of Notifications

1094.6.2
Event Description

1094.6.3
Error Logging in the JDF File

1094.6.4
Error Handling via Messaging (JMF)

1094.7
Test Running

1104.7.1
Resource Status During Testrun

1114.8
Describing Device Capabilities with JDF

112Chapter 5
JDF Messaging with the Job Messaging Format

1125.1
JMF Root

1145.2
JMF Semantics

1145.2.1
Message Families

1145.2.1.1
Query

1155.2.1.2
Response

1165.2.1.3
Signal

1185.2.1.4
Command

1185.2.1.5
Acknowledge

1195.2.2
JMF Handshaking

1195.2.2.1
Single Query/Command Response Communication

1205.2.2.2
Signal

1205.2.2.3
Persistent Channels

1215.3
JMF Messaging Levels

1215.4
Error and Event Messages

1225.4.1
Pure Event Messages

1225.5
Standard Messages

1235.5.1
Controller Registration and Communication Messages

1235.5.1.1
Events

1255.5.1.2
KnownControllers

1255.5.1.3
KnownDevices

1265.5.1.4
KnownJDFServices

1275.5.1.5
KnownMessages

1295.5.1.6
RepeatMessages

1305.5.1.7
StopPersistentChannel

1305.5.2
Device/Operator Status and Job Progress Messages

1315.5.2.1
Occupation

1325.5.2.2
Resource

1365.5.2.3
Status

1405.5.2.4
Track

1415.5.3
Pipe Control

1415.5.3.1
PipeClose

1425.5.3.2
PipePull

1435.5.3.3
PipePush

1445.5.3.4
PipePause

1445.6
Queue Support

1455.6.1
Queue Entry ID Generation

1455.6.2
Queue Entry Handling Commands

1455.6.2.1
AbortQueueEntry

1455.6.2.2
HoldQueueEntry

1465.6.2.3
RemoveQueueEntry

1465.6.2.4
ResubmitQueueEntry

1465.6.2.5
ResumeQueueEntry

1475.6.2.6
SetQueueEntryPosition

1475.6.2.7
SetQueueEntryPriority

1475.6.2.8
SubmitQueueEntry

1495.6.3
Global Queue Handling

1495.6.3.1
CloseQueue

1505.6.3.2
FlushQueue

1505.6.3.3
HoldQueue

1505.6.3.4
OpenQueue

1505.6.3.5
QueueEntryStatus

1515.6.3.6
QueueStatus

1515.6.3.7
ResumeQueue

1515.6.3.8
SubmissionMethods

1525.6.4
Queue-Handling Elements

1545.7
Extending Messages

1555.7.1
IfraTrack Support

156Chapter 6
Processes

1566.1
Process Template

1566.2
General Processes

1566.2.1
Approval

1576.2.2
Buffer

1576.2.3
Combine

1576.2.4
Delivery

1586.2.5
ManualLabor

1586.2.6
Ordering

1586.2.7
Packing

158Deprecated in JDF 1.1

1596.2.8
ResourceDefinition

1596.2.9
Split

1596.2.10
Verification

1606.3
Prepress Processes

1606.3.1
ColorCorrection

1606.3.2
ColorSpaceConversion

1616.3.3
ContactCopying

1626.3.4
ContoneCalibration

1626.3.5
DBDocTemplateLayout

1626.3.6
DBTemplateMerging

1636.3.7
FilmToPlateCopying

163Deprecated in JDF 1.1

1636.3.8
FormatConversion

1636.3.9
ImageReplacement

1646.3.10
ImageSetting

164[ISSUE: Is this Description of proofing with ImageSettting OK?]

1646.3.11
Imposition

1656.3.12
InkZoneCalculation

1666.3.13
Interpreting

1676.3.14
LayoutElementProduction

1676.3.15
LayoutPreparation

1686.3.16
PDFToPSConversion

1686.3.17
Preflight

1706.3.18
PreviewGeneration

1726.3.19
Proofing

172Deprecated in JDF 1.2

172[Deprecated in JDF 1.2, ISSUE: Is this description of hard proofing OK?]

1726.3.20
PSToPDFConversion

1736.3.21
Rendering

1736.3.22
RIP’ing

1746.3.23
Scanning

1746.3.24
Screening

1746.3.25
Separation

1756.3.26
SoftProofing

175Deprecated in JDF 1.2

175[Deprecated in JDF 1.2, ISSUE: Is this description of softproofing OK?]

1766.3.27
Tiling

1766.3.28
Trapping

1776.4
Press Processes

1776.4.1
ConventionalPrinting

177[Clarified that Proof Component may be from a DigitalPrinting process. ISSUE: Is this description of proofing with ConventionalPrinting OK?]

1796.4.2
DigitalPrinting

179[added 4 more example processes that may be combined with DigitalPrinting: Approval, ColorCorrection, ColorSpaceConversion, and ImageReplacement, Clarified that Proof Component may be from a ConventionalPrinting process. 1 ISSUE, ISSUE: Is this description of proofing with DigitalPrinting OK?]

1806.4.3
IDPrinting

180Deprecated in JDF 1.1

180[Deprecated in JDF 1.1, ACTION (Jim)]

1816.5
Postpress Processes

1826.5.1
AdhesiveBinding

182Deprecated in JDF 1.1

1826.5.2
BlockPreparation

1826.5.3
BoxPacking

1836.5.4
CaseMaking

1836.5.5
CasingIn

1836.5.6
ChannelBinding

1846.5.7
CoilBinding

1846.5.8
Collecting

1856.5.9
CoverApplication

1856.5.10
Creasing

1856.5.11
Cutting

1866.5.12
Dividing

186Deprecated in JDF 1.1.

1866.5.13
Embossing

1876.5.14
EndSheetGluing

1876.5.15
Folding

1886.5.16
Gathering

1886.5.17
Gluing

1896.5.18
HeadBandApplication

1896.5.19
HoleMaking

1896.5.20
Inserting

1906.5.21
Jacketing

1906.5.22
Labeling

1906.5.23
Laminating

1916.5.24
LongitudinalRibbonOperations

191Deprecated in JDF 1.1.

1916.5.25
Numbering

1916.5.26
Palletizing

1926.5.27
Perforating

1926.5.28
PlasticCombBinding

1936.5.29
RingBinding

1936.5.30
SaddleStitching

193Deprecated in JDF 1.1

1936.5.31
ShapeCutting

1946.5.32
Shrinking

1946.5.33
SideSewing

194Deprecated in JDF 1.1 Replaced by ThreadSewing.

1946.5.34
SpinePreparation

1956.5.35
SpineTaping

1956.5.36
Stacking

1956.5.37
Stitching

1966.5.38
Strapping

1966.5.39
StripBinding

1966.5.40
ThreadSealing

1976.5.41
ThreadSewing

1976.5.42
Trimming

1976.5.43
WireCombBinding

1986.5.44
Wrapping

1986.5.45
Postpress Processes Structure

1986.5.45.1
Block Production

1996.5.45.2
HoleMaking

1996.5.45.3
Laminating

1996.5.45.4
Numbering

1996.5.45.5
Packaging Processes

2006.5.45.6
Processes in Hardcover Book Production

2016.5.45.7
Sheet Processes

2016.5.45.8
Tip-on/in

2016.5.45.9
Trimming

2016.5.45.10
Web Processes

202Chapter 7
Resources

2027.1
Intent Resources

202[Clarified omitted span elements in intent.]

2037.1.1
Intent Resource Span Subelements

2037.1.1.1
Structure of Abstract Span Subelement

203[ISSUE: Have the new Span data types been added to the DataType enumeration below?]

2047.1.1.2
Structure of the DurationSpan Subelement

2047.1.1.3
Structure of the EnumerationSpan Subelement

2057.1.1.4
Structure of the IntegerSpan Subelement

2057.1.1.5
Structure of the NameSpan Subelement

2057.1.1.6
Structure of the NumberSpan Subelement

2067.1.1.7
Structure of the OptionSpan Subelement

2067.1.1.8
Structure of the ShapeSpan Subelement

2067.1.1.9
Structure of the StringSpan Subelement

2067.1.1.10
Structure of the TimeSpan Subelement

2067.1.1.11
Structure of the XYPairSpan Subelement

2077.1.2
ArtDeliveryIntent

2117.1.3
BindingIntent

211[Removed duplicate StripBind value in BindingType, DEPRECATED BookCase element reference in BindingIntent/BindList/BindItem element to agree with JDF/1.1 DEPRECATION of BindingIntent/BindList/BindItem/BookCase subelement]

2227.1.4
ColorIntent

222[Added 2 attributes: ColorManagementSystem and ICCProfileSequence, added 5 refelements: AutomatedOverprintParams, ColorantAlias, ColorSpaceConversionOp, FileSpec (ActualOutputProfile), FileSpec (ReferenceOutputProfile), added values to and deprecated other values of ColorStandard, changed SeparationSpec * to a refelement for consistency, added Table NN - Mapping of ColorSpaceConversion output profile resources, 3 ISSUEs (Color WG), ISSUE (publish ISSUE in JDF/1.2 spec), ACTION (ICC Liaison to CIP4, Ann McCarthy)]

2327.1.5
DeliveryIntent

2377.1.6
EmbossingIntent

2387.1.7
FoldingIntent

2417.1.8
HoleMakingIntent

241[Clarified the HoleMakingIntent applies equally to pre-drilled and drilling/punching.]

2427.1.9
InsertingIntent

2447.1.10
LaminatingIntent

2447.1.11
LayoutIntent

244[added 1 attributes: FinishedGrainDirection, clarified Dimensions, FinishedDimensions, Pages and PageVariance, fixed 2 typos, 1 ISSUE, 1 ISSUE (eCommerce)]

2487.1.12
MediaIntent

248[added 10 attributes: CIETint, CIEWhiteness, CIEWhitenessStandard, GlossMeasurement, GrainDirection, MediaColorDetails, MediaColorMeasurement, MediaColorStandard, OpacityLevel, and RecycledPercentage, deprecated USWeight, and 6 clarifications: Brightness, Dimensions, Grade, MediaColor, Opacity, Weight. Added Disc to MediaType, added Continuous, ContinuousLong, and ContinuousShort to MediaUnit, added Coated and InkJet values to BackCoatings and FrontCoatings, added Translucent value to Opacity, added Uncalendared to Texture, deprecated Continuous, ContinuousLong, ContinuousShort, and Transparency in UserMediaType. Clarified why HoleType doesn't have a SystemSpecified value]

248New in JDF 1.2

2547.1.13
NumberingIntent

254[Changed SeparationSpec * to a refelement for consistency.]

2547.1.14
PackingIntent

2577.1.15
ProductionIntent

2587.1.16
ProofingIntent

258[Added 1 attribute: ImageViewingStrategy, added 2 values: GrayScale to ColorType and UseReference to ImageViewingStrategy, changed SeparationSpec * to a refelement for consistency, 1 clarification, 1 ISSUE, ISSUE (Digital Printing, O & P, and Color WGs)]

2607.1.17
ScreeningIntent

260New in JDF 1.2

260[added this new ScreeningIntent resource, with the following 3 attributes copied from ScreeningParams: DotSize, Frequency, ScreeningType, 1 ISSUE: OK to add the 3 attributes in a new ScreeingIntent, instead of ProductionIntent?]

2607.1.18
ShapeCuttingIntent

2617.1.19
SizeIntent

261Deprecated in JDF 1.1

2627.2
Process Resources

2627.2.1
Process Resource Template

262[Added 1 clarification]

2637.2.2
Address

2647.2.3
AdhesiveBindingParams

2657.2.4
ApprovalParams

2667.2.5
ApprovalSuccess

2667.2.6
AutomatedOverprintParams

266[added 2 clarifications]

2677.2.7
BlockPreparationParams

2677.2.8
BoxPackingParams

2687.2.9
BufferParams

2687.2.10
Bundle

268[Typo]

2707.2.11
ByteMap

2717.2.12
CaseMakingParams

2737.2.13
CasingInParams

2747.2.14
ChannelBindingParams

274[Added ReferenceEdge attribute.]

2767.2.15
CIELABMeasuringField

2777.2.16
CoilBindingParams

277[Added ReferenceEdge attribute.]

2777.2.17
CollectingParams

2787.2.18
Color

278[Clarified the Name attribute]

2817.2.19
ColorantAlias

281[Elevated from a subelement of ColorantControl to a top level resource, changed SeparationSpec + to a refelement for consistency, added 1 attribute: MappingSelection]

2827.2.20
ColorantControl

282[Elevated 2 subelements: ColorantAlias and DeviceNSpace to the top level elements and made them a refelement in ColorantControl, added SystemSpecified value to ProcessColorModel, changed SeparationSpec * and PDLResourceAlias to a refelement for consistency, clarified: ProcessColorModel, ColorPool, 2 ISSUES (Craig)]

2847.2.21
ColorControlStrip

2857.2.22
ColorCorrectionParams

285[added 7 attributes to ColorCorrectionOp sub-element: AdjustCyanRed, AdjustMagentaGreen, AdjustYellowBlue, AdjustConstrast, AdjustHue, AdjustLightness, AdjustSaturation, added 1 refelement to ColorCorrectionOp sub-element: FileSpec (FinalTargetDevice), 2 clarifizations: ColorManagementSystem, FileSpec (AbstractProfile), ISSUE (Publish ISSUE in JDF 1.2), ISSUE (Color WG), ACTION (Ann), ACTION (Rick)]

2887.2.23
ColorMeasurementConditions

2897.2.24
ColorPool

289[Added 1 clarification, 1 Resource referenced by: ColorSpaceConversionOP

2897.2.25
ColorSpaceConversionOp

289[Elevated ColorSpaceConversionOp to top level in its own section, so it can be referenced from ColorIntent and ColorSpaceConversionParams, added 2 attributes: RGBGray2BlackThreshold, and SourceRenderingIntent, added 4 refelements: ColorPool, DeviceNSpace, FileSpec (AbstractProfile), and SeparationSpec, added 6 values to SourceCS: CIEBased, CMY, DeviceN, ICCBased, Lab, Separation, YUV, clarified Operation attribute Untag value, and RGBGray2Black, SourceCS, and FileSpec, modified 2 attributes: RenderingIntent, RGBGray2Black, added 2 clarification tables]

2987.2.26
ColorSpaceConversionParams

298[Added a new FileSpec refelement with ResourceUsage = “ReferenceOutputProfile” to FileSpec as a separate choice from “ActualOutputProfile” that must be used in combination with a new ICCProfileSequence attribute, DEPRECATED the old FileSpec (FinalTargetDevice), elevated ColorSpaceConversionOp from a sub-element to a top level elemenet and changed 1 element to refelement: ColorSpaceConversionOp, clarified ColorManagementSystem and ColorSpaceConversionOp, ISSUE (Publish ISSUE in JDF 1.2), 2 ISSUE, ACTION (Ann)]

3047.2.27
ComChannel

3047.2.28
Company

3057.2.29
Component

3087.2.30
Contact

308[Added 1 new value, Approver, to ContactTypes.]

3097.2.31
ContactCopyParams

3097.2.32
ConventionalPrintingParams

309[Added ContinuousFed value to PrintingType.]

3127.2.33
CostCenter

3127.2.34
CoverApplicationParams

312[Changed CoverOffset to be optional. Added ReferenceEdge attribute.]

3147.2.35
CreasingParams

3157.2.36
CutBlock

3157.2.37
CutMark

3177.2.38
CuttingParams

3187.2.39
DBMergeParams

3187.2.40
DBRules

3197.2.41
DBSchema

3197.2.42
DBSelection

3197.2.43
DeliveryParams

3217.2.44
DensityMeasuringField

3217.2.45
DevelopingParams

3227.2.46
Device

3247.2.47
DeviceNSpace

324[Elevated DeviceNSpace from a subelement of ColorantControl to top level so it can be referenced from several resources, clarified the usage of DeviceNSpace, clarified SeparationSpec, changed SeparationSpec * to a refelement.]

3257.2.48
DigitalPrintingParams

325[Added 4 attributes: NonPrintableMarginBottom, NonPrintableMarginLeft, NonPrintableMarginRight, and NonPrintableMarginTop, added ContinuousFed value to PrintingType.]

325[Added 1 new value, MyMailbox, to OutputBin and clarified other values.]

3287.2.49
Disjointing

328[Clarified OffsetDirection 1 ISSUE, 1 ISSUE (Finishing WG)]

3297.2.50
DividingParams

3297.2.51
EmbossingParams

3317.2.52
Employee

3317.2.53
EndSheetGluingParams

3327.2.54
ExposedMedia

3337.2.55
FileSpec

3367.2.56
FitPolicy

336[Clarified the RotateOrthogonal value of the RotatePolicy attribute]

3377.2.57
Fold

3387.2.58
FoldingParams

338[Add ReferenceEdge attribute, ISSUE (Digital Printing), ISSUE (Finishing, DigitalPrinting WGs), 2 ISSUEs (Finishing WG), ISSUE: Need a real z-fold.]

3457.2.59
FontParams

3467.2.60
FontPolicy

3467.2.61
FormatConversionParams

3477.2.62
GatheringParams

3477.2.63
GlueApplication

3487.2.64
GluingParams

348[Added ReferenceEdge attribute.]

3497.2.65
GlueLine

3507.2.66
HeadBandApplicationParams

3517.2.67
Hole

3517.2.68
HoleLine

3537.2.69
HoleMakingParams

353[Changed HoleType attribute to be optional. Added SystemSpecified as a value for HoleType.]

3547.2.70
IdentificationField

3567.2.71
IDPrintingParams

3677.2.72
ImageCompressionParams

367[added 3 clarifications to ImageType attribute]

3697.2.73
ImageReplacementParams

3707.2.74
ImageSetterParams

3717.2.75
Ink

371[clarified ColorName and 1 value: ISO of Family]

3727.2.76
InkZoneCalculationParams

3737.2.77
InkZoneProfile

3737.2.78
InsertingParams

3747.2.79
InsertSheet

374[Added 1 new value: Duplicate, to SheetFormat. Added 3 new values: InterleavedBefore, SlipCopy, and SlipSet to SheetUsage. 1 ISSUE]

3787.2.80
InterpretedPDLData

3787.2.81
InterpretingParams

378[Added Economy and Fine values to PrintQuality, 2 ISSUES]

3807.2.82
JacketingParams

3817.2.83
JobField

381[Added Warnings value to ShowList]

3827.2.84
LabelingParams

3837.2.85
LaminatingParams

3847.2.86
Layout

3857.2.87
LayoutElement

385[Changed SeparationSpec * to a refelement for consistency, 1 ISSUE]

3877.2.88
LayoutPreparationParams

387[added 1 attribute: ImagePreScanStrategy, clarified 1 attribute: HorizontalCreep]

3987.2.89
LongitudinalRibbonOperationParams

3997.2.90
ManualLaborParams

4007.2.91
Media

400[added 10 attributes: CIETint, CIEWhiteness, CIEWhitenessStandard, DimensionName, GlossMeasurement, MediaColorMeasurement, MediaColorNameDetails, MediaColorStandard, OpacityLevel, and RecycledPercentage, deprecated ColorName, added Translucent value to Opacity attribute, added Coated and InkJet to BackCoatings and FrontCoatings, added SystemSpecified value to HoleType attribute, added Disc and Other value to MediaType, added Tractor to MediaTypeDetails, added Continuous, ContinuousLong, and ContinuousShort to MediaUnit, added Translucent value to Opacity, added Uncalendared value to Texture, deprecated Continuous, ContinuousLong, ContinuousShort, Paper, and Transparency in UserMediaType

4005 clarifications: Brightness, Dimension, Grade, Opacity, 3 ISSUES]

4087.2.92
MediaSource

4087.2.93
NumberingParams

4097.2.94
ObjectResolution

409[added 1 attribute: AntiAliasing]

4107.2.95
OrderingParams

4107.2.96
PackingParams

4117.2.97
PalletizingParams

4117.2.98
Pallet

4127.2.99
PDFToPSConversionParams

4157.2.100
PDLResourceAlias

4157.2.101
PerforatingParams

4167.2.102
Person

4167.2.103
PlaceHolderResource

4177.2.104
PlasticCombBindingParams

417[Added ReferenceEdge attribute.]

4187.2.105
PlateCopyParams

4187.2.106
PreflightAnalysis

4207.2.107
PreflightInventory

4217.2.108
PreflightProfile

4227.2.109
Preview

4237.2.110
PreviewGenerationParams

4247.2.111
ProofingParams

424Deprecated in JDF 1.2

424[1 ISSUE (O & P WG)]

4257.2.112
PSToPDFConversionParams

425[Corrected Input of processes]

4297.2.113
RegisterMark

429Changed SeparationSpec * to a refelement for consistency.

4297.2.114
RegisterRibbon

4317.2.115
RenderingParams

4317.2.116
ResourceDefinitionParams

4327.2.117
RingBindingParams

432[Added ReferenceEdge attribute.]

4347.2.118
RunList

434[Added EndOfBundleItem attribute.]

4387.2.119
SaddleStitchingParams

4397.2.120
ScanParams

4417.2.121
ScavengerArea

441Changed SeparationSpec * to a refelement for consistency.

4417.2.122
ScreeningParams

441[Added attributes: AngleSecondary, FrequencySecondary, FrequencySelection with 3 values: LowestFrequency, MiddleFrequency, HighestFrequency, SourceFrequencySecondary, SourceScreenMatching, added HybridAM-FM, HybridAM-FM, and HybridAMline-dot values to ScreeningType, removed vendor-specific values from ScreeningFamily, 7 clarifications: Angle, DotSize, Frequency, ScreeningFamily (moved ErrorDiffusion to ScreeningType), SourceFrequency, SpotFunction, 1 ISSUE]

4457.2.123
SeparationControlParams

4457.2.124
SeparationSpec

4467.2.125
ShapeCuttingParams

4467.2.126
Sheet

4477.2.127
ShrinkingParams

4487.2.128
SideSewingParams

4497.2.129
SpinePreparationParams

449[Changed MillingDepth to be optional. Added ReferenceEdge attribute.]

4517.2.130
SpineTapingParams

451[Added ReferenceEdge attribute.]

4537.2.131
StackingParams

4567.2.132
StitchingParams

456[2 clarifications]

4597.2.133
Strap

4597.2.134
StrappingParams

4607.2.135
StripBindingParams

460[Added ReferenceEdge attribute.]

4617.2.136
Surface

4677.2.137
ThreadSealingParams

467[Changed ThreadPositons, ThreadLength, and ThreadStitchWidth to be optional. Added ReferenceEdge attribute.]

4687.2.138
ThreadSewingParams

468[Changed GlueLineRefSheets and NumberOfNeedles to be optional. Added ReferenceEdge attribute.]

4707.2.139
Tile

4707.2.140
Tool

4717.2.141
TransferCurve

4717.2.142
TransferCurvePool

471[added 1 “Input of processes”: DigitalPrinting]

4727.2.143
TransferFunctionControl

4727.2.144
TrappingDetails

472[added 1 value: 2001 to TrappingType, changed SeparationSpec * to a refelement for consistency, 2 clarifications: IgnoreFileParams, Trapping, 2 Input of processes: RIP’ing, Trapping, 1 ISSUE]

473Deprecated in JDF 1.2

4737.2.145
TrappingParams

473[added 2 attributes: TrapWidthFast, TrapWidthSlow, 2 clarifications, 1 ISSUEs (Digital Printing WG)]

4777.2.146
TrapRegion

4777.2.147
TrimmingParams

477[ISSUE: Why not make TrimmingType be OPTIONAL, so that TrimmingParams could be OPTIONAL for the Trimming process or even simpler, remove TrimmingType altogether, since it has only two values: Detailed and SystemSpecified?]

4797.2.148
VerificationParams

4797.2.149
WireCombBindingParams

479[Added ReferenceEdge attribute.]

4807.2.150
WrappingParams

4817.3
Device Capability Definitions

4817.3.1
Structure of the DeviceCap Subelement

4827.3.2
Structure of the Performance Subelement

4827.3.3
Structure of the DevCaps Subelement

4837.3.4
Structure of the DevCap Subelement

4847.3.5
Structure of the Abstract State Subelement

4847.3.5.1
Structure of the BooleanState Subelement

4857.3.5.2
Structure of the EnumerationState Subelement

4857.3.5.3
Structure of the IntegerState Subelement

4867.3.5.4
Structure of the MatrixState Subelement

4867.3.5.5
Structure of the NameState Subelement

4867.3.5.6
Structure of the NumberState Subelement

4877.3.5.7
Structure of the ShapeState Subelement

4877.3.5.8
Structure of the StringState Subelement

4887.3.5.9
Structure of the XYPairState Subelement

4887.3.6
Examples of Device Capabilities

491Chapter 8
Building a System Around JDF

4918.1
Implementation Considerations and Guidelines

4918.2
JDF and JMF Interchange Protocol

4918.2.1
File-Based Protocol (JDF only)

4918.2.2
HTTP-Based Protocol (JDF + JMF)

4918.2.3
Protocol Implementation Details

4918.2.4
MIME Types and File Extensions

4928.3
MIS Requirements

493Appendix A
Encoding

493A.1
XML Schema Data Types

493[Added examples to language, clarified ID, 1 ISSUE]

494A.2
JDF Data Types

494A.2.1
CMYKColor

495A.2.2
DurationRange

495A.2.3
IntegerList

495A.2.4
IntegerRange

495A.2.5
IntegerRangeList

495A.2.6
LabColor

496A.2.7
Matrix

496A.2.8
NamedColor

496[added 3 values: Cyan, Magenta, SystemSpecified, Clarifiied that the list is a close-end list. ACTION (Jim): Alphabetize the names]

497A.2.9
NameRange

497A.2.10
NameRangeList

497A.2.11
NumberList

498A.2.12
NumberRange

498A.2.13
NumberRangeList

498A.2.14
Path

498A.2.15
Rectangle

498A.2.16
shape

499A.2.17
ShapeRange

499A.2.18
ShapeRangeList

499A.2.19
sRGBColor

499A.2.20
TimeRange

499A.2.21
TransferFunction

500A.2.22
XYPair

500A.2.23
XYPairRange

500A.2.24
XYPairRangeList

500A.3
JDF Data Structures

500A.3.1
Links

501A.4
JDF File Formats

501A.4.1
MIME File Packaging

501A 4.1.1
MIME Basics

501A 4.1.2
MIME Fields

502A 4.1.3
CID URL scheme

502A 4.1.4
JDF Agent Requirements

502A.4.2
HTTP 1.0 Field

502A.4.3
PNG Image Format

504Appendix B
Schema

504[ISSUE: Add additional information about what is in the spec but is not in the Schema. For example, NMTOKEN values aren't in the Schema, while enumeration values are]

505Appendix C
Converting PJTF to JDF

505C.1
PJTF Object Conversion

505C.1.1
Accounting

505C.1.2
Address

505C.1.3
Analysis

505C.1.4
AuditObject

505C.1.5
ColorantAlias

505C.1.6
ColorantControl

505C.1.7
ColorantDetails

506C.1.8
ColorantZoneDetails

506C.1.9
ColorSpaceSubstitute

506C.1.10
Delivery

506C.1.11
DeviceColorant

506C.1.12
Document

507C.1.13
Finishing

507C.1.14
FontPolicy

507C.1.15
InsertPage

507C.1.16
InsertSheet

508C.1.17
Inventory

508C.1.18
JobTicket

508C.1.19
JobTicketContents

509C.1.20
JTFile

509C.1.21
Layout

509C.1.22
Media

510C.1.23
MediaSource

510C.1.24
MediaUsage

510C.1.25
PageRange

511C.1.26
PlacedObject

511C.1.27
PlaneOrder

511C.1.28
Preflight

511C.1.29
PreflightConstraint

512C.1.30
PreflightDetail

512C.1.31
PreflightInstance

512C.1.32
PreflightInstanceDetail

512C.1.33
PreflightResults

512C.1.34
PrintLayout

512C.1.35
Profile

512C.1.36
Rendering

512C.1.37
ResourceAlias

513C.1.38
Scheduling

513C.1.39
Signature

513C.2
Sheet

513C.2.1
SlipSheet

513C.2.2
Surface

513C.2.3
Tile

513C.2.4
Trapping

513C.2.5
TrappingDetails

513C.2.6
TrappingParameters

513C.2.7
TrapRegion

513C.3
Translating Values

514C.4
Translating the Contents Hierarchy

514C.5
Representing Pages

514C.6
Representing Preseparated Documents

515C.7
Representing Inherited Characteristics

515C.8
Translating Layout

515C.9
Translating PrintLayout

515C.10
Translating Trapping

517Appendix D
Converting PPF to JDF

518D.1
Converting PPF Data Types

518D.2
PPF Product Definitions

519D.2.1
Comparison of the PPF Component to the JDF Component

519D.2.2
Collecting

519D.2.3
Gathering

519D.2.4
ThreadSewing

520D.2.5
SaddleStitching

520D.2.6
Stitching

520D.2.7
SideSewing

520D.2.8
EndSheetGluing

520D.2.9
AdhesiveBinding

521D.2.10
Trimming

521D.2.11
GluingIn

522D.2.12
Folding

523D.3
PPF Sheet Structure

524D.3.1
Administration Data

526D.3.2
Preview Images

527D.3.3
Transfer Curves

527D.3.4
Register Marks

527D.3.5
Color and Ink Control

528D.3.6
Cutting Data

529D.3.7
Folding Data

529D.3.8
Comments and Annotations

529D.3.9
Private Data and Content

530Appendix E
Modeling IfraTrack in JDF

530E.1
IFRA Objects and JDF Nodes

530E.1.1
Object Identification

530E.1.2
IFRA Object Hierarchy

530E.1.3
Object States

531E.1.4
Deadlines and Scheduling

531E.2
JMF Messages that Translate IfraTrack Messages

532Appendix F
Mapping between JDF and IPP

532F.1
IPP References

533Appendix G
StatusDetails Supported Strings

536Appendix H
ModuleType Supported Strings

537Appendix I
Supported Error Codes in JMF

538Appendix J
NotificationDetails

538J.1
Predefined NotificationDetails

538J.1.1
Barcode

538J.1.2
FCNKey

538J.1.3
SystemTimeSet

538J.1.4
CounterReset

538J.1.5
Error

539Appendix K
Examples

539K.1
Brief Example

539K.1.1
Before Processing

539K.1.2
After Processing

540K.2
Product JDF

541K.3
Spawning and Merging

541K.3.1
Example 2 Component JDF before Spawning

542K.3.2
Example 2 Component JDF Parent after spawning the cover node

543K.3.3
Example 2 Component JDF spawned node

543K.3.4
Example 2 Component JDF after merging

544K.3.5
Example of a Partitioned ImageSetting Node before Spawning

545K.3.6
The Spawned Cyan Partition of the ImageSetting Node

545K.3.7
The Root Partitioned ImageSetting Node after Spawning

546K.3.8
The Merged ImageSetting Node

547K.4
Conversion of PJTF to JDF

547K.4.1
PJTF input

549K.4.2
JDF output

550K.5
Conversion of PPF to JDF

555K.6
Runlist

557K.7
Messages

557K.7.1
Simple KnownMessages

558K.7.2
Simple persistent channel

559Appendix L
JDF/CIP4 Hole Pattern Catalog

566Appendix M
North American Media Weight Explained

566New in JDF 1.2

568Appendix N
New, Deprecated, Modified, Illegal, and Removed Items

568N.1
New Items

568[ACTION (Jim): Add the JDF/1.2 new items]

568N.2
Deprecated Items

568[ACTION (Jim): Add the deprecated items from JDF/1.2.]

573N.3
Modified Items

573[ACTION (Jim): Add the Modified items for JDF/1.2]

573N.4
Illegal Items

573N.5
Removed Items

573N.6
New/Modified Attributes and Elements

573[ACTION (Jim): Add the New/Modified Attributes and Elements]

573N.6.1
Structure of JDF Nodes and Jobs

576N.6.2
JDF Messaging with the Job Messaging Format

577N.6.3
Processes

579N.6.4
Resources

593Appendix O
Table of Tables

598Appendix P
Terminology Usage

601Appendix Q
Errata

Table of Figures

14Figure 2.1 Example of JDF and JMF workflow interactions

15Figure 2.2 JDF tree structure

17Figure 2.3 Example of a hierarchical tree structure of JDF nodes

18Figure 2.4 Example of a process chain linked by input and output resources

19Figure 2.5 Standard coordinate system

26Figure 2.6 Examples of Transformations and Coordinate Systems in JDF.

28Figure 2.7 Transforming a point (example)

30Figure 3.1 Structure of the JDF Node

33Figure 3.2 Structure of JDF Generic Contents

38Figure 3.3 Job hierarchy with process, process group, and product intent nodes

48Figure 3.4 Structure of the abstract resource types

53Figure 3.5 Resource Links and ResourceRefs

53Figure 3.6 Nodes linked by a resource

54Figure 3.7 Structure of the abstract ResourceLink types

74Figure 3.8 Splitting and combining physical resources

76Figure 3.9 Structure of Audit element types derived from the abstract Audit type

92Figure 4.1 Simplified PrintTalk workflow (negotiation phase)

94Figure 4.2 Life Cycle of a JDF node

96Figure 4.3 Example of a simple process chain linked by resources

97Figure 4.4 Example of a Pipe resource linking two processes

98Figure4.5 Example of status transitions in case of overlapping processing

102Figure 4.6 The spawning and merging mechanism and its phases

104Figure 4.7 JDF node structure that requires resource copying during spawning and merging

106Figure 4.8 Example for a JDF node structure with nested spawning

107Figure 4.9 Example of the spawning and merging of independent jobs

111Figure 4.10 Parameter Space in device Capabilities

113Figure 5.1 Contents of a JMF root element and the message families

114Figure 5.2 Interaction of Messages with a subscription

119Figure 5.3 Interaction of Command and Acknowledge Messages

142Figure 5.4 Mechanism of a PipePull message

144Figure 5.5 Mechanism of a PipePush message

153Figure 5.6 Effects of the global queue messages on the queue Status

170Figure 6.1 Worst case scenario for area coverage calculation

200Figure 6.2 Packaging Process Coordinate System

265Figure 7.1 Parameters and coordinate system for glue application

272Figure 7.2 CaseMakingParams

274Figure 7.3 Parameters and Coordinate System for CasingIn

275Figure 7.4 Parameters used for channel binding

278Figure 7.5 Coordinate systems used for collecting

306Figure 7.6 Terms and definitions for components

314Figure 7.7 Parameters and coordinate system for cover application

317Figure 7.8 Cut mark types

332Figure 7.9 Parameters and coordinate system used for end-sheet gluing

338Figure 7.10 Names of the reference edges of a sheet in the FoldingParams resource

342Figure 7.11 Fold Catalog part 1

343Figure 7.12 Fold Catalog part 2

347Figure 7.13 Coordinate system used for gathering

348Figure 7.14 Parameters and coordinate system for glue application

374Figure 7.15 Parameters and Coordinate system used for Inserting

381Figure 7.16 Parameters and Coordinate System for Jacketing

430Figure 7.17Parameters and Coordinate System for BlockPreparation

439Figure 7.18 Staple shapes

448Figure 7.19 Parameters and coordinate system used for side sewing

451Figure 7.20 Parameters and coordinate systems for the SpinePreparation process

453Figure 7.21 Parameters and coordinate system for the SpineTaping process

456Figure 7.22 Staple shapes

457Figure 7.23 Parameters and coordinate system used for saddle stitching

457Figure 7.24 Parameters and coordinate system used for stitching

468Figure 7.25 Parameters and coordinate system used for thread sewing

468Figure 7.26 Parameters and coordinate system used for side sewing

478Figure 7.27 Parameters and coordinate system used for trimming

517Figure D.8.1 JDF node of a CIP3 product structure

524Figure D.8.2 JDF representation of sheets

Chapter 1 Introduction

This document defines the technical specification for the Job Definition Format (JDF) and its counterpart, the Job Messaging Format (JMF). We will describe the components of JDF, both internal and external, and explain how to integrate the format components to create a viable workflow. Ancillary aspects are also introduced, such as how to convert PJTF or PPF to JDF, and how JDF relates to IfraTrack. It is intended for use by programmers and systems integrators for operations addressed by the International Cooperation for Integration of Processes in Prepress, Press and Postpress (CIP4). In this first chapter, we present the concept of JDF, how to use this document and some basic document navigational aids.

1.1 Background on JDF

JDF is an extensible, XML-based format built upon the existing technologies of CIP3’s Print Production Format (PPF) and Adobe’s Portable Job Ticket Format (PJTF). It provides three primary benefits to the printing industry: 1.) the ability to unify the prepress, press, and postpress aspects of any printing job, unlike any previous format; 2.) the means to bridge the communication gap between production services and Management Information Systems (MIS); and 3.) the ability to carry out both of these functions no matter what system architecture is already in place, and no matter what tools are being used to complete the job. In short, JDF is extremely versatile and comprehensive.

JDF is an interchange data format to be used by a system of administrative and implementation-oriented components, which together produce printed products. It provides the means to describe print jobs in terms of the products eventually to be created, as well as in terms of the processes needed to create those products. The format provides a mechanism to explicitly specify the controls needed by each process, which may be specific to the devices that will execute the processes.

JDF works in tandem with a counterpart format known as the Job Messaging Format, or JMF. JMF provides the means for production components of a JDF workflow to communicate with system controllers and administrative components. It relays information about the progress of JDF jobs and gives MIS the active ability to query devices about the status of processes being executed or getting ready to be executed. JMF will provide the complete job tracking functionality that is defined by IfraTrack messaging standard. Depending on the system architecture, JMF may also provide the means to control certain aspects of these processes directly.

JDF and JMF are maintained and developed by CIP4 (http://www.cip4.org). They were originally developed by four companies prominent in the graphic arts industry—Adobe, Agfa, Heidelberg, and MAN Roland, with significant contributions provided by CIP3, the IfraTrack working group, Fraunhofer IGD and the PrintTalk consortium.

1.2 Document References

[2 ISSUEs (Ann), ACTION (Jim)]
ACTION (Jim): Replace the URL references and “See <Document Title>” throughout this spec to symbolic references inside square brackets so that section 1.2 will be the only place that has the URLs and the full title of the referenced document. Then references can be updated to later versions by only changing this section. In order to take up less room, since JDF needs many more references, you may want to consider putting the reference material as a single paragraph of text, such as in a bibliographic reference section, rather than separate lines. Make such references as hot links to this section.

Throughout this specification, references to other documents are indicated by short symbolic names inside square brackets, for example: [ICC.1]. Implementers must read and conform to such referenced documents when implementing a part of this specification with such a reference. The reader is directed to this Document References section to find the full title, date, source, and availability of all such references. In addition, this specification assumes that the reader has a basic awareness of, or access to, the following documents that are flagged with *:
	[iana-mt]
	IANA Registry of MIME Media Types, Available: http://www.iana.org/assignments/media-types

	[iana-os]
	IANA Registry of Operating System Names, Available: http://www.iana.org/assignments/operating-system-names

	[CCIR601-2]
	CCIR Recommendation 601-2, ENCODING PARAMETERS OF DIGITAL TELEVISION FOR STUDIOS, 1990, Volume XI - Part 1, Broadcasting Service (Television), pp 95-104, Published by: International Telecommunication Union, General Secretariat - Sales Section, Place des Nations, CH-1211 Geneva 20 (Switzerland), Recommendations of the CCIR, 1990

	[ICC.1] *
	Specification ICC.1:1998-09

File Format for Color Profiles

Version 3.5
Date:
1998

Produced by:
 International Color Consortium

Available at:
http://www.color.org/ICC-1_1998-09.PDF
Superseded by:
Specification ICC.1:2001-04, "File Format for Color Profiles", 2001, Produced by: International Color Consortium (ICC), Available at: .http://www.color.org/ICC_Minor_Revision_for_Web.pdf. ISSUE (Ann): Need later version.

	[ieee1284]
	IEEE 1284-2000 IEEE Standard Signaling Method for a Bi-directional Parallel Peripheral Interface for Personal Computers. Available at: http://standards.ieee.org/catalog/olis/busarch.html

	[ifra]
	IfraTrack Specification, IFRA Special Report 6.21.2, Version 2.0, June-1998, Produced by IFRA, Available at: http://www.ifra.com/

	[iso12647-2]
	ISO 12647-2:1996, Graphic technology -- Process control for the manufacture of
half-tone colour separations, proof and production prints -- Part 2: Offset lithographic processes

	[japancolor]
	Japan Color 2001, Version ???, 2001, Publication of the Japan Printing Machinery Manufacturers Assocation, Office of JNC for TC130. Available for purchase at: (81) 03-3434-4661 ISSUE (Ann): Need later version.

	[pdf]
	Portable Job Ticket Format

Version 1.1

Date:
2-April-1999

Produced by Adobe Systems Inc.

Available at:
http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf

	[ppf]
	Print Production Format

Version 3.0

Date:
2-June-1998

Produced by the International Cooperation for Integration of Prepress, Press, and Postpress

Available at:
http://www.cip4.org/documents/technical_info/cip3v3_0.pdf

	[PrintTalk]
	PrintTalk Implementation

Version 1.0

Produced by:
PrintTalk Consortium

Available at:
http://www.printtalk.org/

	[ps]
	PostScript Redbook, Version ???, Date:
???, Produced by Adobe Systems Inc., Available at: http://partners.adobe.com/ ???.pdf

	[rfc1738]
	T. Berners-Lee, L. Masinter, M., McCahill, “Uniform Resource Locators (URL)”, December 1994.

	[upnp]
	Microsoft Universal Plug N Play Basic Print Servie, Version 1.0, August 13, 2002. Produced by the Microsoft Universal Plug N Play Forum (http://www.upnp.org) Available at: http://www.upnp.org/standardizeddcps/printer.asp

	[xml] *
	XML Specification

Version 1.0 (Second Edition)
Date:
6 October 2000
Produced by: World Wide Web Consortium (W3C)

Available at:
http://www.w3.org/TR/REC-xml

	[xmlschema] *
	XML Schema Part 0+1+2: Primer, Structures and Datatypes

Version (W3C Recommendation of 02 May 2001)

Date:
02-May-2001

Produced by: World Wide Web Consortium (W3C) XML Schema working group

Available at:
http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/

	
	

	
	

	
	

1.3 Conventions Used in This Specification

This section contains conventions and notations used within this document.
1.3.1 Call-Outs

New in JDF 1.2
To help the reader familiar with JDF/1.0 or JDF/1.1, this specification indicates additions, deprecations, and clarifications using the following call-outs:
	New in JDF 1.2
	New sections, attributes/elements, and attribute values

	Deprecated in JDF 1.2
	Deprecated sections, attributes/elements, and attribute values

	Modified in JDF 1.2
	Changed syntax or semantics of sections and attributes/elements, may include clarification as well.

	Clarified in JDF 1.2
	Clarified sections or attributes.

1.3.2 Text Styles

The following text styles are used to identify the components of a JDF job:

· Elements are written in sans serif. Examples are: Comment, CustomerInfo, and ResourceLinks.

· Attributes are written in italic sans serif. Examples are: Status, ResourceID, and ID.

· Resources are written in bold sans serif. Examples are ImpositionProof, Toner, and ExposedMedia.
· Processes are written in bold-italic sans serif. Examples are ColorSpaceConversion, Rendering, and Scanning.

· [image: image120.jpg]

Enumerative and boolean values of attributes are written in italics. Examples are: true, Waiting, Completed, and Stopped.

· Standard bold text is used for the following purposes:

· to highlight glossary items. Examples are device, element, and job.

· to highlight defined items inside a table. An example is the data type NMTOKEN in the table in Section 1.4 Data Structures.

· to highlight definitions of local terms. These are terms that are of local importance for a certain chapter, or some sections inside a chapter. An example is a spawned job in Section 4.4 Spawning and Merging.

· to designate PPF objects in Appendix D, Converting PPF to JDF. Examples are CIP3ProductName and CIP3ProductComponent.

· For the benefit of those who are reading this document in PDF or online, cross-reference links are denoted by gray text. Examples are Chapter 6 Processes, and Section 1.2 Conventions Used in This Specification. To follow a link, click the highlighted text. The examples provided are not actual links.

· Also for the benefit of online readers, external hyperlinks are graphically designated. An example is http://URL.com. To follow a link, click the highlighted text. The example provided is not an actual link.

1.3.3 Specification of Cardinality

The cardinality of JDF Data Types is expressed using a simple Extended Backus-Naur Form (EBNF) notation. The symbols in this notation may be combined to indicate both simple and complex patterns, as demonstrated in the following table. A and B represent simple expressions.

	Notation
	Description

	(expression)
	Expression is treated as a unit and may be combined as described in this list.

	A
	Matches A. A must occur exactly one time.

	A ?
	Matches A or nothing. A is optional, or is required only in the circumstances explained in the description field.

	A +
	Matches one or more occurrences of A.

	A *
	Matches zero or more occurrences of A.

1.4 Glossary of Terminology

[Added term: Slave Controller]
The following terms are defined as they are used throughout this specification. For more detail on job and workflow components, see Section 2.1 System Components. To locate the sections that explain these terms in more detail see Appendix P - Terminology Usage.

	Term
	Definition

	Agent
	The component of a JDF-based workflow that writes JDF.

	Attribute
	An XML-based syntactic construct describing an unstructured characteristic of a JDF node or element.

	Big job
	The combined job that independent jobs are merged into in the case of independent spawning and merging.

	Class
	A set of complex data types with common content in an object-oriented sense. A complex data type may consist of elements and attributes.

	Controller
	The component of a JDF-based workflow that initiates devices, routes JDF, and communicates status information.

	Default
	Used to indicate the attribute value that a JDF Consumer must use if an Agent omits an Optional attribute (as indicated by a "?" in this spec) from a JDF instance. See Section 1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values.

	Deprecated
	Indicates that a JDF element is being phased out of JDF usually in favor of newer JDF element(s). It is recommended that an Agent not include such a JDF element in a JDF instance unless targeting a Consumer that only supports lower JDF versions.
Such an indicated JDF element may be removed from a future version of the JDF specification. JDF Consumers should only support such JDF elements for backward compatibility with previous versions of JDF. Deprecated items are flagged with Deprecated in JDF 1.1 and
Deprecated in JDF 1.2 in this specification.

	Device
	The component of a JDF workflow part that interprets JDF and executes the instructions. Devices control machines in a proprietary manner.

	Document set
	A set of instance documents presumed to be related.

	Element
	An XML-based syntactic construct describing structured data in JDF.

	Finished page
	A finished page is a page of a final product with no fold inside. The folds of the finished product for packaging, e.g., folding letters into an envelope, have no effect on the finished page definition. A sheet of paper with no fold inside consists of two finished pages (front and back side). If there are folds seen in a sheet in the final product, the number of finished pages of one sheet is given by 2*(X+1)*(Y+1), where X denotes the number of folds in X direction and Y denotes the number of folds in Y direction, each seen in the completely opened sheet. Examples: One sheet in a book has two finished pages, one front, one back; a brochure with one fold inside has four finished pages.

	Instance document
	A document that is part of the output of a job. This generally refers to personalized printing jobs. Each of the individual documents produced from the same input template is referred to as an instance document. For example, in a credit card statement run, each statement is an instance document.

	JDF consumer
	A Device, Controller, Process, Queue or Agent that consumes JDF instances

	JMF
	Job Messaging Format. A communication format with multi-level capabilities. Structures information between MIS and controllers.

	Job
	A hierarchical tree structure comprised of nodes. Describes the output that is desired by a customer.

	Job part
	One or more nodes which comprise the smallest level of control of interest to MIS.

	Link
	A pointer to information that is located elsewhere in a JDF document or that is located in another document.

	Machine
	The part of a device that does not know JDF and is controlled by a JDF device in a proprietary manner.

	MIS
	Management Information Systems. The functional part of a JDF workflow that oversees all processes and communication between system components and system control.

	Node
	The JDF element type detailing the resources and process specification required to produce a final or intermediate product or resource.

	Partitioned resource
	Structured resource that represents multiple physical or logical entities, such as separated plates.

	PDL
	Page Description Language. A generic term for any language that describes pages, which may be printed. Examples are PDF®, PostScript® or PCL®.

	Process
	An individual step in the workflow.

	Queue
	Entity that accepts job entries via a JMF messaging system.

	Reader page
	A reader page is a logical page as perceived by a reader, for example one RunList entry. One reader page may span more than one finished page, e.g,. a centerfold. One finished page may contain contents defined by multiple reader pages, e.g., NUp imposition. Reader pages are defined independent of finished pages.

	Resource
	A physical or conceptual entity that is modified or used by a node. Examples include paper, images, or process parameters.

	Slave Controller
	The component of a JDF workflow that accepts JDF as a Device from other Controllers and/or Slave Controllers and sends JDF to other Slave Controllers and/or Devices.

	Small job
	An independent job that is merged into a big job.

	Support
	A JDF Consumer supports a JDF syntactic construct (processes, resources, elements, attributes, and attribute values) if the JDF Consumer performs the action defined in this specification for the JDF construct when consuming a JDF instance that includes the JDF syntactic construct. If the Machine that a Device is representing supports a feature which is represented by a JDF construct, then the Device should support that JDF syntactic construct.

	Tag
	A syntactic construct that marks the start or end of an element.

	Work center
	An organizational unit, such as a department or a subcontracting company, that can accomplish a task.

1.4.1 Conformance Terminology

The words “must”, “must not”, “required”, “should”, “should not”, “recommended”, “may”, and “optional” are used in this specification to define a requirement for the indicated Agent or the indicated JDF Consumer as follows:

Table 1‑1 Conformance Terminology

	Term
	Meaning

	Must,

Required
	Mean that the definition is an absolute requirement of the specification.

	Must not
	Means that the definition is an absolute prohibition of the specification.

	Should,

Recommended
	Mean that there may exist valid reasons in particular circumstances for an implementer to ignore a particular item, but the implementer must fully understand the implications and carefully weigh the alternatives before choosing a different course.

	Should not,

Not recommended
	Mean that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the implementer should fully understand the implications and then carefully weigh the alternatives before implementing any behavior described with this label.

	May,

Optional
	Mean that an item is truly optional. Unless specified otherwise, the word “optional” refers to JDF syntax, i.e., what an Agent may include in a JDF instance, and does not refer to a JDF Consumer option, i.e., not to what a JDF Consumer may support. If a JDF Consumer is using a JDF parser, that parser will supply the default values indicated in this specification, if any, for optional attributes that the Agent has omitted (indicated by “?” in this specification.) See Section 1.3.3 Specification of Cardinality.

For features that are optional for a JDF Consumer to support, one vendor may choose to support such an item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit support of that item. Similarly, one vendor of an Agent may choose to supply such an item in a JDF instance, while another vendor may omit the same item in a JDF instance. A JDF Consumer implementation which does not include support of a particular option (attribute or element)
must be prepared to interoperate with an Agent implementation which does supply the option, though with reduced functionality. In the same vein, a JDF Consumer implementation which does include support for a particular option must be prepared to interoperate with an Agent implementation which does not supply the option in the JDF instance.

Note: There is no corresponding “may not” or “need not” term for something that an implementation may optionally omit or optionally not perform. The term “may not” sounds more like a prohibition. Also, it is better form to put the requirement into a positive statement. For example, instead of saying that an Agent need not include an attribute that this specification indicates with a “?” character, it is better to say that a JDF produce may omit an attribute in a JDF instance that this specification indicates with a “?” character.

1.4.2 Conformance Requirements for JDF Entities

The subsections of this section define the general conformance requirements for the JDF entities: 1.) attributes and attribute values, 2.) resources, 3.) processes, and 4.) combined processes.

1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values

If a JDF Consumer supports an attribute, it must support all of the values that this specification indicates are required for a JDF Consumer to support (whether or not the attribute is required for the Agent to supply in that context). If this specification is silent on which values are required for support of an attribute, then the JDF Consumer must support at least one value in order to claim support for the attribute.

Attributes that are optional for an Agent to include in a JDF instance are indicated by a "?" character following the attribute name as indicated in Section 1.3.3 Specification of Cardinality. In the description of most optional attributes there is a "Default = ..." statement that indicates the default value that a JDF Consumer must use if the Agent omits the optional attribute from a supplied resource in a JDF instance. Such an indicated default value must have the same semantic meaning as if an Agent includes the attribute in the JDF instance with the same value. If the indicated default value is the special SystemSpecified value or is indicated as "system specified", then the JDF Consumer must provide an actual value that depends on the implementation of the JDF Consumer and which may be configurable by a system administrator. If an optional attribute does not have a default value indicated in its description and the JDF instance does not include the attribute, then the JDF Consumer must supply a system-specified value.
1.4.2.2 Conformance Requirements for Support of Resources

If a JDF Consumer supports a resource, it:

1. must support all of the attributes (see Section 1.4.2.1) defined for that resource that an Agent is required to include in the resource instance (attributes with either no marks or a “+”), and – see section 1.3.3), and

2. must support the JDF:SettingsPolicy (see section 3.1.2), JDFResource:SettingsPolicy (see section 3.7), JDF: BestEffortExceptions, JDF:MustHonorExceptions, and JDF:OperatorInterventionExceptions (see section 3.1.1) attributes and all of their defined values. These attributes control the policy that a JDF Consumer must follow when it encounters unsupported settings, i.e., subelements, attributes or attribute values in the resource.

1.4.2.3 Conformance Requirements for Support of Processes

All processes are optional for a JDF Consumer to support. However, a Device must support at least one process or a combined process. If a JDF Consumer supports a process, it:

1. must support all of the input and output resources as described in Section 1.4.2.2 that this specification defines for that process and

2. may make its own assumptions regarding attributes and subelements of an optional input resource (resources with either a “?” or an “*” – see section 1.3.3) that an Agent has omitted from the process in the JDF instance. Therefore, default attribute values defined in this specification are not guaranteed when the Agent omits the resource from the process in the JDF instance (see section 6.1 Process Template).

3. must find the processes that it supports in a JDF instance and must ignore all other processes, independent of the SettingsPolicy attribute for those other processes.

1.4.2.4 Conformance Requirements for Support of Combined Processes

All combined processes are optional for a JDF Consumer to support. If a JDF Consumer supports a combined process, it:

1. must support all of the input resources as defined in Section 1.4.2.2 that this specification defines for the first process in the combined process node, i.e., the first process listed in the Types attribute, and

2. must support all of the output resources as defined in Section 1.4.2.2 that this specification defines for the last process in the combined process.

3. may support resources that are used as exchange resources between processes in the process chain of the combined process, i.e., resources that are both produced and consumed within the combined node.

4. must support resources in intermediate process steps that are not used as exchange resources between processes in the process chain of the combined process.

5. may make its own assumptions regarding attributes and subelements of an optional input resource that an Agent has omitted from the combined process in the JDF instance. Therefore, default attribute values defined in this specification are not guaranteed when the Agent omits the resource from the combined process in the JDF instance (see section 6.1 Process Template).

6. must search a JDF instance and find the combined process nodes that exactly match what it supports, i.e., that match the value list of the Types attribute, and must ignore all other process nodes, independent of the SettingsPolicy attribute for those other processes.

1.5 Data Structures

[Added references to [rfc1738] for the “file:” URL scheme.]
The following table describes the data structures as they are used in this specification. For more details on JDF Schema and Datatypes, see Appendix A Encoding.

Table 1‑2 JDF data types

	Data Type
	Description

	boolean
	Binary-valued logic: (true | false).

	CMYKColor
	Represents a CMYK color specification.

	date
	Represents a time period that starts at midnight of a specified day and lasts for 24 hours.

	dateTime
	Represents a specific instant of time. It must be a UTC-time or a local time that includes the time zone.

	double
	Corresponds to IEEE double-precision, 64-bit floating point type

	duration
	Represents a duration of time.

	DurationRange
	DurationRange is used to describe a range of time durations. More specifically, it describes a time span that has a relative start and end.

	element
	Structured data. The specific data type is defined by the element name.

	enumeration
	Limited set of NMTOKEN (see below).

	enumerations
	Whitespace-separated list of enumeration data types.

	gYearMonth
	Represents a specific gregorian month in a specific gregorian year.

	hexBinary
	Represents arbitrary hex encoded binary data.

	ID
	Unique identifier as defined by [XML Specification 1.0] (see Section 1.2 Document References). Must be unique within the scope of the JDF-document.

	IDREF
	Reference to an element holding the unique identifier as defined by [XML Specification 1.0].

	IDREFS
	List of references (IDREFs) separated by white spaces as defined by [XML Specification 1.0].

	integer
	Represents numerical integer values.

	IntegerList
	Whitespace-separated list of integers.

	IntegerRange
	Two integers separated by a “~” character that define a closed interval .

	IntegerRangeList
	Whitespace-separated list of integers and IntegerRanges.

	LabColor
	Represents a Lab color specification.

	language
	Represents a language and country code (for example, en-US) for a natural language.

	matrix
	Whitespace-separated list of 6 numbers representing a coordinate transformation matrix.

	NamedColor
	Represents a color definition by name. A list of valid NamedColor values is provided in Appendix A.2.8.

	NameRange
	Two NMTOKEN separated by a “~” character that define an interval of NMTOKEN.

	NameRangeList
	Whitespace-separated list of NMTOKEN and NameRanges.

	NMTOKEN
	A continuous sequence of special characters as defined by the [XML Specification 1.0].

	NMTOKENS
	Whitespace-separated list of NMTOKEN.

	number
	double or integer

	NumberList
	Whitespace separated list of numbers.

	NumberRange
	Two numbers separated by a “~” (tilde) character that defines the closed interval of the two.

	NumberRangeList
	Whitespace-separated list of NumberRanges

	path
	Whitespace-separated list of path operators as defined in PDF.

	rectangle
	Whitespace-separated list of 4 numbers representing a rectangle.

	refelement
	element or a reference to an element. Used to define candidates for inter-resource linking in resources.

	shape
	Whitespace-separated list of 3 numbers representing a 3-dimensional shape consisting of a width, height, and length. Unless specified otherwise in the attribute Description, these three numbers are an X-dimension, a Y-dimension, and a Z-dimension, respectively.

	ShapeRange
	Two Shapes separated by a “~” (tilde) character that defines a 3-dimensional box bounded by x1 y1 z1~ x2 y2 z2.

	ShapeRangeList
	Whitespace-separated list of shapes or ShapeRanges.

	sRGBColor
	Represents an sRGB color specification.

	string
	Character strings without line feed.

	telem
	Text elements that contain larger chunks of character data and may include line feeds.

	text
	Text data contained in a telem (text element).

	TimeRange
	Two dateTimes separated by a “~” (tilde) character that defines the closed interval of the two. TimeRange corresponds semantically to the time interval (two time instants separated by a slash) defined in ISO 8601.

	TransferFunction
	Whitespace separated list of an even number of numbers representing a set of XY coordinates of a transfer function.

	URI
	URI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in Section 4 of [RFC 2396]. For the “file:” URL scheme, see [RFC 1738] and Appendix ##ref file URL.

	URL
	URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in Section 4 of [RFC 2396]. For the “file:” URL scheme, see [RFC 1738] and Appendix ##ref File URL.

	XYPair
	Whitespace-separated list of 2 numbers. Unless specified otherwise in the attribute Description, these two numbers are an X-dimension and a Y-dimension, respectively.

	XYPairRange
	Two XYPairs separated by a “~” (tilde) character that defines a rectangle bounded by x1 y1 ~ x2 y2

	XYPairRangeList
	Whitespace-separated list of XYPairRanges.

1.6 Units

JDF specifies most values in default units. That means you can’t use alternate units instead of the defined default units. All measurable quantities are stated in double precision. Processors should only specify a Unit if no default exists, such as when new resources are defined. Then the units must be based on metric units. Overriding the default units that are defined in this table is non-standard and may lead to undefined behavior. Any exceptions are specified in the appropriate descriptive tables.

The following table lists the units used in JDF. The representation column specifies the XML representation in the Unit attribute of resources.

Table 1‑3 Units used in JDF

	Measurement
	Unit
	Representation
	Remarks

	Length
	point (1/72 inch)
	pt
	Used for all except microscopic lengths (see below)

	
	micron
	mu
	

	Volume
	liter
	l
	-

	Weight
	gram
	g
	-

	Area
	m2
	m2
	-

	Resolution
	dpi or lpi
	dpi or lpi
	-

	Paper weight
	g/m2
	g/m2
	-

	Speed
	units/hour
	*/h
	Replace the “*” in the representation with the appropriate unit

	Temperature
	C° (Celsius)
	C
	degree centigrade

	Angle
	degrees°
	degree
	-

	Countable Objects
	1
	-
	Countable objects, such as sheets, have no unit specification.

Chapter 2 Overview of JDF

Introduction

This chapter explains the basic aspects of JDF. It outlines the terminology that is used and is recognized by the format, and the components of a workflow necessary to execute a printing job using JDF. Also provided is a brief discussion of JDF process structure and the role of messaging in a JDF job.

2.1 System Components

This section defines unique terminology used in this specification for the job and workflow components of JDF. Links to additional information is included for some terms.

2.1.1 Job Components

This terminology describes how JDF is described conceptually and hierarchically.

2.1.1.1 Jobs and Nodes

A job is the entirety of a JDF project. Each job is organized in a tree structure containing all of the information required to complete the intended project. The information is collected logically into what is called a node. Each node in the tree structure represents an aspect of the job to be executed.

The nodes in a job are organized in a hierarchical structure that resembles a pyramid. The node at the top of the pyramid describes the overall intention of the job. The intermediate nodes describe increasingly process-oriented aspects of the job, until the nodes at the bottom of the pyramid each describe a single, simple process. Depending on where in the job structure a node resides, it can represent a portion of the product to be created, one or many processing steps, or other job parts. For more information about jobs and nodes, see Chapter 3 Structure of JDF Nodes and Jobs.

2.1.1.2 [image: image121.jpg]

Elements

An element is an XML syntactic construct. (See also: attributes.) Within this document, the term refers to the structured subparts of a JDF node. Technically, JDF nodes are themselves XML elements. However, within this specification, “node” is used to distinguish between the independent JDF aspect and its subparts. Furthermore, elements that are subparts of other elements are often referred to as subelements. There is no structural distinction between nodes, elements and subelements; rather, the different terminology is intended to describe the hierarchical relationships.

JDF elements are represented by two kinds of data types: element and text element. The latter is abbreviated as telem. For more information about elements, see Section 3.1.2 Fundamental JDF Attributes and Elements.

2.1.1.3 Attributes

An attribute is an XML syntactic construct. (See also: elements.) Within this document, the term refers to characteristics of elements, a subpart of a node. For instance, each node has an ID attribute that contains a unique identifier. Attributes contain parameters of different data types, such as string, enumeration, and dateTime.

For more information about attributes, see Section 3.1.2 Fundamental JDF Attributes and Elements. Note that an attribute with an empty (zero length) value string is illegal except when the attribute value is defined as an arbitrary string.

2.1.1.4 Relationships

The hierarchical JDF structure implies relationships between nodes and elements within a JDF tree structure. The terms used in this document to describe these relationships are defined below, and, in some cases, include a brief representation of the encoding that would express them.

· Parent: An element that directly contains a child element.
<Parent><Child/></Parent>

· Child: An element that resides directly in the parent element.

· Sibling: An element that resides in the same parent element as another child element.
<Any><Sibling/><Sibling/></Any>

· Descendent: An element that is a child or a child of a child, etc.

· Ancestor: An element that is a parent or a parent’s parent, etc.
<Ancestor>
 <Any>
 <Descendent/>
 <MoreAnys>
 <Descendent/>
 </MoreAnys>
 </Any>
</Ancestor>

· Root: The single element that contains all other elements as descendents.

· Leaf: Node without further children.

· Branch: An intermediate node in a hierarchy that contains at least one child node. A branch is never a leaf.

2.1.1.5 Links

There are two kinds of links in JDF: internal links and external links. Internal links are pointers to information that is located elsewhere in a JDF document. The data that is referenced by the link is located in a target element. External links are used to reference objects that are outside of the JDF document itself, such as content files or color profiles. These objects are linked using standard URLs (Uniform Resource Locators).

JDF makes extensive use of links in order to reuse information that is relevant in more than one context of the job. The same target may be referenced by multiple links. However, no link references more than one target.

2.1.2 Workflow Component Roles

The four components required to create, modify, route, interpret and execute a JDF job are known as agents, controllers, devices and machines. Overseeing the workflow created by these components is MIS, or Management Information Systems. These five aspects of a JDF workflow are described in the sections that follow.

By defining these terms, this specification does not intend to dictate to manufacturers how a JDF/JMF system should be designed, built, or implemented. The intention is to name the component mechanisms required for the interaction of actual components in a workflow during the course of a JDF job. In practice, it is very likely that individual system components will include a mixture of the capabilities described in the following sections. For example, many controllers are also agents.

2.1.2.1 Machines

[image: image122.jpg]

A machine is any part of the workflow system designed to execute a process. Most often, this term refers to a piece of physical equipment, such as a press or a binder, but it can also refer to the software components used to run a particular machine. Computerized workstations, whether run through automated batch files or whether controlled by a human worker, are also considered machines if they have no JDF interface.

2.1.2.2 Devices

The most basic function of a device is to execute the information specified by an agent and routed by a controller. Devices must be able to execute JDF nodes and initiate machines that can perform the physical execution. The communication between machines and devices is not defined in this specification. Devices may, however, support JMF messaging in order to interact dynamically with controllers.

2.1.2.3 Agents

Agents in a JDF workflow are responsible for writing JDF. An agent has the ability to create a job, to add nodes to an existing job, and to modify existing nodes. Agents may be software processes, automated tools, or even text editors. Anything that can be used in composing JDF can be considered an agent.

Actual implementations of devices or controllers will most often be able to modify JDF. These system components have agent properties in the terms of this specification.

2.1.2.4 Controllers

Agents create and modify JDF information; controllers route it to the appropriate devices. The minimum requirement of a controller is that it can initiate processes on at least one device, or at least one other slave controller that will then initiate processes on a device. In other words, a controller is not a controller if it has nothing to control. In some cases, a pyramid-like hierarchy of controllers can be built, with controllers at the top of the pyramid controlling a series of lower-level controllers at the bottom. The lowest-level controllers in the pyramid, however, must have device capability. Therefore, controllers must be able to work in collaboration with other controllers. In order to communicate with one another, and to communicate with devices, controllers must support the JDF file-exchange protocol and may support JMF. Controllers can also determine process planning and scheduling data, such as process times and planned production amounts.

2.1.2.5 [image: image123.jpg]

Management Information Systems—MIS

The overseer of the relationships between all of the units in a workflow is known as Management Information Systems, or MIS. MIS is, in effect, a macrocosmic controller. It is responsible for dictating and monitoring the execution of all of the diverse aspects of the workflow. To do this, it must remain in contact with the actual production facilities. This can be accomplished either in real time using JMF messaging or post-facto using the audit records within JDF.

To allow MIS to communicate effectively with the other workflow components, JDF supplies what is essentially a messenger service, in the form of JMF, to run between MIS and production. This format is equipped with a variety of message types, ranging from simple, unidirectional notification to queries and even commands. System designers have a great deal of flexibility in terms of how they choose to use the messaging architecture, so that they can tailor the processes to the capabilities of the existing workflow mechanism. Figure 2.1 depicts how various communication threads can run between MIS and production.

JDF also provides system components the ability to collect performance data for each node, which can then be passed on to a job-tracking system for use by the MIS system. These data may be derived from the messages that the controller receives or from the audit records in the job (for more information on audits, see Section 3.10.1 Audit Elements). Alternatively, the completed job may be passed to the job accounting system, which examines the audit records to determine the costs of all the processes in the job.

2.1.2.6 System Interaction

An example of the interaction and hierarchical structure of the components considered in the preceding sections is shown in the following figure. Single arrows indicate uni-directional communication channels and double arrows indicate bi-directional communication.

[image: image5.jpg]Controller/Agent
(controller with agent properties)

=~
'y 'S
[=) o
= =
Controller/ Controller/ : :
Agent 1 Agent 2 Device 1 Device 2
it
w| | s
5l kB :
o
Device 1.1 Controller/Agent 2.1
w
a
=
Device/Agent 2.1.1 Device 2.1.2

Figure 2.1 Example of JDF and JMF workflow interactions

2.2 JDF Workflow

JDF does not dictate that a workflow be constructed in any prespecified way for it to be usable. On the contrary, its flexibility has allowed JDF to model existing custom solutions for the graphic arts, as well as those yet to be imagined. JDF is equally as effective with a simple system using a single controller-agent and device as it is with a completely automated industrial press workflow with integrated pre- and postpress operations.

Because of workflow system construction in today’s industry, the principal subsection procedures of a printing job—prepress, press, and postpress—remain largely disconnected from one another. JDF provides a solution for this lack of unity. With JDF, a print job becomes an interconnected workflow that runs from job submission through trapping, RIP’ing, filmmaking, platemaking, inking, printing, cutting, binding, and sometimes even through shipping. JDF enables an architecture that defines the process necessary to produce each intended result and identifies the elements necessary to complete the processes. All processes are separated into nodes, and the entire job is represented by a tree of these nodes. All of the nodes taken together represent a desired printed product.

Each individual node in JDF is defined in terms of inputs and outputs. The inputs for a node consist of the resources it uses and the parameters that control it. For example, the inputs in a node describing the process parameters for imaging the cover of a brochure might include requirements for trapping, RIP’ing, and imposing the image. The output of such a node might be a raster image.

Unless they represent the absolutely final product, resources that are produced by one node are in turn modified or consumed by subsequent nodes. Therefore, the output of the process described above—the raster image—becomes one of the input resources for a node describing the printing process for the brochure. This input resource would be joined in the node by other input resources such as inks, press sheets, plates, and a set of parameters that indicate how many sheets should be produced. The output would be a set of printed press sheets that in turn would become the input resource for postpress operations such as folding and cutting. And so on until the brochure is completed.

This system of interlinked nodes effectively unites the prepress, press, and postpress processes, and even extends the notion of where a job begins. A JDF job, like any printing job, is defined by the original intent for the end product. The difference between a JDF job and a generic printing job, however, is that JDF allows the entire job, from prepress through postpress, to be defined up front. All of the resources and processes necessary to produce an entire printed product can be identified and organized into nodes before the first prepress process is set in motion. Furthermore, the product intent specification can be extremely broad or extremely detailed, or anywhere in between. This means that a job may be so well defined before production begins that the system administrator only has to set the wheels in motion and let the job run its course. It may also mean that the person submitting the job has only a general idea of what the final product will look like and that modifications to the intent will be made along the way, depending on the course of the job.

For example, the person submitting the job specification for the brochure described above may know that she wants 400 copies, that she wants it done on a four-color press with no spot colors, that the cover will be on a particular paper stock and the contents on another, that the binding will be stapled, and that she requires the job in two weeks. Another person might know only that he wants the pages she’s designed to be put into some sort of brochure form, although she doesn’t know exactly what. Either person’s request can be translated into a JDF product intent node that will eventually branch into a tree structure describing each process required to complete the brochure. In the first example, the prepress, press, and postpress processes will be well defined from the start. In the second example, information will be included as it is gathered. The following sections describe the way in which nodes can combine to form a job.

2.2.1 Job Structure

JDF jobs consist of a set of nodes that specify the production steps needed to create the desired end product. The nodes, in addition to being connected through inputs and outputs, are arranged in a hierarchical tree structure. Figure 2.2, below, shows a simple example of a tree of nodes.

[image: image6.jpg]Product nodes

Process group nodes

6686 dob e O\

Individual Process nodes

Figure 2.2 JDF tree structure

The following table provides a hypothetical breakdown of the nodes in the tree structure shown above:

Table 2‑1 Information contained in JDF nodes, arranged numerically

	Node #
	Meaning

	1
	Entire book

	2
	Cover

	3
	Contents

	4
	Production of cover

	5
	Production of all color pages

	6
	Production of all black-and-white pages

	7
	Cover production process 1

	8
	Cover production process 2

	9
	Cover production process 3

	10
	Cover Finishing process

	11
	RIP’ing for color pages

	12
	Plate making for color pages

	13
	Printing for color pages

	14
	Color page finishing process

	15
	RIP’ing for black-and-white pages

	16
	Printing for black-and-white pages on a digital press

	17
	Binding process for entire book

The uppermost nodes (1, 2, & 3) represent the product intent in general terms. These nodes describe the desired end product and the components of that product, which, in this case, are the cover and the content pages. As the tree branches, the information contained within the nodes gets more specific. Each subnode defines a component of the product that has a unique set of characteristic, such as different media, different physical size, or different color requirements. The nodes that occur in the middle of the tree (4, 5, & 6) represent the groups of processes needed to produce each component of the product. The nodes that occur closest to the bottom of the tree (7 – 17) each represent individual processes.

In this example, there are two subcomponents of the job, the cover and the contents, each with distinct requirements. Therefore, two nodes—nodes 2 and 3—are required to describe the elements of the job in broad terms. Within the content pages there are some black-and-white pages and some color pages. Since fabricating each requires a different set of processes, further branching is necessary. The following table arranges the nodes in groups according to the processes they will be executing:

Table 2‑2 Information contained in JDF nodes, arranged by group

	Process Group
	Node #
	Meaning

	Entire book
	1
	Entire book

	
	17
	Assemble book

	Cover
	2
	Cover

	
	4
	Cover assembly processes

	
	7
	Cover production process 1

	
	8
	Cover production process 2

	
	9
	Cover production process 3

	
	10
	Finishing process for cover

	Contents
	3
	Contents

	Color Pages
	5
	Production of all color pages

	
	11
	RIP’ing for color pages

	
	12
	Plate making for color pages

	
	13
	Printing for color pages

	
	14
	Color page finishing

	Black-and-white pages
	6
	Production of all black-and-white pages

	
	15
	RIP’ing for black-and-white pages

	
	16
	Printing for black-and-white pages on a digital press

This hierarchical structure is discussed in more detail in the following section.

2.3 Hierarchical Tree Structure and Networks in JDF

[image: image124.wmf]

Y

-

Axis:

Along spine of bottom pro

d

uct

X

-

Axis

Z

-

Axis:

Height of bundle /

stack

Origin:

Lower left corner of bottom product

Spine of

bo

t

tom

product

Output resources of JDF nodes are often the input resources for other JDF nodes. Many nodes cannot begin executing until all of their resources are complete and ready. This means that the nodes execute in a well defined sequence. One process follows the next. For example, a process for making plates will produce, as output resources, press plates that are required by a printing process.

In the hierarchical organization of a JDF job, nodes that occur higher in the tree represent high level, more abstract operations, while lower nodes represent more detailed process operations. More specifically, nodes near the top of the tree may represent only intent regarding the components or assemblies that make up the product, while the leaf nodes provide explicit instructions to a device to perform some operation. Figure 2.3 shows an example of a hierarchical structure.
[image: image7.jpg]Nod
e

Parent JDF

Figure 2.3 Example of a hierarchical tree structure of JDF nodes

In addition to the hierarchical structure of the node tree, sibling nodes are linked in a process chain by their respective resources. In other words, an output resource of one node ends up representing the input resource of the following node (as represented in Figure 2.4). This interrelationship is known as resource linking.

With resource linking, complex networks of processes can be formed. Figure 2.4 displays an alternate representation of the process described in Figure 2.3. Whereas Figure 2.3 represents a hierarchical structure, Figure 2.4 shows an example of the linking mechanism of the same job. Note that there are many possible process networks that map to the same node hierarchy.

[image: image8.jpg]G

Key:
.
R =

w T

Process
Resource

[

|PA '

|_(Node consisting of process P4, P5, & P6) |
__________ .}

Figure 2.4 Example of a process chain linked by input and output resources

In JDF, the linking of processes is not explicitly specified. In other words, nodes are not arranged in an abstract chronology, dictating, for example, that the trapping node must come before the RIP’ing node. Rather, the links are implicitly defined in the exchange of inputs and outputs. Resource dependencies form a network of processes, and the sequence of process execution—that is, the routing of processes—can be derived from these dependencies. One resource dependency might have the possibility of multiple process routing scenarios. It is up to MIS to define the proper solution to meet local constraints.

The agent or set of agents employed by MIS to write the JDF job must be familiar with these local constraints. They must take into account factors such as the control abilities of the applications that complete the prepress processes, the transport distance between the prepress facility and the press itself, the load capabilities of the press, and the time requirements for the job. All of the factors taken together build a process network representing the workflow of production. To aid agents in defining the workflow, JDF provides the following four different and fundamental types of process routing mechanisms, which may be combined in any way:

1. Serial processing that is subsequent production and consumption of resources as a whole, represented by a simple process chain.

2. Overlapping processing that is simultaneous production and consumption of resources by pipes.

3. Parallel processing that involves the splitting and sharing of resources.

4. Iterative processing that is a circular or back and forward processing for developing resources by repeated activity.

These mechanisms are discussed in greater detail in Section 4.3 Execution Model.

2.4 Role of Messaging in JDF

JDF provides a container to define a job. Messaging language in JMF, defined in Chapter 5, provides a method to generate snapshots of job status and to interactively manipulate elements of a workflow system.

JMF is specifically designed for communication between the production system controller and the work centers or devices with which it interacts. It provides a series of queries and commands to check the status of processes and, in some cases, to dictate the next course of action. For example, the KnownDevices and KnownJDFServices queries allow the controller to determine what processes can be executed by a particular device or workcenter. These processes are likely to be determined at system initialization time. The QueueEntry messages provide a means for the controller to submit a job ticket to individual work centers or devices. And the Status, Resource and Occupation messages allow the device or work center to communicate quasi real-time
 processing status to a controller. Depending on the system configuration, the message handler may choose to record status changes in the history logs. The status message allows the controller to request status updates from the controller.

JDF also provides mechanisms to define recipients for individual messages on a node-by-node basis. This enables controllers to define the aspects and the parts of jobs that they want to track. For more information about messaging, see Chapter 5 JDF Messaging with the Job Messaging Format.

2.5 Coordinate Systems in JDF

This chapter explains how coordinate systems are defined and used in JDF. It also shows how the matrices are used to specify a certain transformation and how these matrices can be used to transform coordinates from one coordinate system to another coordinate system. In addition it clarifies the meaning of terms like Top or Left.

2.5.1 Introduction

During the production of a printed product it often happens that one object is placed onto another object. During imposition, for example, single pages and marks (like cut, fold, or register marks) are placed on a sheet surface. Later, at image setting, a bitmap containing one separation of a sheet surface is imposed on a piece of film. In a following step, the film is copied to a printing plate, which then is mounted on a press. In postpress, the printed sheets are gathered on a pile. The objects involved in all these operations have a certain orientation and size when they are put together. In addition one has to know where to place one object on the other.

The position of an object, e.g., a cut mark, on a plane can be specified by a two-dimensional coordinate. Every digital or physical resource has its own coordinate system. The origin of each coordinate system is located in the lower left corner, i.e., the X coordinate increases from left to the right and the Y coordinate increases from bottom to top.

[image: image9.wmf]Origin

X

Y

P

Figure 2.5 Standard coordinate system

Each page contained in a PDL file has its own coordinate system. In the same way a piece of film or a sheet of paper has a coordinate system. Within JDF each of these coordinate systems is called resource coordinate system.

[image: image125.jpg]

If a process has more than one input resources with a coordinate system, it is necessary to define the relation between these input coordinate systems. Therefore, an idealized process coordinate system is defined for each process. The coordinate systems of the input resources are mapped to the process coordinate system. Each of those mappings is defined by a transformation matrix, which specifies how a coordinate (or position) of the input coordinate system is transformed into a coordinate of the target coordinate system. See Section 2.5.6 Homogeneous Coordinates for mathematical background information. In the same way the mapping from the process coordinate system to the coordinate systems of the output resources is defined. The process coordinate system is also used to defined the meaning of terms like Top or Left, which are used as values for parameters in some processes.

Figure 2.6. Relation between resource and process coordinate systems

It is important that no implicit rotations are assumed if the dimensions of the input resources of a process do not match each other. Instead every transformation (e.g., a rotation) must be specified explicitly by using the Orientation or Transformation attribute of the corresponding ResourceLink. The same applies also to other areas in JDF, e.g., the LayoutPreparation process.

2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF

The following data types are used for the specification of coordinates and transformation:

· XYPair
“612 792”

· Number
“20.7”

· Rectangle
“0 0 595 843” (Order of elements is “lower-left x, lower-left y, upper-right x, upper-right y” or “left, bottom, right, top”.)
· Matrix
“1 0 0 1 30.0 235.3” (The ordering of elements is defined in 2.5.6 Homogeneous Coordinates)
· Named orientations
“Rotate180” or “”Flip90”

Coordinates and transformations are used throughout JDF, to include:

Intent Resources, such as:

· LayoutIntent
specifies size of finished product

· MediaIntent
specifies size of media

· InsertingIntent
specifies rotation and offset

Process Resources, such as:

· Component
specifies coordinate system

· CutBlock
specifies cut block coordinate system

· FoldingParams
specifies folding operations

2.5.3 Coordinate Systems of Resources and Processes

Each physical input Resource, e.g., Component of a process has, by default, its own coordinate system, which is called the source or resource coordinate system. The coordinate system also implies a specific orientation of that Resource. On the other hand there is a coordinate system that is used to define various process-specific parameters. This coordinate system is called target or process coordinate system.

It is often necessary to change the orientation of an input Resource before executing the operation. This can be done by specifying a transformation matrix. It is stored in the Orientation or Transformation attribute of the ResourceLink. This provides the ability to specify different matrices for the individual resources of a process.

The following table shows some matrices that can be used to change the orientation of a physical Resource. Most of the transformations require the X- (w) and the Y-dimension (h) of the Component as specified in the Dimension element. If these are unknown, it is still possible to define a general orientation in the Orientation attribute of the ResourceLink. The naming of the attribute reflects the state of the Resource and not necessarily the order of applied transformations. Thus Rotate90 and Flip90 specify that the original Y axis as represented by the spine is on top. In the case of Flip90, the Component is additionally flipped front to back.

Table 2‑3 Matrices and names used to describe the orientation of a Component

	Orientation Name
	Source

Coordinate System
	Transformation Matrix

According Action
	Target

Coordinate System

	Rotate0
	
[image: image10.wmf]x

y

	 1 0 0 1 0 0

No Action
	
[image: image11.wmf]x

y

	Rotate180
	
[image: image12.wmf]x

y

	 -1 0 0 -1 w h

180° Rotation
	
[image: image13.wmf]x

y

	Rotate90
	
[image: image14.wmf]x

y

	 0 1 -1 0 h 0

90° Counterclockwise Rotation
	
[image: image15.wmf]x

y

	Rotate270
	
[image: image16.wmf]x

y

	 0 -1 1 0 0 w

90° Clockwise Rotation
	
[image: image17.wmf]x

y

	Flip180
	
[image: image18.wmf]x

y

	 -1 0 0 1 w 0

Horizontal Flip
	
[image: image19.wmf]x

y

	Flip0
	
[image: image20.wmf]x

y

	 1 0 0 -1 0 h
Vertical Flip
	
[image: image21.wmf]x

y

	Flip270
	
[image: image22.wmf]x

y

	 0 1 1 0 0 0

90° Counterclockwise Rotation + Horizontal Flip
	
[image: image23.wmf]x

y

	Flip90
	
[image: image24.wmf]x

y

	 0 -1 -1 0 h w
90° Clockwise Rotation + Horizontal Flip
	
[image: image25.wmf]x

y

The descriptions of Component-specific attributes use some terms whose meaning depends on the culture in which they are used. For example, different cultures mean different things when they refer to the “front” side of a magazine. Other terms, such as binding, are defined by the production process and therefore do not depend on the culture. Whenever possible, this specification endeavors to use culture-independent terms. In cases where this is not possible, Western style (left-to-right and top-to-bottom writing) is assumed. Please note that these terms may have a different meaning in other cultures (such as those writing from right to left).

[image: image26.wmf]Product front edge

Product top

edge

Product bottom

edge

Binding edge

(spine)

Book-like product viewed from first page (front side)

Product front

side

Product front edge

Binding edge

(spine)

Calendar-like product viewed from first page (front side)

Product front

side

Figure 2.7 Terms and definitions for components

2.5.3.1 Coordinate Systems in Combined processes

Clarified in JDF 1.2
[Clarification]
Combined processes have no resource links defined between the individual processes that comprise the combined process. Therefore, the coordinate transformations for these processes must be specified within the resources themselves. When the ReferenceEdge attribute is present, then the process coordinate system is defined relative to the layout coordinate system: Left is defined to be along the sheet layout Y-axis, Bottom is defined to be along the document content X-axis, Right is opposite Left, and Top is opposite Bottom. For example, StitchingParams defines a ReferenceEdge attribute. If the document is actually a landscape or a reverse-landscape document, the creator of the JDF supplies the appropriate transformed ReferenceEdge value as follows: To position a staple in the upper left hand corner of a landscape document when held for reading, the ReferenceEdge value must be Bottom and StitchType = “Corner” (since landscape is defined as a +90 degree rotation of the image with respect to the media from portrait, i.e., counter-clockwise). On the other hand, to position a staple in the upper left hand corner of a reverse-landscape document when held for reading, the ReferenceEdge value must be Top and StitchType = “Corner” (since reverse-landscape is defined as a -90 degree rotation of the image with respect to the media from portrait, i.e., clockwise). The same applies to the HoleReferenceEdge attribute of HoleMakingParams and the ReferenceEdge attribute for the binding resources.

2.5.4 Product Example: Simple Brochure

To illustrate the use of coordinate systems in JDF, a simple saddle stitched brochure with eight pages is used as an example. The brochure is printed on two sheets with front and back. The two sheets are then folded, collected on a saddle, and saddle stitched. Finally the brochure is cut with a three-side trimmer. The following table lists the JDF processes used for the production of the simple brochure.

	 Input Resources
	Process
	Output Resources

	Layout
RunList (Document)
RunList (Marks)
	Imposition
	RunList

	RunList
	Interpreting
	InterpretedPDLData

	InterpretedPDLData
Media
RenderingParams
	Rendering
	RunList (rasterized ByteMaps)

	RunList (rasterized ByteMaps)
	Screening
	RunList (Bitmaps)

	ImageSetterParams
Media (Film)
RunList (Bitmaps)
	ImageSetting (to Film)
	ExposedMedia (Film)

	ExposedMedia (Film)
	ContactCopying
	ExposedMedia (Plate)

	ExposedMedia (Plate)
ConventionalPrintingParams
	ConventionalPrinting
	Component (Good)

	FoldingParams
Component
	Folding
	Component

	CollectingParams
Component
	Collecting
	Component

	SaddleStitchingParams
Component
	SaddleStitching
	Component

	TrimmingParams
Component
	Trimming
	Component

At imposition, the layout describes a signature with two sheets, each having a front and a back surface. On each surface, two content objects, i.e., pages, are placed.

[image: image27.wmf]8

1

Sheet 1, Front

2

7

Sheet 1, Back

6

3

Sheet 2, Front

4

5

Sheet 2, Back

Figure 2.8 Layout of simple saddle stitched brochure (product example)

Each surface has its own coordinate system, in which a surface contents box is defined. This coordinate system is also referred to as the Layout coordinate system because the Surface, Sheet, and Signature elements are defined within the hierarchy of the Layout resource. The content objects are placed by specifying the CTM attribute relative to the surface contents box. If the position of an object within a page is given in the page coordinate system, this coordinate can be transformed into a position within the surface coordinate system:

[image: image28.wmf][

]

0

tentsBox

SurfaceCon

tentsBox

SurfaceCon

CTM

P

P

Ylowerleft

Xlowerleft

Page

Page

Surface

+

´

=

Please note, that the width and height of the surface are not known at this point.

[image: image29.wmf]8

Origin

X

1

Y

Surface contents box

Content object (

page 1)

Content object (

page 8)

Surface

Figure 2.9 Surface coordinate system

The sheet coordinate system is identical with the coordinate system of the front surface. This means that no transformation is needed to convert a coordinate from one system to the other. Instead, the coordinates are valid (and equal) in both coordinate systems. The relation between the coordinate system of the front and the back surfaces depends on the value of the Sheet:LockOrigins attribute. The sheet coordinate system is also identical with the signature coordinate system, which in turn is identical with the coordinate system of the imposition process.

The output resource of the imposition process is a run list. Each element of the run list has its own coordinate system, which is identical with the corresponding signature coordinate system. The interpretation, rendering and screening processes do not affect the coordinate systems. This means that the coordinate systems of all these processes are identical.

At the image setting process, the digital data is set onto film. The process coordinate system is defined by the media input resource. The width and height of the media are defined in the Media:Dimension attribute. The position of the signatures (as defined by the run list input resource) on the film is defined by the ImageSetterParams:CenterAcross attribute.

The coordinate system of the conventional printing process is called press coordinate system. It is defined by the press: the X-axis is parallel to the press cylinder, and the Y-axis is going along the paper travel. Y = 0 is at begin of print, X = 0 is at the left edge of the maximum print area. The relation between the layout coordinate system and the press coordinate system is defined by the CTM attributes of the corresponding TransferCurveSet elements located in the TransferCurvePool.

[image: image30.wmf]x

y

orthogonal to

cylinder

axis

direction

of

paper

travel

begin

of print

maximum print

area

Figure 2.10. Press coordinate system used for sheet-fed printing

[image: image31.wmf]x

y

orthogonal to

cylinder

axis

direction

of

web

travel

reel

width

cylinder

circumference

begin

of print

ribbon

maximum print

area

of

one

single

impression

Figure 2.11 Press coordinate system used for web printing

The output of the printing process, e.g., a pile of printed sheets, is described as a Component resource in JDF. The coordinate system of the printed sheets is defined by the transformation given in the TransferCurveSet:CTM attribute (where Name = Paper).

Each of the two sheets is folded in a separate folding process. In this example, the orientation of the sheets is not changed before folding. This can be specified by setting the Orientation attribute of the input resource to Rotate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The folding process changes the coordinate system. In this example the origin of the coordinate system is moved from the lower left corner of the flat sheet (input) to the lower left corner of the folded sheet (output), i.e., it is moved to the right by half of the sheet width.

[image: image32.wmf]1

X

Y

3

X

Y

Sheet 1

Sheet 2

Figure 2.12 Coordinate systems after Folding (product example)

The two folded sheets are now collected. In this example, the orientation of the folded sheets is not changed before collecting. This can be specified by setting the Orientation attribute of the input resource to Rotate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The collecting process does not change the coordinate system.

[image: image33.wmf]1

X

Y

Figure 2.13 Coordinate systems after Collecting (product example)

The two collected and folded sheets are now trimmed to the final size of the simple brochure. In this example, the orientation of the collected and folded sheets is not changed before trimming. This can be specified by setting the Orientation attribute of the input resource to Rotate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The trimming process changes the coordinate system: the origin is moved to the lower left corner of the trimmed product.

In looking at the whole production process, a series of coordinate systems is being involved. The relation between the separate coordinate systems is specified by transformation matrices. This allows transformation of a coordinate from one coordinate system to another coordinate system. As an example, note the position of the title on page 1 of the product example in Figure 2.13. By applying the first transformation, this position can be converted into a position of the surface (or layout) coordinate system. This position can then be converted into the paper coordinate system by applying (in this order) the Film, Plate, Press, and Paper transformations stored in the TransferCurvePool.

From now on, every process is using components as input and output resources. The resource link of each input and output component contains a Transformation attribute or an Orientation attribute. The Transformation attribute is used if the width and the height of the component are known. Otherwise the Orientation attribute must be used to specify a change of the orientation, e.g., a rotation.

Since the folding process changes the coordinate system depending on the fold type, the transformations specified in the resource links are not sufficient to transform a position given in the paper coordinate system to a position in the coordinate system of the folded sheets, i.e. the resource coordinate system of the output component of the folding process. An additional transformation depending on the fold type has to be applied. The corresponding transformation matrix is not explicitly stored in the JDF file.

The collecting process does not change the coordinate system. Therefore, only the transformations specified in the resource links of the input and output resources, i.e. components, have to be applied.

The trimming process again changes the coordinate system depending on the trimming parameters. Therefore, a transformation depending on the trimming parameters has to be applied in addition to the transformations specified in the resource links. The matrix for the additional transformation (depending on the trimming parameters) is not explicitly stored in the JDF file.

After having applied all transformations mentioned above, the resulting coordinate specifies the position of the title in the coordinate system of the final product.

[image: image34.wmf]Surface:SurfaceContentsBox and

CTM

Page

surface coordinate system

= layout coordinate system

= process coordinate system of Imposition, Interpreting, Rendering, Screening

TransferCurveSet:CTM (Name = Film)

film coordinate system

= process coordinate system of

ImageSetting

TransferCurveSet:CTM (Name = Plate)

plate coordinate system

= process coordinate system of

ContactCopying

TransferCurveSet:CTM (Name = Press)

press coordinate system

= process coordinate system of

ConventionalPrinting

TransferCurveSet:CTM (Name = Paper)

paper coordinate system

= resource coordinate system of output

component of

ConventionalPrinting

= resource coordinate system of input

component of Folding

page coordinate system

= resource coordinate system of input

component

process coordinate system of Folding

ResourceLink:Transformation (or

ResourceLink:Orientation)

Transformation according type of fold and

ResourceLink:Transformation (or

ResourceLink:Orientation)

resource coordinate system of output

component of Folding

= resource coordinate system of input

component of Collecting

process coordinate system of Collecting

ResourceLink:Transformation (or

ResourceLink:Orientation)

ResourceLink:Transformation (or

ResourceLink:Orientation)

resource coordinate system of output

component of Collecting

= resource coordinate system of input

component of Trimming

process coordinate system of Trimming

ResourceLink:Transformation (or

ResourceLink:Orientation)

resource coordinate system of output

component of Collecting

= coordinate system of final product

Transformation according trimming parameters and

ResourceLink:Transformation (or

ResourceLink:Orientation)

Figure 2.6 Examples of Transformations and Coordinate Systems in JDF.

2.5.5 General Rules

The following rules summarize the use of coordinate systems in JDF:

· Every individual piece of material (film, plate, paper) has a resource coordinate system.
· Every process has a process coordinate system.
· Terms like top, left, etc., are used with respect to the process coordinate system in which they are used and are independent of orientation, i.e., landscape or portrait, and the human reading direction.

· The coordinate system of each input component is mapped to the process coordinate system.

· The coordinate system may change during processing, e.g., in Folding.

· The description of a product in JDF is independent of particular machines used to produce this product. When creating setup information for an individual machine, it might be necessary to compensate for certain machine characteristics. At printing, for example, it might be necessary to rotate a landscape job, because the printing width of the press is not large enough to run the job without rotation.

2.5.6 Homogeneous Coordinates

A convenient way to calculate coordinate transformations in a two-dimensional space is by using so-called homogeneous coordinates. With this concept, a two-dimensional coordinate P=(x,y) is expressed in vector form as [x y 1]. The third element “1” is added to allow the vector being multiplied with a transformation matrix describing scaling, rotation, and translation in one shot. Although this only requires a 2*3 matrix (as it is used in PostScript for example), in practice 3*3 matrices are much more common, because they can be concatenated very easily. Thus, the third column is set to “0 0 1”.

[image: image35.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

f

e

0

d

c

0

b

a

Trf

would in JDF be written as “a b c d e f”

Some often used transformation matrices are

[image: image36.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

0

0

0

1

0

0

0

1

Trf

identity transformation

[image: image37.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

dy

dx

0

1

0

0

0

1

Trf

translation by dx, dy

[image: image38.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

1

0

0

0

cos

sin

0

sin

cos

Trf

j

j

j

j

rotation by  degrees counter-clockwise

Transforming a point

In this example, the position P given in the coordinate system A is transformed to a position of coordinate system B. The relation between the two coordinate systems is given by the transformation matrix Trf.

[image: image39.wmf]Origin of

 coordinate

 system A

X

Y

P

X

Y

Origin of

coordinate

 system B

Figure 2.7 Transforming a point (example)

[image: image40.wmf][

]

1

100

30

P

A

=

PA = (30, 100)

[image: image41.wmf]Trf

P

P

A

B

´

=

[image: image42.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

´

=

1

60

40

0

1

0

0

0

1

1

100

30

P

B

in JDF, Trf is written as “1 0 0 1 40 60”

[image: image43.wmf][

]

1

160

70

P

B

=

PB = (70, 160)

Chapter 3 Structure of JDF Nodes and Jobs

Introduction

This chapter describes the structure of JDF nodes and how they interrelate to form a job. As described in Section 2.1.1 Job Components, a node is a construct, encoded as an XML element, that describes a particular part of a JDF job. Each node represents an aspect of the job: 1.) in terms of a process necessary to produce the end result, such as imposing, printing, or binding; 2.) in terms of a product that contributes to the end result, such as a brochure; or 3.) in terms of some combination of the previous two. In short, a node describes a product or a process.

In addition to describing the structure of an individual JDF node, this chapter examines in what way those nodes interact to form a coherent job structure. The interrelation of nodes can be divided into two categories: hierarchical and lateral. Hierarchical interrelation is the nested structure of parent nodes that contain child nodes. The visual correlative of this structure resembles a family tree, with a single node describing the entire job at the top, and a number of nodes at the bottom that each describe only one specific process. JDF-supported, leaf-level processes are described in Chapter 6 Processes.

Lateral interrelation, on the other hand, is the interrelation that occurs between nodes as a result of resource linking. Resource linking is the result of the transformation of inputs into outputs, which in turn may become inputs of other nodes. It also occurs when nodes share the same resource. The combination of hierarchical nesting of nodes and lateral linking allows complex process networks to be constructed. In a very simple case, however, a JDF file may contain only one node.

The hierarchical structure of a JDF job achieves a functional grouping of processes. For example, a job may be split into a prepress node, a press node, and a finishing node that contain the respective process nodes. Each and every node in turn contains attributes that represent various characteristics of that node. Nodes also contain subelements of certain types, such as resources, process information, customer information, audits, logging information, and other JDF nodes. Some elements, such as those that deal with customer information, generally occur only in the root structure, while other elements, such as resources, may occur anywhere in the tree. Where the elements can reside depends on their type and their usage scope.

This chapter describes the elements, subelements, and attributes commonly found in JDF nodes, and provides the characteristics necessary to understand where each belongs and how it is used. Many of these characteristics are presented in tables, and each of these tables includes the following three columns:

· Name—Identifies the element being discussed.

· Data Type—Refers to the data type, all of which are described in Section 0. Only the data types element or telem (which is short for text element) are applied to elements. All other types are attributes.

· Description—Provides detail about the element or attribute being discussed.

The JDF workflow model is based on a resource/consumer model. JDF nodes are the consumers that are linked by input resources and output resources. The ordering of siblings within a node, however, has no effect on the execution of a node. All chronological and logical dependencies are specified using ResourceLinks, which are defined in Section 3.8 Resource Links.

Figure 3.1
 is a schematic structure of the JDF node type. In this figure, generic attributes and elements (see Section 3.1.1 Generic Contents of JDF Elements) are inserted only in the JDF root node. The element types that are displayed in this figure are described in the subsequent sections. Abstract data types are surrounded by a dashed line. Types derived from the abstract data type Resource are shown schematically in Figure 3.4.

[image: image44.jpg]2] Ve

-
—‘ AncestorPool? l— NEEGr Customerinfo?
T —
. FileName ?
oIz o e Nodelnfo?
Activation? S

.
D

-
JobID? Customerlnfo? Contact* Person?
JobPartID? « BillingCode? * ContactType

ProjectID? CustomerID? Address?
SpawnID? CustomerJobName?
SettingsPolicy?

CustomerOrderID? ComChannel*
Status rRefs?

Template? Company?
e Nodelnfo? [i : :]
Types? f BusinessInfo?

Version?

DueLevel?
xmlns[:prefix]? End? —‘ Employee?
BestEffortExcep— Route?
tions?

. CommentURL?
o DescriptiveName?

rRefs? *

TargetRoute?
S o NotificationFilter*
tions?
- OperatorInterven- f—_——————— — —
tionExceptions? ResourcePool? |—— Resource* !
o CatalogDetails?
1 CatalogID?
o Class
e ID
. Locked?
. PipeID?
- ProductID?
2 rRefs?)
o SettingsPolicy?
1 SpawnIDs?
. SpawnStatus?
2 Status
e ——————————
ResourceLinkPool? ResourceLink* L
* CombinedProcessIndex? AmountPool?
* CombinedProcessType?
* PipePartIDKeys?
* PipeProtocol?
* PipeURL?
* ProcessUsage?
* rRef
* rSubRef?
* Usage
=) >
AuditPool? Audit* |
¢ rRefs? ¢ Time
. Author?
- ~ r N)
StatusPool? PartStatus* Part
e Status? * Status?
Attributes
JDF:
Type = Product | ProcessGroup | Combined | any process name
Status = Waiting | TestRunInProgress | Ready | FailedTestTun | Setup | InProgress | Cleanup | Spawned | Stopped | Completed | Aborted | Pool
Activation = Inactive | Informative | Held | TestRun | TestrunAndGo | Active
Resource:
Status = Incomplete | Unavailable | InUse | Draft | Complete | Available

SpawnStatus = NotSpwaned | SpawnedRO | SpawnedRW
Locked= false | true ; (volatile or persistent)

ResourceLink:
Usage = Input | Output

Figure 3.1 Structure of the JDF Node

3.1 JDF Nodes

JDF nodes are encoded as XML elements. Nodes, in turn, contain various attributes and further subelements, including nested JDF nodes.

Many of the tables in this section contain a fourth column that provides further details about the valid range of the attribute/element content, how the content is inherited by descendents (children, grandchildren, etc.), and where the attribute/element may reside in the JDF tree. The heading for this column is “Scope,” which is short for “Scope and Position.” The following abbreviations are defined:

D) Descendent: The content is valid locally within its node and in all descendent nodes, unless a descendent contains an identical attribute that overrides the content.

L) Local: The content is only valid locally, within the node where the content is defined.

R) Root: The attribute may only be specified in the root node. An exception from the localization only in the root node occurs if the spawning and merging mechanism for independent job tickets is applied as described in Section 4.4 Spawning and Merging.
All attributes and elements listed in subsequent chapters should be considered local, unless otherwise noted.

3.1.1 Generic Contents of JDF Elements

Modified in JDF 1.2
[Added a clarification to Attribute. Added 3 new values, JobDescription, OperatorText and TemplateDescription, to Comment element Name attribute.]
JDF contains a set of generic structures that may occur in any element of a JDF or JMF document. These are provided as containers for human-readable comments and descriptions and are described below.

Table 3‑1 Generic Contents of elements

	Name
	Data Type
	Description

	BestEffortExceptions ?

New in JDF 1.1
	NMTOKENS
	The names of the attributes in this element that are to have the best effort policy applied when JDF:SettingsPolicy or JDFResource:SettingsPolicy is not BestEffort. A JDF Consumer must support this attribute and must support any value of this attribute, so that an Agent can specify any exceptions to the SettingsPolicy in a JDF instance. The job will be processed by substituting or ignoring the attributes or attribute values that are not supported.

BestEffortExceptions is ignored if the current value of SettingsPolicy = BestEffort.

	CommentURL ?
	URL
	URL to an external, human-readable description of the element.

	DescriptiveName ?

	string
	Human-readable descriptive name of the JDF element, e.g., a descriptive name of a resource, process, or product.

	MustHonorExceptions ?

New in JDF 1.1
	NMTOKENS
	The names of the attributes in this element that are to have the must honor policy applied when JDF:SettingsPolicy or JDFResource:SettingsPolicy is not MustHonor. A JDF Consumer must support this attribute and must support any value of this attribute, so that an Agent can specify any exceptions to the SettingsPolicy in a JDF instance. The job will be rejected if any of these attributes or attribute values are not supported.

MustHonorExceptions is ignored if the current value of SettingsPolicy = MustHonor.

	OperatorInterventionExceptions ?

New in JDF 1.1
	NMTOKENS
	The names of the attributes in this element that are to have the operator intervention policy applied when JDF:SettingsPolicy or JDFResource:SettingsPolicy is not OperatorIntervention. A JDF Consumer must support this attribute and must support any value of this attribute, so that an Agent can specify any exceptions to the SettingsPolicy in a JDF instance. The job will be paused and the operator will be queried if any of these attributes or attribute values are not supported. If a device has no operator intervention capabilities, OperatorIntervention is treated as MustHonor.

OperatorInterventionExceptions is ignored if the current value of SettingsPolicy = OperatorIntervention.

	Comment *
	telem
	Any human-readable text.

The comment fields may contain a language attribute to support internationalization.

Table 3‑2 Contents of the Comment element

	Name
	Data Type
	Description

	Attribute ? New in JDF 1.1

	NMTOKEN
	Name of the attribute in this element that the comment refers to. The name should include the prefix, if the attribute is in a non-JDF namespace. If omitted, the Comment refers to the entire element.

	Box ?
	rectangle
	The rectangle that is associated with the comment. The coordinate system of the rectangle is the same as the coordinate system defined in the Path attribute.

	Language ?
	language
	Possible values are defined in IETF RFC 1766.

If none is specified, the system specified value is assumed.

	Name ?
Modified in JDF 1.2
	NMTOKEN
	A name that defines the usage of a comment. For example, it may determine whether two comments should fill two distinct fields of a user interface. Predefined values include:

Description – Human readable description, which is required if the Comment element is required in a given context, as is the case in the Notification element (see Table 3‑31 Contents of the Notification element).
JobDescription – Description of the Job. A Comment element that contains Name =" JobDescription" must only be specified in the root JDF node. See also the CustomerJobDescription attribute in section 3.4 Customer Information (CustomerInfo element).
OperatorText – Message from the end user to the operator that contains information regarding the processing of the job.
Orientation – Description of the orientation of a physical resource.
TemplateDescription - Description of the job ticket template. A Comment element that contains Name =" TemplateDescription" must only be specified in the root JDF node.

Default = Description, which is required if the Comment element may become required, as is the case in the Notification element (see Table 3‑31 Contents of the Notification element.

	Path ?
	path
	Description of the area that the comment is associated with in the coordinate system of the element where the path resides. For example, if the comment is inserted in an ExposeMedia resource that describes a plate, the path refers to the plate coordinate system.

	
	text
	Body of the comment.

[image: image126.jpg]

The following figure shows the structure of the generic content defined above.

Figure 3.2 Structure of JDF Generic Contents

3.1.2 Fundamental JDF Attributes and Elements

Modified in JDF 1.2
[Added 2 new attributes, TemplateID and TemplateVersion, to Contents of a JDF Node. Added clarification to TemplateID and Version. 1 ISSUE]
The following table presents the attributes and elements likely to be found in any given JDF node. Three of the attributes in Table 3.3, below, are required, and must appear in every JDF node. Although the rest are designated as optional, they are optional in the sense that they are required only under certain circumstances, not that they may be left out if desired. The circumstances under which they are required are described in the Description column.

The most important of the attributes is the Type attribute, which defines the node type. The value of the Type attribute defines the product or process the JDF node represents. As is detailed in Section 3.2 Common Node Types, all nodes fall into one of the following four general categories: process, process group, combined processes and product intent. Each node is identified as belonging to one of these categories by the value of its Type attribute, as described in the table below. For example, if Type = Product, the node is a product intent node. Each of these categories is described in greater detail in the sections that follow.

Table 3‑3 Contents of a JDF node

	Name
	Data Type
	Scope
	Description

	Activation ?

Modified in JDF 1.1
	enumeration
	special

see text (D)
	Describes the activation status of the node. Allows for a range of activity, including deactivation and testrunning. Possible values, in order of involvement from least to most active, are:

Inactive – The node and all its descendents must not be executed or tested. This value is set if only certain parts of a JDF job should be executed or tested or if the node contains information required by other processes (as is the case with independent spawning and merging, described in Section 4.4.5).

Informative – The JDF ticket is for information only. If a job is Informative, it must not be processed. Jobs with Activation= Informative will generally be sent to an operator console for preview but are still completely under the control of an external controller.

Held – Execution has been held. If a job is Held, it must not be processed until its Activation is changed to Active.

TestRun – The node requests a test run check by an controller or a device. This does not imply that the node should be automatically executed when the check is completed. Descendents of a node that is being test run are not to be considered Active.

TestRunAndGo – Similar to TestRun, but requests a subsequent automatic start if the testrun has been completed successfully.

ISSUE: Should we add a ProofRunAndGo - produces a first article and waits for approval. This feature is implemented in a number of production digital printer products.

Active – Default value. The node maybe executed as soon as all inputs are Available or Complete and all outputs are not incomplete.

A child node inherits the value of the Activation attribute from its parent. The value of Activation corresponds to the least active value of Activation of any ancestor, including itself. Therefore, if any ancestor has an Activation of Inactive, the node itself is Inactive. If no ancestor is Inactive but any ancestor is TestRun, the node is TestRun unless the node itself is Inactive. If no ancestor has a value of Inactive or TestRun and any ancestor has a value of TestRunAndGo, the node has a value of TestRunAndGo unless that node is Inactive or TestRun, and so on.

The following table illustrates the actions to be applied to a node depending on the value of Activation.

	
	
	
	Activation
	Test Node
	Execute Node

	
	
	
	Inactive
	false
	false

	
	
	
	Informative
	false
	false

	
	
	
	Held
	false
	false

	
	
	
	Active
	false
	true

	
	
	
	TestRun
	true
	false

	
	
	
	TestRunAndGo
	true
	true

	ID
	ID
	L
	Unique identifier of a JDF node. This ID is used to refer to the JDF node.

	JobID ?
	string
	D
	Job identification used by the application that created the JDF job. Typically, a job is identified by the internal order number of the MIS system that created the job.

	JobPartID ?
	string
	D
	Identification of a part of a job, used by the application that created the job. Typically, this is internal to the MIS system that created the job and coincides with a process or set of processes.

	ProjectID ?

 New in JDF 1.1
	string
	D
	Identification of the project context that this JDF belongs to. Used by the application that created the JDF job.

	SpawnID ?

New in JDF 1.1
	NMTOKEN
	D
	Identification of a spawned part of a job. Typically this is used to map Audits and messages to a spawned processing step in the workflow.

	SettingsPolicy ?

New in JDF 1.1
	enumeration
	D
	The policy for this Node indicates what happens when unsupported settings, i.e., subelements, attributes or attribute values, are present in the resources. A JDF Consumer must support this attribute and all of the defined values so that an Agent can depend on the JDF Consumer following the policy requested by the Agent in a JDF instance. Possible values are:
BestEffort – Substitute or ignore unsupported attributes, attribute values, default attribute values, or elements and continue processing the job.

MustHonor – Reject the job when (1) any unsupported attributes, attribute values, or elements are present or (2) any omitted attributes have an unsupported default value defined in this specification.

OperatorIntervention – Pause job and query the operator when (1) any unsupported attributes, attribute values, or elements are present or (2) any omitted attributes have an unsupported default value defined in this specification. If a device has no operator intervention capabilities, OperatorIntervention is treated as MustHonor.

Default = BestEffort

	Status

Modified in JDF 1.1
	enumeration
	L
	Identifies the status of the node. Possible values are:

Waiting – The node may be executed, but it has not completed a test run.
TestRunInProgress – The node is currently executing a test run.

Ready – As indicated by the successful completion of a test run, all ResourceLinks are correct, required resources are available, and the parameters of resources are valid. The node is ready to start.

FailedTestRun – An error occurred during the test run. Error information is logged in the Notification element, which is an optional subelement of the AuditPool element described in Section 3.10.

Setup –The process represented by this node is currently being set up.

InProgress – The node is currently executing.

Cleanup – The process represented by this node is currently being cleaned up.

Spawned – The node is spawned in the form of a separate spawned JDF.

The status Spawned can only be assigned to the original instance of the spawned job. For details, see Section 4.4.

Stopped – Execution has been stopped. If a job is Stopped, running may be resumed later. This status may indicate a break, a pause, maintenance, or a breakdown—in short, any pause that does not lead the job to be aborted.

Completed – Indicates that the node has been executed correctly, and is finished.

Aborted – Indicates that the process executing the node has been aborted, which means that execution will not be resumed again.

Pool – Indicates that the node processes partitioned resources and that the Status varies depending on the partition keys. Details are provided in the StatusPool element of the node.

Derivation of the Status of a parent node from the Status of child nodes is non-trivial and implementation-dependent.

	Template ?

Clarified in JDF 1.2
	boolean
	R
	Identifies a template that is used to generate JDFs but should not be exchanged as a job description. A Device must reject a job ticket that contains Template="true". Default = “false”.

	TemplateID ?
New in JDF 1.2
	string
	R
	Name or ID that identifies a JDF template. Can be used to differentiate between various templates.

	TemplateVersion ?

New in JDF 1.2
	string
	R
	Version of the JDF template. Can be anything that identifies the version of a template. May be of the form a.b, where a is a major version and b is the minor version, or may be a date and time. Can be updated when the template is modified.

	Type
	NMTOKEN
	L
	Identifies the type of the node. Any JDF process name is a valid type. The processes that have been predefined are listed in Chapter 6, although the flexibility of JDF allows anyone to create processes. In addition to these, there are three values which are described in greater detail in the sections that follow:

Combined

ProcessGroup

Product: Identifies a Product Intent node.

	Types ?
	NMTOKENS
	L
	List of the Type attributes of the nodes that are combined to create this node. This attribute is required if Type = Combined, and is ignored if Type equals any other value. For details on using Combined nodes, see Section 3.2.3.

	Version ?

Modified in JDF 1.1
	string
	RD
	Text that identifies the version of the JDF node. The current version of this specification is “1.1”. The Version attribute is required in the JDF root node.

	xmlns ?

New in JDF 1.1
	URI
	RD
	JDF supports use of XML namespaces. The namespace must be declared in the root JDF element. For details on using namespaces in XML, see http://www.w3.org/TR/REC-xml-names/. For version 1.1 of JDF xmlns, see http://www.CIP4.org/JDFSchema_1_1

	AncestorPool ?
	element
	R
	If this element is present, the current JDF node has been spawned, and this element contains a list of all ancestors prior to spawning. See Section 3.3.

	AuditPool ?
	element
	L
	List of elements that contains all relevant audit information. Audits are intended to serve the requirements of MIS for evaluation and invoicing. See Section 3.10.

	CustomerInfo ?
	element
	D
	Container element for customer-specific information. See Section 3.4.

	JDF *
	element
	L
	Child JDF nodes. The nesting of JDF nodes defines the JDF tree.

In contrast to the elements above, JDF child nodes are not contained in a list element.

	NodeInfo ?
	element
	L
	Container element for process-specific information such as scheduling and messaging setup. Scheduling affects the planned times when a node should be executed. Actual times are saved in the AuditPool. See Section 3.5 for more details.

	ResourceLinkPool ?
	element
	L
	List element for ResourceLink elements, which describe the input and output resources of the node. See Section 3.8 for more details.

	ResourcePool ?
	element
	L

	List element for resources. See Section 3.6 for more details.

	StatusPool ?
	element
	L
	Lists the details of a nodes partition dependent Status if the Status of the node is “Pool”.

3.2 Common Node Types

As was noted in the preceding section, the Type of a node can fall into four categories. The first is comprised of the specific processes of the kind delineated in Chapter 6, known simply as process nodes. The other categories are made up of three enumerative values of the Type attribute: ProcessGroup, Combined, and Product, which is also known as product intent. These three node types are described in this section.

The figure below, which was also presented as an illustration in Chapter 2, represents a theoretical job hierarchy comprised of Product nodes, ProcessGroup nodes, and nodes that represent individual processes. The diagram is divided into three levels to help illustrate the difference between the three kinds of nodes, but these levels do not dictate the hierarchical nesting mechanism of a job. Note, however, that an individual process node may be the child of a product intent node without first being the child of a process group node. Likewise, a process group node may have child nodes that are also process groups.

[image: image45.jpg]Product nodes

Process group nodes

6686 dob e O\

Individual Process nodes

Figure 3.3 Job hierarchy with process, process group, and product intent nodes

3.2.1 Product Intent Nodes

Except in certain specific circumstances, the agent assigned to begin writing a JDF job will very likely not know every process detail needed to produce the desired results. For example, an agent that is a job-estimating or job-submission tool may not know what devices can execute various steps, or even which steps will be required.

If this is the case, the initiating agent creates a set of top-level nodes to specify the product intent, without providing any of the processing details. Subsequent agents then add nodes below these top-level nodes to provide the processing details needed to fulfill the intent specified.

These top-level nodes have a Type attribute value of Product to indicate that they do not specify any processing. All processing needed to produce the products described in these nodes must be specified in Process nodes, which exist lower in the job hierarchy.

Product nodes include intent resources that describe the end results the customer is requesting. The intent resources that have already been defined for JDF are easily recognizable, as they contain the word “intent” in their titles. Examples include FoldingIntent and ColorIntent. All intent resources share a set of common subelements, which are described in Section 7.1.1 Intent Resource Span Subelements. These resources do not attempt to define the processing needed to achieve the desired results; instead they provide a forum to define a range of acceptable possibilities for executing a job.

Each Product Intent node should contain at most one ResourceLink for one type of intent resource. If multiple product parts with different intents are required, each part has its own Product Intent node. DeliveryIntent resources are a notable exception. Specifying multiple DeliveryIntent resources effectively requests multiple options of a quote. For more information about product intent, see Section 4.1.1 Product Intent Constructs.

3.2.2 Process Group Nodes

Intermediate nodes in the JDF job hierarchy—i.e., nodes 4, 5, and 6 in Figure 3.3—describe groups of processes. The Type attribute value of these kinds of nodes is ProcessGroup. These nodes are used to describe multiple steps in a process chain that have common resources or scheduling data.

Since the agent writing the job has the option of grouping processes in any way that seems logical, custom workflows can be modeled flexibly. Process group nodes may contain further process group nodes, individual process nodes, or a mixture of both node types. Sequencing of process group nodes should be defined by linking resources of the appropriate leaves or, if the nature of the interchange resources is unknown, by linking PlaceHolder resources.

The higher the level of the process group nodes within the hierarchy, the larger the number of processes the group contains. A high level process group node might include, for example, prepress, finishing, or printing processes. Lower level process groups, on the other hand, define a set of individual steps that are executed as a group of steps in the individual workflow hierarchy. For example, all steps performed by one designated individual may be grouped in a lower level process group.

The following example shows the ResourceLink structure for a ProcessGroup in-line finishing node. Note the presence of intermediate component links that link the individual processes. The corresponding Components have been omitted for brevity.

<JDF Type = ”ProcessGroup” ID = ”J1”>

 <JDF Type = ”DigitalPrinting” ID = ”J2”>

 <ResourceLinkPool>

<!-- digital printing parameters -->

 <DigitalPrintingParamsLink Usage="Input" rRef="L1"/>

<!-- input sheets -->

 <MediaLink Usage="Input" rRef="L2"/>

<!-- printed output components -->

 <ComponentLink Usage="Output" rRef="L3"/>

 </ResourceLinkPool>

 </JDF>

 <JDF Type = ”Gathering” ID = ”J3”>

 <ResourceLinkPool>

<!-- gathering parameters -->

 <GatheringParamsLink Usage="Input" rRef="L4"/>

<!-- printed output components -->

 < ComponentLink Usage="Input" rRef="L3"/>

<!-- gathered output components -->

 < ComponentLink Usage="Output" rRef="L5"/>

 </ResourceLinkPool>

 </JDF>

 <JDF Type = ”Stitching” ID = ”J4”>

 <ResourceLinkPool>

<!-- Stitching parameters -->

<StitchingParamsLink Usage="Input" rRef="L6"/>

<!-- gathered output components -->

 <ComponentLink Usage="Input" rRef="L5"/>

<!-- stitched output components -->

 <ComponentLink Usage="Output" rRef="L7"/>

 </ResourceLinkPool>

 </JDF>

</JDF>

3.2.3 Combined Process Nodes

Clarified in JDF 1.2
[Clarified the order of the Types attribute]
The processes described in Chapter 6 Processes define individual workflow steps that are assumed to be executed by a single-purpose device. Many devices, however, are able to combine the functionality of multiple single-purpose devices and execute more than one process. For example, a digital printer may be able to execute the Interpreting, Rendering, and DigitalPrinting processes. To accommodate such devices, JDF allows processes to be grouped within a node whose Type = Combined. Such a node must also contain a Types attribute, which in turn contains an ordered list of the Type values of each of processes that the node specifies. The ordering of the process names in the Types attribute specifies the ordering in which the processes are assumed to be executed. If the final product result would be indistinquishable, the Device may change the execution order of the processes from that given in the Types attribute.

Furthermore, ResourceLink elements in Combined nodes should specify a CombinedProcessIndex attribute in order to define the subprocess to which the resource belongs. Combined nodes are leaf nodes and must not contain further nested JDF nodes.

A device with multiple processing capabilities is able to recognize the Combined node as a single unit of work that it can execute. Therefore, all resources for each of the subtasks that define the Combined node and that are explicitly defined as ResourceLinks must be available before the node can be executed. In addition, all input and output resources that are consumed and produced externally by the process must be specified in the ResourceLinkPool element of the node. This includes all required Parameter resources as well as the initial input resources and final output resources. Intermediate resources that are internally produced and consumed, on the other hand, need not be specified.

In a combined process node, the information defined by the various resources linked as input to the various subprocesses are logically available to all processes of the combined node. In situations where the parameter resource of more then one subprocess specifies the mapping of sheet surface content to media, the subprocess that specifies such a mapping that is defined earliest in the Types attribute list must be used, and any other mappings specified by any down-stream subprocess Resource must be ignored.

3.2.3.1 Combined Process Nodes with Multiple Processes of the Same Type

A Combined node may contain multiple instances of the same process type, e.g. Types = “Cutting Folding Cutting”. In this case, the ordering and mapping of links processes is significant – the parameters of the first Cutting process are most likely to be different from those of the second Cutting process. Mapping is accomplished using the CombinedProcessIndex attribute in the respective ResourceLink.

<JDF Type = ”Combined” Types = ”Cutting Folding Cutting” ID = ”J1”>

<!—Resources (incomplete…) -->

 <ResourcePool>

<!-- parameters of the first Cutting Process-->

 <CuttingParams ID="L1"/>

<!-- Folding parameters -->

 <FoldingParams ID="L2"/>

<!-- parameters of the third Cutting Process-->

 <CuttingParams ID="L3"/>

<!-- raw input components -->

 <Component ID="L4"/>

<!-- completed output components -->

 <Component ID="L5"/>

 </ResourcePool>

<!-- Links -->

 <ResourceLinkPool>

<!-- parameters of the first Cutting Process-->

 <CuttingParamsLink Usage="Input" CombinedProcessIndex="0" rRef="L1"/>

<!-- Folding parameters -->

 <FoldingParamsLink Usage="Input" CombinedProcessIndex="1" rRef="L2"/>

<!-- parameters of the first Cutting Process-->

 <CuttingParamsLink Usage="Input" CombinedProcessIndex="2" rRef="L3"/>

<!-- raw input components -->

 <ComponentLink Usage="Input" rRef="L4"/>

<!-- completed output components -->

 <ComponentLink Usage="Output" rRef="L5"/>

 </ResourceLinkPool>

</JDF>

3.2.3.2 Examples of Combined Process Nodes

The following example of the ResourceLinkPool of a JDF node describes digital printing with in-line finishing and includes the same processes as the previous ProcessGroup example. The node requires the parameter resources and consumable resources of all three processes as inputs, and produces a completed booklet as output. The intermediate printed sheets and gathered piles are not declared, since they exist only internally within the device and cannot be accessed or manipulated by an external controller.

<JDF Type = “Combined” Types = ”DigitalPrinting Gathering Stitching” ID = “J1”>

 <ResourceLinkPool>

<!-- digital printing parameters -->

<DigitalPrintingParamsLink Usage="Input" CombinedProcessIndex="0" rRef="L1"/>

<!-- gathering parameters -->

 <GatheringParamsLink Usage="Input" CombinedProcessIndex="1" rRef="L4"/>

<!-- Stitching parameters -->

 <StitchingParamsLink Usage="Input" CombinedProcessIndex="2" rRef="L6"/>

<!-- input sheets -->

 <MediaLink Usage="Input" CombinedProcessIndex="0" rRef="L2"/>

<!-- stitched output components -->

 <ComponentLink Usage="Output" CombinedProcessIndex="2" rRef="L7"/>

 </ResourceLinkPool>

</JDF>

3.2.4 Process Nodes

Process nodes represent the very lowest level in a job hierarchy. They must not contain further nested JDF nodes, as every process node is a leaf node. These nodes define the smallest work unit that may be scheduled and executed individually within the JDF workflow model. In Figure 3.6 below, nodes 7-17 represent process nodes. The various individual process node types are specified in Chapter 6 Processes.

3.3 AncestorPool

[image: image127.jpg])

When a job is spawned, an AncestorPool is created in the spawned job to identify its parents and grandparents. This allows storing of information about job context in a spawned node as well as allowing the job to be correctly merged with its parent after it is completed. The AncestorPool element is only required in the root of a spawned job. Spawning and merging is described in Section 4.4 Spawning and Merging. The AncestorPool element contains an ordered list of one or more Ancestor elements, which reflect the family tree of a spawned job. Each Ancestor element identifies exactly one ancestor node. The ancestor nodes reside in the original job where the job with the AncestorPool has been spawned off. The position of the Ancestor element in the ordered list defines the position in the family tree. The first element in the list is the original root element, the last element in the list is the parent, the last but one the grandparent, and so on. The following table lists the contents of an AncestorPool element.

Table 3‑4 Contents of the AncestorPool element

	Name
	Data Type
	Description

	Ancestor +
	element
	Ordered list of one or more Ancestor elements, which reflect the family tree of a spawned job.

	Part *

New in JDF 1.1
	element
	List of parts that this node was spawned with. Used in case of parallel Spawning of a node.

An Ancestor element may contain read only copies of all the attributes of the node that it represents with the exception of the ID attribute, which must be copied to the NodeID attribute of that Ancestor element. Ancestor elements cannot, however, contain further subelements except for read only copies of CustomerInfo and NodeInfo. The attributes of Ancestor elements are described in

Table 3‑5 Attributes of the Ancestor element

	Name
	Data Type
	Description

	Activation ?
	enumeration
	Copy of the Activation attribute from the ancestor node. For details, see Table 3‑3.

	FileName ?
	URL
	The URL of the JDF file where the ancestor node resided prior to spawning.

	JobID ?
	string
	Copy of the JobID attribute from the ancestor node. For details, see Table 3‑3.

	JobPartID ?
	string
	Copy of the JobPartID attribute from the original ancestor node. For details, see Table 3‑3.

	NodeID
	NMTOKEN

	Copy of the ID attribute of the ancestor node.

	ProjectID ?
	string
	Identification of the project context that this JDF belongs to. Used by the application that created the JDF job.

	SpawnID ?

New in JDF 1.1
	NMTOKEN
	Copy of the SpawnID attribute of the ancestor node.

	Status ?
	enumeration
	Copy of the Status attribute from the original ancestor node. For details, see Table 3‑3.

	Type ?
	NMTOKEN
	Copy of the Type attribute from the original ancestor node. For details, see Table 3‑3.

	Types ?
	NMTOKENS
	Copy of the Types attribute from the original ancestor node. For details, see Table 3‑3.

	Version ?
	string
	Copy of the Version attribute from the original ancestor node. For details, see Table 3‑3.

	CustomerInfo ?

New in JDF 1.1
	element
	Reference copy of the CustomerInfo element from the original node. For details, see Table 3‑3.

	NodeInfo ?

New in JDF 1.1
	element
	Reference copy of the NodeInfo element from the original node. For details, see Table 3‑3.

3.4 Customer Information

[image: image128.jpg]

The CustomerInfo element contains information about the customer who orders the job. Usually, this element is specified in the uppermost node of a job (that is, the root node), although it is also valid in lower nodes in situations such as model subcontracting. Table 3‑6 Contents of the CustomerInfo element describes the contents of this element.

Table 3‑6 Contents of the CustomerInfo element

	Name
	Data Type
	Description

	BillingCode ?
	string
	A code to bill charges incurred while executing the node.

	CustomerID ?
	string
	Customer identification used by the application that created the job. This is usually the internal customer number of the MIS system that created the job.

	CustomerJobName ?
	string
	The name that the customer uses to refer to the job.

	CustomerOrderID ?
	string
	The internal order number in the system of the customer. This number is usually provided when the order is placed and then referenced on the order confirmation or the bill.

	rRefs ?
	IDREFS
	Array of IDs of any elements that are specified as ResourceRef elements. In this version it will be the IDREF of a ContactRef
.

	Company ?

Deprecated in JDF 1.1
	refelement
	Resource element describing the business or organization of the contact. In JDF 1.1 and beyond, Company affiliation of Contacts is specified in Contact.

	Contact *

New in JDF 1.1
	refelement
	Resource element describing contacts associated with the customer. There must be one Contact which has ContactTypes including “Customer”.

3.5 Node Information

The NodeInfo element contains information about planned scheduling and message routing. It allows MIS to plan, schedule and invoice jobs or job parts. Table 3‑7 Contents of the NodeInfo element describes the contents of the NodeInfo element.

Table 3‑7 Contents of the NodeInfo element

	Name
	Data Type
	Description

	CleanupDuration ?
	duration
	Estimated duration of the clean-up phase of the process.

	DueLevel ?
	enumeration
	Description of the severity of a missed deadline. Possible values are:

Unknown – Default value. Consequences of missing the deadline are not known.

Trivial – Missing the deadline has minor or no consequences.

Penalty – Missing the deadline incurs a penalty.

JobCancelled – The job is cancelled if the deadline is missed.

	End ?
	dateTime
	Date and time at which the process is scheduled to end.

	FirstEnd ?
	dateTime
	Earliest date and time at which the process may end.

	FirstStart ?
	dateTime
	Earliest date and time at which the process may begin.

	IPPVersion ?

New in JDF 1.1
	XYPair
	A pair of numbers indicating the version of the IPP protocol to use when communicating to IPP devices. The X value is the major version number.

Default = system specified

	JobPriority ?

New in JDF 1.1
	integer
	The scheduling priority for the job where 100 is the highest and 1 is the lowest. Amongst the jobs that can be printed, all higher priority jobs should be printed before any lower priority ones. If one of the deadline oriented attributes, e.g., FirstStart or LastEnd and JobPriority are specified, the deadline oriented attributes must be honored before considering JobPriority.

Default = 50.

	LastEnd ?
	dateTime
	Latest date and time at which the process may end. This is the deadline to which DueLevel refers.

	LastStart ?
	dateTime
	Latest date and time at which the process may begin.

	NaturalLang ?

New in JDF 1.1
	language
	Language selected for communicating attributes. If not specified, the operating system language is assumed.

	MergeTarget ?

Deprecated in JDF 1.1
	boolean
	If MergeTarget = true and this node has been spawned, it must be merged with its direct ancestor by the controller that executes this node. The path of the ancestor is specified in the last Ancestor element located in the AncestorPool of this node. It is an error to specify both MergeTarget and TargetRoute in one node.

Default = false, which means that some other controller will take care of merging.

Note: MergeTarget has been deprecated in JDF 1.1 because avoiding concurrent access to the ancestor node is ill defined and cannot be implemented in an open system without proprietary locking mechanisms.

	Route ?
	URL
	The URL of the controller or device that should execute this node. If URL is not specified, the routing controller must determine a potential controller or device independently. For details, see Process Routing

	rRefs ?
	IDREFS
	Array of IDs of any elements that are specified as ResourceRef elements. In this version it may be the IDREF of a JMFRef or EmployeeRef
.

	SetupDuration ?
	duration
	Estimated duration of the setup phase of the process.

	Start ?
	dateTime
	Date and time of the planned process start.

	TargetRoute ?
	URL
	The URL where the JDF should be sent after completion. If TargetRoute is not specified, it defaults to the input Route attribute of the subsequent node in the process chain. If this is also not known, the JDF should be sent to the processor default output URL.

	TotalDuration ?
	duration
	Estimated total duration of the process, including setup and cleanup.

	BusinessInfo?
	element
	Container for business related information. It is expected that JDF will be utilized in conjunction with other eCommerce standards, and this container is provided to store the eCommerce information within JDF in case a workflow with JDF as the root level document is desired. When JDF is used as part of an eCommerce solution such as PrintTalk, the information given in the envelope document overrides the information in BusinessInfo.

	Employee ?
	refelement
	The internal administrator or supervisor that is responsible for the product or process defined in this node.

	JMF *
	element
	Represents JMF query messages that set up a persistent channel, as described in Section 5.2.2.3 Persistent Channels. These message elements define the receiver that is designated to track jobs via JMF messages. These message elements should be honored by any JMF-capable controller or device that executes this node. When these messages are honored, a persistent communication channel is established that allows devices to transmit, for example, the status of the job as JMF Signals.

	NotificationFilter *
	element
	Defines the set of Notification elements that should be logged in the AuditPool. This provides a logging method for devices that do no not support JMF messaging. For details of the NotificationFilter element, see 5.5.1.1 Events.

3.6 StatusPool

The StatusPool describes the Status of a JDF node that processes partitioned resources. StatusPool elements are only valid if the node’s Status=”Pool”, otherwise the node’s Status is valid for all parts, regardless of the contents of StatusPool. It may contain PartStatus elements that define the node’s status with respect to specific partitions. It is an error to define PartStatus elements that reference identical or overlapping parts within one StatusPool. Partitioned resources are described in Section 3.9.2 Description of Partitionable Resources.

Table 3‑8 Contents of the StatusPool element

	Name
	Data Type
	Description

	Status ?
	enumeration
	Identifies the status of the node. The Status of individual partitions may be overwritten by PartStatus elements. Possible values are all valid Status attributes of a JDF node except “Pool” are valid as defined in Table 3‑3 Contents of a JDF node, Status.

	PartStatus *
	element
	Element that defines the node’s status for a set of parts.

The following table describes the PartStatus element.

Table 3‑9 Contents of the PartStatus element

	Name
	Data Type
	Description

	Status ?
	enumeration
	Identifies the status of an individual part of the node. Overwrites the Status attribute defined in StatusPool. Possible values are identical to those defined in: Status

	Part

Modified in JDF 1.1
	element
	Specifies the selected part that the PartStatus is valid for. This must be a leaf partition of the resource.

3.7 Resources

Resources represent the “things” that are produced or consumed by processes. They may be physical items such as inks, plates, or glue; electronic items such as files or images; or conceptual items such as parameters and device settings. Processes describe what resources they input or output through ResourceLinks, discussed in Section 3.8 Resource Links. By examining the input and outputs of a set of processes, it is possible to determine process dependencies, and therefore job routing.

All resources are contained in the ResourcePool element of a node. The ResourcePool element is described in the following table.

Table 3‑10 Contents of the ResourcePool element

	Name
	Data Type
	Description

	Resource *
	element
	List of Resource elements. The Resource elements are abstract and serve as placeholders for any resource type.

Like the Type attribute in abstract JDF nodes, the Class attribute in Resource elements helps to identify how particular resources should be used. This attribute contains seven values, and all resources fall under one of these seven classifications. For example, all resources whose Class = Consumable are physical resources that will be consumed over the course of the process. These values are listed in Table 3‑11, below, and are described in greater detail in the sections that follow.

Table 3‑11 Contents of the abstract Resource element

	Name
	Data Type
	Description

	CatalogID ?
	string
	Identification of the resource e.g. in a catalog environment. Defaults to the ProductID.

	CatalogDetails ?
	string
	Additional details of a resource in a catalog environment.

	Class
	enumeration
	Defines the abstract resource type. For details, see the sections that follow. Possible values are:

Consumable

Handling

Implementation

Intent

Parameter

PlaceHolder

Quantity

	ID
	ID
	Unique identifier of a resource.

	Locked ?
	boolean
	If true, the resource is referenced by an Audit and cannot be modified without invalidating the Audit.

Default = false

	PipeID ?
	string
	If this attribute exists, the resource is a pipe. The PipeID is used by JMF pipe-control messages to identify the pipe. For more information, see Section 4.3.2 Overlapping Processing Using Pipes.

	ProductID ?
	string
	An ID of the resource as defined in the MIS system.

	rRefs ?
	IDREFS
	Array of IDs of internally referenced resources.

	SettingsPolicy ?

New in JDF 1.1
	enumeration
	The policy for this Resource indicates what happens when unsupported settings, i.e., subelements, attributes, or attribute values, are present. A JDF Consumer must support this attribute and all of the defined values so that an Agent can depend on the JDF Consumer following the policy requested by the Agent in a JDF instance. Possible values are:
BestEffort = Substitute or ignore unsupported attributes, attribute values, default attribute values, or elements and continue processing the job.

MustHonor = Reject the job when (1) any unsupported attributes, attribute values, or elements are present or (2) any omitted attributes have an unsupported default value defined in this specification.

OperatorIntervention = Pause the job and query the operator when (1) any unsupported attributes, attribute values, or elements are present or (2) any omitted attributes have an unsupported default value defined in this specification. If a device has no operator intervention capabilities, OperatorIntervention is treated as MustHonor.

If not specified, the value defined for the node that this resource resides in is used.

	SpawnIDs ?

New in JDF 1.1
	NMTOKENS
	List of SpawnIDs. This is used as a reference count how often the resource has been spawned.

	SpawnStatus ?
	enumeration
	The spawn status of a node indicates whether or not a node has been spawned, and under what circumstances. The list is assumed to be ordered, so that the SpawnStatus of a resource that has rRefs entries is defined as the maximum SpawnStatus of all recursively linked resources. Possible values are:

NotSpawned – Default value. Indicates that the resource has not been copied to another process.

SpawnedRO – Indicates that the resource has been copied to another process where it cannot be modified. RO stands for read-only.

SpawnedRW – Indicates that the resource has been copied to another process where it can be modified. RW stands for read/write.

	Status

Modified in JDF 1.1
	enumeration
	The status of a node indicates under what circumstances it may be processed or modified. The list is assumed to be ordered, so that the Status of a resource that has rRefs entries is defined as the minimum Status of all recursively linked resources. Possible values are:

Incomplete – Indicates that the resource does not exist, and the metadata is not yet valid.

Unavailable – Indicates that the resource is not ready to be used or that the resource in the real world represented by the physical resource in JDF is not available for processing. The metadata is valid.

InUse – Indicates that the resource exists, but is in use by another process. Also used for active pipes (see Sections 3.7.3 and 4.3.2).

Draft – Indicates that the resource exists in a state that is sufficient for setting up the next process but not for production.

Complete – Indicates that the resource is completely specified and the parameters are valid for usage. A physical resource with Status = Complete is not yet available for production, although it is sufficiently specified for a process that references it through a ResourceRef from a parameter resource to commence execution.

Available – Indicates that the whole resource is available for usage.

	UpdateID ?

New in JDF 1.1
	NMTOKEN
	Unique ID that identifies the Resource or Resource partition. Note that only one Resource, Resource partition or ResourceUpdate with a given value of UpdateID may occur per JDF document, even though the scope of the ResourceUpdate is local to the resource that it is defined in.

Figure 3.4 shows the structure of the abstract resource classes defined above. Arrows define inheritance relations and the thin orthogonal lines describe containing relations.

[image: image46.jpg]ResourcePool? !

Resource* |

Catalogbetails?
CatalogID?
Class

ID

Locked?

PipeID?
ProductID?
rRefs?
SettingsPolicy?
SpawnIDs?
SpawnStatus?
Status

UpdateID ?

——— == —— =

P
\PlaceHolder |

PlaceHolderResource

o g

| Implementation|

__NJ

[Device) [Employee |

|Handling |

=

ExposedMedia

Parameter

BlockPreparationParams |

' NoOp?

ConventionalPrintingParams |

————— e —

Contact?

PhysicalResource

AlternateBrand?
Amount?
AmountRequired?
BatchID?

Brand?
ResourceWeight?
Unit?

—| IdentificationField*

(.
Location?

—| Address?

* LocationName?
e LocID?

p—

|Quantity

AT

Component

o -

| Consumable

Figure 3.4 Structure of the abstract resource types

3.7.1 Resource Classes

[image: image129.jpg]

The following sections describe the functions of each of the seven values of the Class attribute. All resources fall into one of these classes. In Chapter 7 Resources, the class of each resource is indicated in the Resource Properties subheading.

3.7.1.1 Parameter Resources

Clarified in JDF 1.2
Parameter resources define the details of processes, as well as any non-physical computer data such as files used by a process. They are usually associated with a specific process. For example, a required input resource of the ColorSpaceConversion process is the ColorSpaceConversionParams resource. Most predefined
parameter resources contain the moniker “Params” in their titles. Examples
of Parameter resources include AdhesiveBindingParams and ConventionalPrintingParams.

Table 3‑12 Additional contents of the abstract parameter Resource elements

	Name
	Data Type
	Description

	NoOp ?

New in JDF 1.1
Clarified in JDF 1.2
	boolean
	A value of true indicates that the process step that is parameterized by this resource or resource partition must not be executed. If false or not specified, the Resource is operational and that the process step that is parameterized by this resource or resource partition must be executed. The NoOp must only be used for processes that input and output exchange resources with identical resource type, e.g., RunList or Component.

3.7.1.2 Intent Resources

Intent resources define the details of products to be produced without defining the process to produce them. In addition, they provide structures to define sets of allowable options and to match these selections with prices. The details of all intent resources are described in Section 7.1 Intent Resources. The abstract Intent resource element contains no attributes or elements besides those contained in the abstract Resource element.

3.7.1.3 Implementation Resources

Implementation resources define the devices and operators that execute a given node. Only two implementation resource types are defined: Employee (see Section 7.2.52) and Device, each of which is described in greater detail in the Chapter 7.

Implementation resources can only be used as input resources and may be linked to any process. The abstract Implementation resource element contains no attributes or elements besides those contained in the abstract Resource element. An example demonstrating how to use implementation resources is provided in Section 3.8.2 Links to Implementation Resources.

Note that it is not recommended to specify the capabilities of a Device that is linked to a process to specify that it should execute the given process.

3.7.1.4 Physical Resources (Consumable, Quantity, Handling)

Clarified in JDF 1.2
[Clarified Brand attribute]
Any resource whose Class is Consumable, Quantity, or Handling is considered a physical resource. They are defined as follows:

· [image: image130.jpg]

Consumable resources are resources that are consumed during a process. Examples include Ink and Media. They are the unmodified inputs in a process chain.

· Quantity resources are resources that have been created by a process from either a Consumable resource or an earlier Quantity resource. For example, printed sheets are cut and a pile of cut blocks is created. Component resources are an example of Quantity resources.

· A Handling resource is used during a process, but is not destroyed by that process. ExposedMedia and Tool are examples of such a resource, although it does describe various kinds of items such as film and plates. A Handling resource may be created from a Consumable resource.

Table 3‑13 Additional contents of the abstract physical Resource elements defines the additional attributes and elements that may be defined for physical resources. The processes that consume physical resources—any kind of physical resource—have the option of using these attributes and elements to determine in what way the resources should be consumed. Table 3‑13 Additional contents of the abstract physical Resource elements then describes the contents of the Location subelement of physical resource elements.

Table 3‑13 Additional contents of the abstract physical Resource elements

	Name
	Data Type
	Description

	AlternateBrand ?
	string
	Information, such as the manufacturer or type, about a resource compatible to that specified by the Brand attribute, which is described below.

	Amount ?
	number
	Actual amount of the resource that is available.

Note that the amount of consumption and production of a node is specified in the corresponding resource links.

	AmountRequired ?
	number
	Total amount of the resource that is referenced by all nodes that will consume this resource. This corresponds to the sum of all Amount values of input resource links that reference this resource.

	BatchID ?
	string
	ID of a specific batch of the physical resource

	Brand ?

	string
	Information, such as the manufacturer, model, part number, and/or type, about the resource being used. Some examples are as follows:

XYZ Premium InkProp Glossy 6x642A
ZYX Premium Multipurpose 1234, 88 Bright 24 lb. Bond, 8-1/2 x 11, White Copy Paper Reorder 4711

	ResourceWeight ?

New in JDF 1.1
	double
	Weight of a single component of the resource in grams.

	Unit ?
	NMTOKEN
	Unit of measurement for the values of Amount and AmountRequired. Note that it is strongly discouraged to specify units other than those that are defined in Units

	Weight ?

Illegal in 1.1
	double
	Weight of a single component of the resource in grams. This parameter collides with Media::Weight and is therefore illegal and has been replaced with ResourceWeight in version 1.1 and beyond.

	Contact ?
	refelement
	If this element is specified, it describes the owner of the resource.

	IdentificationField *

New in JDF 1.1
	refelement
	If this element is specified, a bar code or label is associated with this physical resource.

	Location ?
	refelement
	Description of details of the resource location.

Note, in order to describe multiple locations, resources may be partitioned by the Location-key as described in Section 3.9.2 Description of Partitionable Resources.

Structure of Location Subelement

Table 3‑14 Contents of the Location element

	Name
	Data Type
	Description

	LocationName ?

New in JDF 1.1
	string
	Name of the location, e.g., for example in MIS. This part key allows to describe distributed resources.

	LocID ?
	string
	Location identifier, e.g., within a warehouse system.

	Address ?
	refelement
	Address of the storage facility. For more information, see Section 7.2.2.

3.7.1.5 PlaceHolder Resources

PlaceHolder resources, unlike physical resources, do not describe any logical or physical entity. Rather, they define process linking and help to define process ordering when the exact nature of interchange resources is still unknown. In essence, they serve as placeholders that stand in for defined resources. Using PlaceHolder resources, a processing skeleton can be constructed that gives a basic shape to a job. The appropriate resources can be substituted for PlaceHolder resources when they become known.

This kind of resource should only be used to link nodes of Type = ProcessGroup, since process leaf nodes have well defined resources that should be used in preference. The only resource whose Class = PlaceHolder is called PlaceHolderResource.

Like Parameter and Implementation resources, PlaceHolder resources contain no attributes besides those contained in the abstract Resource element.

3.7.1.6 Selector Resources

Removed in JDF 1.1

Resources of class Selector have been removed in JDF version 1.1 and higher. Note that they are not only deprecated but actually removed from the format including the schema and must not be supported by a JDF 1.1 conforming agent
3.7.2 Position of Resources within JDF Nodes

Resources may exist in any JDF node, but JDF nodes may only reference local or global resources. In other words, JDF nodes may only reference resources in the two kinds of locations: in the node’s own ResourcePool element or in JDF nodes that are hierarchically closer to the JDF root. An exception to this rule, however, occurs if two independent jobs are merged for a process step and are to be separated afterwards, as is the case when two independent jobs are printed on the same web-fed press. For further details on independent job merging, see Section 4.4.5 Case 5: Spawning and Merging of Independent Jobs.

It is good practice to put resources into the highest-level node that references the resource. For example, the RenderingParams resource should be located in the Rendering node, unless it is used by multiple Rendering processes, in which case it should be located in the ProcessGroup node that contains the Rendering process nodes. Resources that link more than one node should be placed in the parent node of the siblings that are linked by the resource.

A process that needs additional detailed process information specifying the creation of a resource must infer this information by explicitly linking to the appropriate parameter resource.

3.7.3 Pipe Resources

A Pipe describes the resource dependency in which a process begins to consume a resource while it is being produced by another process. For example, stacking components while they are being printed, or consuming a data stream while it is being written by an upstream process.

Using dynamic pipe control, a downstream process may control the total quantity produced by an upstream process, and/or the quantity buffered by an inter-process transport device (i.e. Conveyor belt.) Additional description of pipes and process communication via pipes is provided in Section 4.3.2 Overlapping Processing Using Pipes.

Resources may contain a string attribute called PipeID that declares the resource to be a pipe, and identifies it in a dynamic-pipe messaging environment. A pipe that is also controlled by JMF pipe messages is called dynamic pipe. For more information about dynamic pipes, see Section 4.3.2.2 Dynamic Pipes.

3.7.4 ResourceUpdate Elements

New in JDF 1.1
[3 typos in example, clarify that a Resource can have an UpdateID too. ISSUE are the clarifications correct?]
ResourceUpdate elements are an abstract element class that optionally contains any of the attributes and elements valid for the Resource that they reside in. Required attributes and elements of resources are optional in the respective ResourceUpdate. In addition, a ResourceUpdate defined within a Resource must contain a unique UpdateID of type NMTOKEN. Only devices that process the resource as input can reference the UpdateID of a ResourceUpdate. Such references to ResourceUpdate elements must update the current state of the device.

When a ResourceUpdate is referenced from a device, e.g., from a PPML TicketRef element, said device will update ONLY those elements that are explicitly specified within the ResourceUpdate . No attributes are inherited from the Resource that contains the ResourceUpdate.

ResourceUpdate elements are useful for process input resources only and must not be applied to product intent resources.

Table 3‑15 Contents of the abstract ResourceUpdate Element

	Name
	Data Type
	Description

	UpdateID

New in JDF 1.1
	NMTOKEN
	Unique ID that identifies the ResourceUpdate . Note that only one Resource, Resource partition or ResourceUpdate with a given value of UpdateID may occur per JDF document, even though the scope of the ResourceUpdate is local to the resource that it is defined in.

Example:

The following example shows ResourceUpdate elements in highlight.

<JDF xmlns=”http://www.CIP4.org/JDFSchema_1_1” ID="MyCombinedProcessNode" Status="Ready" Type="Combined"

Types="Interpreting Rendering DigitalPrinting" Version="1.1">
<ResourceLinkPool>

 <InterpretingParamsLink rRef=”PDFIParams” Usage=”Input” CombinedProcessIndex=”0”/>

 <RenderingParamsLink rRef=”RParams” Usage=”Input” CombinedProcessIndex=”1”/>

 <DigitalPrintingParamsLink rRef=”DPParams” Usage=”Input” CombinedProcessIndex=”2"/>

. . .

</ResourceLinkPool>

<ResourcePool>

 <Media ID="White" … />

 <InterpretingParams ID="PDFIParams" Class="Parameter" Status="Available" PrintQuality="High" Polarity="Positive" EmitPDFTransfers="false" UpdateID="SetPrintQualityDefault">
 <InterpretingParamsUpdate UpdateID=”SetNegativePolarity” Polarity=”Negative”/>

 <InterpretingParamsUpdate UpdateID=”SetPositivePolarity” Polarity=”Positive”/>

 <InterpretingParamsUpdate UpdateID=”SetPrintQualityDraft” PrintQuality=”Draft”/>

 <InterpretingParamsUpdate UpdateID=”SetPrintQualityNormal” PrintQuality=”Normal”/>

 <InterpretingParamsUpdate UpdateID=”SetPrintQualityHigh” PrintQuality=”High”/>
 </InterpretingParams>

 <RenderingParams ID="RParams" Class="Parameter" Status="Available">

 <AutomatedOverprintParams OverPrintBlackText="true" OverPrintBlackLineArt="true"/>

 </RenderingParams>
 <DigitalPrintingParams ID="DPParams" Class="Parameter" Status="Available" PrintingType="Sheet">

 <MediaRef rRef="White" MediaLocation=”WhiteTray” UpdateID=”SetMediaDefault”/>

 <DigitalPrintingParamsUpdate UpdateID=”SetMediaYellow”>

 <Media ID="Yellow" MediaLocation=”YellowTray” />

 </DigitalPrintingParamsUpdate>
 </DigitalPrintingParams>
. . .

</ResourcePool>

</JDF>

3.8 Resource Links

[correction]
ResourceLinks describe what resources a node uses, and how it uses them. They also allow node dependencies to be calculated. The following diagram summarizes resource linking within a JDF node. In this example there are two resources, A and B, which are placed in the node’s ResourcePool. To reference the resources, the node has two resource links, ALink and BLink, in the ResourceLinkPool. The resource links are named by appending “Link” to the type of resource referenced. Resource B also contains a reference to resource A, called ARef. References to resources from within resources are named by appending “Ref” to the type of resource referenced.

[image: image47.jpg]ARel

Figure 3.5 Resource Links and ResourceRefs

The previous section described resources used by the node in which it resides. This section describes how resources may serve as links between nodes. As was described in Section 2.2 JDF Workflow, any resource that is the output of one process will very likely serve as an input of a subsequent process
. Furthermore, some resources are shared between ancestor nodes and their child nodes.

Each JDF node contains a ResourceLinkPool element that in turn contains all of the ResourceLink elements that link the node to the resources it uses. They also define whether the resources are inputs or outputs. These inputs and outputs provide conceptual links between the execution elements of JDF nodes. Outputs of one node may in turn become inputs in another node, and a given node must not be executed before all required input resources are available.
 Figure 3.6 shows two processes that are linked by a resource. The resource represents the output of Node 1, which in turn becomes an input for Node 2.

[image: image48.jpg]output Resource input

Example:

Figure 3.6 Nodes linked by a resource

ResourceLink elements may also contain optional attributes to select a part of a resource, such as a single separation. A detailed description of resource partitioning is given in Section 3.9.2 Description of Partitionable Resources.

ProcessGroup and Product nodes may be defined without the knowledge of the individual process nodes that define a specific workflow. In this case, these intermediate nodes will contain ResourceLink elements that link the appropriate resources. For example, a prepress node may be defined that produces a set of plates. When the processes for creating the plates are defined in detail, the agent that writes the nodes may remove the ResourceLink elements from the intermediate node. Removing the ResourceLink specifies that the intermediate node may execute; that is, it may be sent to the appropriate controller or department, even though the specific resources are not yet available. If the ResourceLinks are not removed, the intermediate node must not execute until the input resources that are linked are available.

Resource links may be used for process control. For example, if a proof input resource is required for a print process, a print run may only commence when the proof is signed. The JDF format specification also includes a complete specification of how resources are managed when JDF tickets are spawned and merged.

In some cases, determining whether information should be stored in an input or an output resource may be difficult, as the distinction can be ambiguous. For example, is the definition of the color of a separation in the RIP process a property of the output separation or a parameter that describes the RIP process? In order to reduce this ambiguity, the following rules have been applied for the definition of input and output resources of processes as described in Chapter 6 Processes and Chapter 7 Resources:

· Product intent and process parameters are generally input resources, except when one process defines the parameters of a subsequent process.

· Consumable resources are always input resources.

· Quantity and Handling resources are used both as input and output resources. Their usage is defined by the “natural” process usage. For example, a printing plate is described as an ExposedMedia resource that is the output of a ImageSetting process and the input of a ConventionalPrinting process.

· Printed material is exchanged from node to node using the Component resource. Product intent nodes also create Component output resources.

· Every detailed process description must be defined as an input parameter of the first process where it is referenced. This means that a device must not imply process parameters from its output resources. For example, paper grammage MAY be defined in the Component output resource of the printing process but MUST be defined as an input parameter of the Media of the printing process.

· Any resource parameter that is used must be referenced explicitly. Resource parameters cannot be inferred by following the chain of nodes backwards. This would make spawning of nodes non-local.

· The last process in a chain of processes defines the output resource of its parent process.

· In case of parallel processing, the sum of the outputs of all parallel subnodes defines the output of the parent node.

[image: image131.jpg]

Figure 3.7 Structure of the abstract ResourceLink types

Like Resource elements, ResourceLink elements are an abstract data type. The class tree of abstract ResourceLink elements is further subdivided into classes defined by the Class attribute of the resource that it references. Individual instances of ResourceLink elements are named by appending the suffix “Link” to the name of the referenced resource. For example the link to a Component resource is entitled ComponentLink and the link to a ScanParams resource is entitled ScanParamsLink. The following eight abstract resource link classes exist:

· ParameterLink

· ImplementationLink

· ConsumableLink

· QuantityLink

·
HandlingLink

· PlaceHolderLink

· IntentLink

Each listed class name is described in greater detail in the sections that follow. The following figure shows the abstract resource link types derived from the abstract ResourceLink type.

The following table lists the contents of a ResourceLinkPool element.

Table 3‑16 Contents of the ResourceLinkPool element

	Name
	Data Type
	Description

	ResourceLink *
	element
	List of ResourceLink elements. The ResourceLink elements are abstract and are a placeholder for any resource link element.

The following table lists the possible contents of all ResourceLink elements.

Table 3‑17 Contents of the abstract ResourceLink element

	Name
	Data Type
	Description

	CombinedProcessIndex ?

New in JDF 1.1
	IntegerList
	Combined nodes contain input resources from multiple process nodes. The CombinedProcessIndex attribute specifies the indices of individual processes in the Types attribute to which a ResourceLink in a Combined node belongs. Multiple entries in CombinedProcess​Index specify that the ResourceLink is used by the respective multiple processes in the Combined node.

	CombinedProcessType ?

Deprecated in JDF 1.1
	NMTOKEN
	Combined nodes contain input resources from multiple process nodes. The CombinedProcessType attribute specifies the name individual process to which a ResourceLink in a Combined node belongs. Must match one of the entries in the Types attribute of the node. Replaced by CombinedProcessIndex in JDF 1.1.

	DraftOK ?
	boolean
	If true, the process may commence with a draft resource. Default = false

	PipePartIDKeys ?
	enumerations
	Defines the granularity of a dynamic pipe for a partitioned resource. For instance, a resource may be partitioned by sheet, surface and separation (resource attribute PartIDKeys = SheetName Side Separation), but pipe requests should only be issued once per surface (resource link attribute PipePartIDKeys = SheetName Side). The contents of PipePartIDKeys must be a subset of the PartIDKeys attribute of the resource that is linked by this ResourceLink. If PipePartIDKeys is not specified, it defaults to PartIDKeys, i.e. maximum granularity. For details on partitioned resources, see Section 3.9.2.

	PipeProtocol ?

New in JDF 1.1
	NMTOKEN
	Defines the protocol use for pipe handling. JMF is the only non-proprietary piping protocol that is supported. Proprietary pipe protocols may be specified in addition to those defined below but will not necessarily be interoperable. Allowed values include:

JMF – JMF based PipePush / PipePull messages.

None – No pipe support.

If PipeURL is specified and PipeProtocol is not specified, JMF is assumed.

	PipeURL ?
	URL
	Pipe request URL. Dynamic pipe requests from this end of a pipe should be made to this URL.
 Note that this URL is only used for initiating pipe requests. Responses to a pipe request are issued to the URL that is defined in the PipePush or PipePull message. For details on using PipeURL, see Section 4.3.2.

	ProcessUsage ?
	string
	Identifies the resource usage in the process if multiple resources of the same type are required. For example, this attribute appears when two components—one Cover and one BookBlock—are used in AdhesiveBinding. The allowed values of ProcessUsage are defined in the appropriate process descriptions in Chapter 6 Processes.

	rRef
	IDREF
	Link to the target resource.

	rSubRef ?
	IDREF
	Link to a subelement within the resource.

	Usage
	enumeration
	Resource usage within this JDF node. Possible values are:

Input – The resource is an input.

Output – The resource is an output.

	AmountPool ?

New in JDF 1.1
	element
	Definition of partial amounts and pipe parameters for this ResourceLink. The allowed contents of the AmountPool are described for the various types of resource links in the sections below.

	Part *
	element
	The Part elements identify the parts of a partitioned resource that are referenced by the ResourceLink. The structure of the Part element is defined in Table 3‑25 Contents of the Part element. For details on partitioned resources, see Section 3.9.2.

The following table lists the generic contents of an AmountPool element. Further parameters of the AmountPool are described in the sections below.

Table 3‑18 Contents of the AmountPool element

	Name
	Data Type
	Description

	PartAmount *

New in JDF 1.1
	element
	Element that defines the amounts and pipe parameters for a partitioned resource. The contents of a PartAmount depends on the type of the ResourceLink.

The following table lists the generic contents of a PartAmount element. Further parameters of the PartAmount are described in the respective sections below (Table 3‑20 Contents of the abstract ImplementationLink or PartAmount element and Table 3‑21 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool element). Note that PartAmount inherits values from its parent ResourceLink.

Table 3‑19 General contents of the PartAmount element

	Name
	Data Type
	Description

	DraftOK ?

New in JDF 1.1
	boolean
	If true, the process may commence with a draft resource partition.

	PipeURL ?

New in JDF 1.1
	URL
	Pipe request URL for this partition. Dynamic pipe requests from this end of a pipe should be made to this URL.
 Note that this URL is only used for initiating pipe requests. Responses to a pipe request are issued to the URL that is defined in the PipePush or PipePull message.

For details on using PipeURL, see Section 4.3.2.

	Part

New in JDF 1.1
	element
	Specifies the selected part that the PartAmount is valid for. This must be a leaf partition of the resource.

3.8.1 Links to Parameter Resources

Parameter resources are linked by an instance of a ParameterLink element. These elements contain no further attributes or elements besides those found in the abstract ResourceLink element.

3.8.2 Links to Implementation Resources

Implementation resources are linked by an instance of an ImplementationLink element. Using the resource attributes, the link may specify whether the implementation is a recommendation that may be ignored or a request that must be fulfilled. For example, the job may contain a request that the job be run by a specific, experienced operator. If the value or the Recommendation is true and that operator is ill, he may be replaced by a less experienced operator. If, on the other hand, a product could be created on a device that theoretically can do the job but does not produce sufficient quality, and if it is certain that customer will reject inferior quality, Recommendation should be set to false.

Since implementation ResourceLinks define the usage of a specific device during the course of a job, situations can arise where that resource is not required during the whole processing time. For instance, a forklift that only has to transport the completed components is not required to be available during the entire process run, only during the times when it is needed. This means that, contrary to the general rule that all resources must be Available for node execution to commence, a node may commence when implementation resources are still InUse by other processes if Start or StartOffset are specified. ImplementationLink elements always have a Usage of Input.

Table 3‑20 Contents of the abstract ImplementationLink or PartAmount element

	Name
	Data Type
	Description

	Duration ?
	duration
	Estimated duration during which the resource will be used.

	Recommendation ?
	boolean
	If true and the request cannot be fulfilled, the change may be logged as a Modified Audit and the job may continue. If false, an error occurs if the request is not fulfilled.

Default = false

	Start ?
	dateTime
	Time and date when the usage of the implementation resource starts.

	StartOffset ?
	duration
	Offset time when the resource is required after processing has begun. If both Start and StartOffset are specified, Start has precedence.

The following example shows how the operator Smith is linked to a ConventionalPrinting process as the only valid operator:

<ResourcePool>

 <Employee PersonalID=”007” ID=”L1” Class=”Implementation”>

 <Person FamilyName=”Smith” JobTitle=”Press Operator”>

 </Employee>

</ResourcePool>

…

<ResourceLinkPool>

 <EmployeeLink Recommendation="false" Usage="Input" rRef="L1"/>

</ResourceLinkPool>

3.8.3 Links to Physical Resources

The physical resources that fall into the Consumable, Quantity, and Handling classes are linked, predictably, by the appropriate instances of ConsumableLink, QuantityLink, or HandlingLink resource link elements. Just as physical resources inherit the contents of the abstract resource element, physical resource links inherit the contents of the abstract resource link element. They may, however, contain additional contents. These optional attributes are described in Table 3‑21, below. The attributes in Table 3‑21 may occur either directly in the physical ResourceLink or in AmountPool and PartAmount elements of a resource link.

It is important to note that the order of occurrence of links to physical resources may be significant – most specifically with QuantityLinks. For example, a Gathering process might have among its inputs, links to three component resources. The order of these links indicates the order in which the components should occur in the new, gathered output component.

Table 3‑21 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool element

	Name
	Data Type
	Description

	Amount ?
	number
	For a link with a Usage of ‘Input’, specifies the amount of the resource that is required by the process, in units as defined in the resource.

For a link with a Usage of ‘Output’, specifies the amount of the resource that is to be produced by the process, in units as defined in the resource.

Allows resources to be only partially consumed or produced (see Section 3.9.1 Resource Amount).

	Orientation ?

New in JDF 1.1
	enumeration
	Named orientation describing the transformation of the orientation of a physical resource relative to the ideal process coordinate using this resource as input or output. Allowed values are:

Rotate0:

Rotate90:

Rotate180:

Rotate270:

Flip0:

Flip90:

Flip180:

Flip270:

For details, of the semantics of the enumeration, see Table 2‑3. This is needed to convert the coordinate system of the resource to the coordinate system of the process. Agents should supply one of Orientation or Transformation for resources where they are relevant, e.g., Component. When neither Orientation or Transformation are present, the orientation of the resource is system specified.

If Orientation is specified for an output resource, the node that processes the physical resource should manipulate the resource in such a way as to reflect the transformation. The coordinate system of the resource itself is NOT modified. Only one of Orientation or Transformation may be specified in one ResourceLink.

	PipePause ?
	number
	Parameter for controlling the pausing of a process if the resource amount in the pipe buffer passes the specified value. For details on using PipePause, see Section 4.3.2.

	PipeResume ?
	number
	Parameter for controlling the resumption of a process if the resource amount in the pipe buffer passes the specified value. For details on using PipeResume, see Section 4.3.2.

	RemotePipeEndPause ?
	number
	Parameter for controlling the pausing of a process at the other end of the pipe if the resource amount in the pipe buffer passes the specified value. For details on using RemotePipeEndPause, see Section 4.3.2.

	RemotePipeEndResume ?
	number
	Parameter for controlling the resumption of a process at the other end of the pipe if the resource amount in the pipe buffer passes the specified value. For details on using RemotePipeEndResume, see Section 4.3.2.

	Transformation ?

New in JDF 1.1
	matrix
	Matrix describing the transformation of the orientation of a physical resource relative to the ideal process coordinate using this resource as input or output. This is needed to convert the coordinate system of the resource to the coordinate system of the process. Agents should supply one of Orientation or Transformation for resources where they are relevant, e.g., Component. When neither Orientation or Transformation are present, the orientation of the resource is system specified.

If Transformation is specified for an output resource, the node that processes the physical resource should manipulate the resource in such a way as to reflect the transformation. The coordinate system of the resource itself is NOT modified.

The following example shows an InkLink with an AmountPool.

<ResourcePool>

 <Ink ID="Link0015" Brand="NoName" Class="Consumable" Locked="false" Status="Available" PartIDKeys="Separation">

 <Ink ColorName="Cyan" Separation="Cyan"/>

 <Ink ColorName="Magenta" Separation="Magenta"/>

 <Ink ColorName="Yellow" Separation="Yellow"/>

 <Ink ColorName="Black" Separation="Black"/>

 <Ink ColorName="Heidelberg Spot Blau" Separation="Heidelberg Spot Blau"/>

 </Ink>

</ResourcePool>

<ResourceLinkPool>

 <InkLink rRef="Link0015" Usage="Input">

 <AmountPool>

 <PartAmount Amount="1000">

 <Part Separation="Cyan"/>

 </PartAmount>

 <PartAmount Amount="1200">

 <Part Separation="Magenta"/>

 </PartAmount>

 <PartAmount Amount="700">

 <Part Separation="Yellow"/>

 </PartAmount>

 <PartAmount Amount="3000">

 <Part Separation="Black"/>

 </PartAmount>

 <PartAmount Amount="300">

 <Part Separation="Heidelberg Spot Blau"/>

 </PartAmount>

 </AmountPool>

 </InkLink>

</ResourceLinkPool>

3.8.4 Links to PlaceHolder Resources

PlaceHolder resources are linked by a PlaceHolderLink element. PlaceHolder links, used together with the PlaceHolderResource resource, can be employed to predefine a skeleton of a processing network consisting of process group nodes without knowing the exact nature of the interchange resources. For instance, although the deadlines for the job may be known, it may not be known whether a press run will be defined for a digital press or a conventional press.

3.8.5 Links to Intent Resources

Intent resources are linked by an instance of a IntentLink element. They have no additional parameters.
3.8.6 Inter-Resource Linking Using ResourceRef

In some cases, it is necessary to reference resource elements directly from other resources in order to reuse information. These links are abstract ResourceRef elements. The ResourceRef’s name is generated by appending the string “Ref” to the element name. Candidate elements for inter-resource linking have a data type of refelement in the content description tables of this chapter and Chapter 7. The following table defines the attributes of the abstract ResourceRef element (see also Figure 3.4 and ResourceElement in Table 3‑11). The ResourceElement is defined in Table 3‑22 Contents of the abstract ResourceElement
Table 3‑22 Contents of the abstract ResourceElement

	Name
	Data Type
	Description

	ID ?
	ID
	Unique identifier of a resource element.

Table 3‑23 Contents of the abstract ResourceRef element

	Name
	Data Type
	Description

	rRef
	IDREF
	Reference to the resource.

	rSubRef ?
	IDREF
	Reference to a subelement of the resource.

	Part ?

New in JDF 1.1
	element
	Definition of the partition that this ResourceRef references. This must be a leaf partition of the resource.

In order to enable spawning and merging without having to scan every single resource, inter-resource links must be specified in the rRefs attribute of the resource. In the case of a link to a resource subset, the rRefs attribute contains a reference to the atomic resource. Even if a resource is linked more than once, one occurrence of that resource in the rRefs array is sufficient.

The Part element in a ResourceRef defines the part of the target that this ResourceRef references. If both the resource that contains ResourceRef element and the target resource are partitioned, the ResourceRef does NOT implicitly reference the part of the target with the same partitioning attributes, but rather the parts of the target resource that are explicitly specified by the Part element within the ResourceRef.

<MediaRef rRef=”MediaID”>

 <Part Location=”desk”/>

</MediaRef>

ResourceRef elements may also occur in the NodeInfo and CustomerInfo element of a JDF node.

Elements within a resource, i.e. not direct children of the ResourcePool, may also contain an ID attribute (see Table 3‑22 Contents of the abstract ResourceElement). These elements are denoted as ResourceElement. These elements may be explicitly referenced by a ResourceRef. The ResourceRef element has an optional rSubRef attribute that contains an IDREF to the ID of the ResourceElement within the resource.

In some cases, it is desirable to define a ResourceElement that is not explicitly linked by a Node directly within a ResourcePool as a Resource. These Resources are referenced only by other resources which contain ResourceRef elements pointing to these. The ResourceElements instantiated as a Resource must contain the required attributes of abstract resources and have a Class="Parameter". The following example demonstrates inter-resource linking.

<ResourcePool>

 <Layout rRefs="res1 res2"><!—This is a Resource-->

 …

 <!—These are ResourceRefs-->

 <SurfaceRef rRef="res1" rSubRef="surf1"/>

 <SurfaceRef rRef="res2" rSubRef="surf2"/>

 <SurfaceRef rRef="res1" rSubRef="surf1"/>

<!-- another link to the same resource -->

 </Layout>

 <Sheet ID="res1"><!—This is a Resource-->

 <Surface ID="surf1" … /> <!—This is a ResourceElement-->

 </Sheet>

 <Sheet ID="res2"> <!—This is a Resource-->

 <Surface ID="surf2" … /> <!—This is a ResourceElement-->

 </Sheet>

</ResourcePool>

3.8.6.1 Status of Resources That Contain rRef References

The Status of a resource that contains an rRef attribute is defined by the lowest Status of all recursively referenced resources. The ordering is defined as:

Incomplete
Unavailable

InUse

Draft
Complete
Available

Thus, if any referenced resource has a Status of Incomplete, the complete resource has a calculated Status of Incomplete, even though its own Status attribute may be Unavailable, Draft, Available etc.

3.8.6.2 Alignment of ResourceLink and ResourceRef

New in JDF 1.1A

ResourceRef elements must not contain any of the attributes and elements that may be specified in the ResourceLink as defined in chapter 3.8 Resource Links. The value of these properties is implied from the value of the properties for the appropriate part in the AmountPool of the ResourceLink of the node. The following example illustrates the alignment of a MediaLink and MediaRef in a DigitalPrinting node.

<JDF ID="n20020626134204" Type="DigitalPrinting" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1">

 <ResourcePool>

 <!—Media is partitioned so that it can be referenced from the AmountPool -->
 <Media ID="r0006" Class="Consumable" Status="Available" PartIDKeys="RunIndex">

 <Media RunIndex="0 -1"/>

 <Media RunIndex="1~-2"/>

 </Media>

 <DigitalPrintingParams ID="r0007" Class="Parameter" rRefs="r0006" Status="Available" PartIDKeys="RunIndex">

 <DigitalPrintingParams RunIndex="0 -1">

 <!-- PartAmount with <Part RunIndex="0 -1"/> contains the partition details for this MediaRef -->
 <MediaRef rRef="r0006">

 <Part RunIndex="0 -1"/>

 </MediaRef>

 </DigitalPrintingParams>

 <DigitalPrintingParams RunIndex="1~-2">

 <!-- PartAmount with <Part RunIndex="1~-2/> contains the partition details for this MediaRef -->
 <MediaRef rRef="r0006">

 <Part RunIndex="1~-2"/>

 </MediaRef>

 </DigitalPrintingParams>

 </DigitalPrintingParams>

 </ResourcePool>

 <ResourceLinkPool>

 <MediaLink rRef="r0006" Usage="Input">

 <!-- the AmountPool contains the ResourceLink partition details -->
 <AmountPool>

 <PartAmount Usage="Input" Orientation="Flip180">

 <Part RunIndex="0 -1"/>

 </PartAmount>

 <PartAmount Usage="Input" Orientation="Rotate0">

 <Part RunIndex="1~-2"/>

 </PartAmount>

 </AmountPool>

 </MediaLink>

 <DigitalPrintingParamsLink rRef="r0007" Usage="Input"/>

 </ResourceLinkPool>

</JDF>

3.9 Subsets of Resources

In many cases, a set of similar resources—such as separation films, plates, or RunList resources—is produced by one process and consumed by another. When this occurs, it is convenient to define one resource element that describes the complete set and allows individual subsets to be referenced. This mechanism also removes process ambiguity if multiple input resource links and multiple output resource links exist that must be unambiguously correlated.

In other cases, there can be a need to change some attribute of a parameter resource for some subset of the processing to be done by a device (for instance, when printing a document using DigitalPrinting, it would be a common application to change the dimensions of the media to be selected based on the actual media box changes in a PDF file).

Resource elements and ResourceLink elements have optional attributes that enable an agent to specify an explicit part of a structured resource. There are two ways to reference a subset of a resource. The first is by quantity, by specifying an Amount in a ResourceLink that is less than the Resource’s Amount. The second is to select certain parts of a partitioned resource by supplying a filtering Part element in the ResourceLink.

3.9.1 Resource Amount

Yet another flexible feature of resources is that they may be only partially consumed. For example, in a scenario in which various versions of a product share identical parts—such as versioned books that all have the same cover—each version will only use as many copies of the cover as it needs to fulfill its job requirement, even though all of the covers can be printed in one step for all versions. This feature is specified in the Amount attribute of the resource links and allows multiple JDF nodes to share resources. It allows both the sharing of output resources (as when a binding process consumes identical sheets from multiple press lines) and the sharing of input resources (as when the covers for multiple jobs are identical and are all printed in one press run).

The Amount attribute of a physical resource element contains the actual amount of a given resource. It is adjusted by the production or consumption amount of every process that is executed, and refers to that amount in the corresponding physical resource link element. Thus the value of the Amount attribute of a resource that is consumed as an input should be reduced by the amount that is consumed. It is up to the agent that writes a JDF job to ensure that the Amount attributes of resources and the resource links that reference them are consistent. The units used in the Amount attribute of a physical resource link element is defined by the unit of the resource element to which the link refers. The definition of Amount for partitioned resources is explained in detail in Section 3.9.2 Description of Partitionable Resources.

Note that for resources which are the output of processes, the Amount attribute on the ResourceLink determines the quantity of the resource to be produced. For example, for a DigitalPrinting process that included a RunList as its input with 16 pages to be printed and a ComponentLink to its output, the Amount attribute would indicate the number of copies of those 16 pages that the process would produce.

3.9.2 Description of Partitionable Resources

Modified in JDF 1.2
[Added BundleItemIndex value to PartIDKeys attribute. 2 ISSUES: Data type of RunPage and the difference between RunIndex and RunPage]
Printing workflows contain a number of processes that are repeated over a potentially large number of individual files, sheets, surfaces or separations. In order to define a partitioned resource in a concise manner without having to create a large number of individual nodes and resources, a set of resources may be partitioned by factoring them by one or more attributes. The common elements and defaults are placed in the parent element, while partition-specific attributes and overrides are placed in the child elements. This saves space. Also, by providing a single parent ID for the resources, it allows easy access to the entire resource, or iteration over each part.

To reference part of a resource, a ResourceLink references the parent resource, and supplies a Part element that contains an actual value for a partition. The result is all the child elements with matching partition values, including common values and defaults from the parent resource. If PartUsage = “Implicit”, the parent attributes are returned even if there is no matching partition.

A partitionable resource contains nested elements, each with the same name as the resource. The part-independent resource elements and attributes are located in the root of the resource, while the partition-dependent elements are located in the nested elements. Thus one individual part is defined by the convolution of the partition-independent elements and attributes, with the elements and attributes contained in the appropriate nested elements. The attributes of nested part elements may be overwritten by the equivalent attributes in descendent parts. If a leaf contains elements that may multiply, and additional elements with the same name exist in nodes that are closer to the root, only the elements in the leaf are valid for the respective part. For example, the following SeparationSpec is two color duo-tone (only Black and SpotGreen) in the part with PageNumber=1:
<LayoutElement PartIDKeys="PageNumber">

 <SeparationSpec Name="Cyan"/>

 <SeparationSpec Name="Magenta"/>

 <SeparationSpec Name="Yellow"/>

 <SeparationSpec Name="Black"/>

 <FileSpec (…)/>

 <LayoutElement PageNumber=”0” (…)/>

 <LayoutElement PageNumber=”1” (…)>

 <SeparationSpec Name="Black"/>

 <SeparationSpec Name="SpotGreen"/>

 </LayoutElement>

</LayoutElement>

The Amount attribute of a partitioned resource is treated formally exactly in the same manner as any other attribute. This implies that the amount specified refers to the amount defined by one leaf and not to the amount defined by the sum of leaves in a branch. The Amount attribute defined in the example below is, therefore, two, even though 24 physical plates are described.

The following example defines two sets of 12 plates for two sheets with three surfaces. Each has a common brand attribute called “Gooey”. Each individual separation has its own ProductID. Furthermore, the Status attribute varies from part to part. For example, if a yellow plate breaks, only it will need to be remade and therefore set to Unavailable; the others, meanwhile, may remain Available.

<ExposedMedia Class="Handling" Brand="Gooey" ID="L1" Status="Available" PartIDKeys="SheetName Side Separation" Amount="2">

 <Media MediaType=”Plate” Dimension=”500 600”/>

 <ExposedMedia SheetName="S1">

 <ExposedMedia Side="Front">

 <ExposedMedia Separation="Cyan" ProductID="S1FCPlateJ42"/>

 <ExposedMedia Separation="Magenta" ProductID="S1FMPlateJ42"/>

 <ExposedMedia Separation="Yellow" ProductID="S1FYPlateJ42" Status=“Unavailable"/>

 <ExposedMedia Separation="Black" ProductID="S1FKPlateJ42"/>

 </ExposedMedia>

 <ExposedMedia Side="Back">

 <ExposedMedia Separation="Cyan" ProductID="S1BCPlateJ42"/>

 <ExposedMedia Separation="Magenta" ProductID="S1BMPlateJ42"/>

 <ExposedMedia Separation="Yellow" ProductID="S1BYPlateJ42"/>

 <ExposedMedia Separation="Black" ProductID="S1BKPlateJ42"/>

 </ExposedMedia>

 </ExposedMedia>

 <ExposedMedia SheetName="S2" Side="Front">

 <ExposedMedia Separation="Cyan" ProductID="S2FCPlateJ42"/>

 <ExposedMedia Separation="Magenta" ProductID="S2FMPlateJ42"/>

 <ExposedMedia Separation="Yellow" ProductID="S2FYPlateJ42"/>

 <ExposedMedia Separation="Black" ProductID="S2FKPlateJ42"/>

 </ExposedMedia>

</ExposedMedia>
Note: Only resources may be partitioned. If a resource contains subelements, the subelements must NOT be partitioned. Subelements must be always specified completely in that part where they occur. The content of subelements is not convoluted with the content of subelements in parts closer to the root.

Five examples are provided below. The first and the fourth example are valid, the second third, and fifth are invalid. In the first example, the ExposedMedia resource is partitioned:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >

 <Media MediaType="Film" Brand="foo"/>

 <ExposedMedia Separation="Cyan"/>

 <ExposedMedia Separation="Magenta">

 <Media MediaType="Film" Brand="bar"/>

 </ExposedMedia >

</ExposedMedia >
In this invalid example #2, the Media in the leaves is not complete because it does not contain the MediaType attribute. MediaType cannot not be derived from the Media part in the root element:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >

 <Media MediaType=”Film”/>

 <ExposedMedia Separation=”Cyan”>

 <Media Brand=”foo”/>

 </ExposedMedia >

 <ExposedMedia Separation=”Magenta”>

 <Media Brand=”bar”/>

 </ExposedMedia >

</ExposedMedia >
In this invalid example #3, Media is a subelement that must NOT be partitioned:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >

 <Media MediaType=”Film”>

 <Media Brand=”foo” Separation=”Cyan”>

 <Media Brand=”bar” Separation=”Magenta” />

 </Media >

</ExposedMedia >
Partitioning may be combined with inter-resource links, i.e. RefElements. In this case the partitioning attributes of the referenced resource must be a subset of the partitioning attributes of the resource leaf that contains the ResourceRef. In the following valid example #4, each MediaRef is equivalent to an in-lined leaf with the explicit Part elements to define the partition, i.e. it is equivalent to the valid example #1.

<Media ID=”MediaID” MediaType=”Film” PartIDKeys="Separation">

 <Media Separation=”Cyan” Brand=”foo”/>

 <Media Separation=”Magenta” Brand=”bar”/>

</Media>

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >

 <ExposedMedia Separation=”Cyan”>

 <!—equivalent to <Media MediaType=”Film” Brand=”foo”/> -->

 <MediaRef rRef=”MediaID”>

 <Part Separation=”Cyan”/>

 </MediaRef>

 </ExposedMedia>

 <ExposedMedia Separation=”Magenta”>

 <!—equivalent to <Media MediaType=”Film” Brand=”bar”/> -->

 <MediaRef rRef=”MediaID”/>

 <Part Separation=” Magenta”/>

 </MediaRef>

 </ExposedMedia >

</ExposedMedia >
In this invalid example #5, MediaRef does not reference the leaves of Media, but rather the root of Media. It is equivalent to the invalid example #3.

<Media ID=”MediaID” MediaType=”Film” PartIDKeys="Separation">

 <Media Separation=”Cyan” Brand=”foo”/>

 <Media Separation=”Magenta” Brand=”bar”/>

</Media>

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" … >

 <MediaRef rRef=”MediaID”>

</ExposedMedia >
In addition to the usual resource attributes and elements, the partitionable Resource element has partition-specific attributes and elements in its root. PartIDKeys is required in the root of a partitioned resource. Further attributes are listed in the following table:

Table 3‑24 Contents of the partitionable Resource element

	Name
	Data Type
	Description

	PartIDKeys ?
Modified in JDF 1.2

	enumerations
	List of attribute names that are used to separate the individual parts. Possible values are:

	
	
	BlockName
BundleItemIndex - New in JDF 1.2
DocCopies

DocIndex

DocRunIndex

DocSheetIndex

FountainNumber

LayerIDs

Location

Option
	PageNumber

PartVersion

PreviewType

RibbonName

Run

RunIndex

RunTags

RunPage

Separation
	SetIndex
SheetIndex

SheetName

Side

SignatureName

TileID

WebName

	
	
	For details, see Table 3‑25.

	PartUsage ?

New in JDF 1.1
	enumeration
	Description of the interpretation of partitions. One of:

Explicit – Require explicit partition matches. All referenced partitions referenced in Part must exist, otherwise it is an error. The default attributes are returned, overridden by the partition’s values, if found. This is the default behavior.

Implicit – Allow sparse overrides of default values. The referenced partition is not required to exist. The default attributes are returned, overridden by the partition’s values, if found.

	Resource *
	element
	Nested resource elements that contain the appropriate part ID(s). These elements must be of the same type as the root Resource element. They represent the individual parts or groups of parts.

Partitionable resources are uniquely identified by the attribute values listed in PartIDKeys attributes. The choice of which attributes to use depends on how the agent organizes the job.

The following table lists the content of a Part element, which contains a set of attributes that have a well described meaning. Each of the attributes, except Sorting, may be used in the nested resource elements of partitionable resources as the part ID key (see example above).

Part elements match a given partition when all of the attributes of a Part element match the attributes of the referenced Resource. This corresponds to Boolean AND operation. If multiple Part elements are defined, the result is a Boolean OR of the multiple parts.

Table 3‑25 Contents of the Part element

	Name
	Data Type
	Description

	BlockName ?

New in JDF 1.1
	NMTOKEN
	Identifies a CutBlock from a Cutting process. The value of this attribute must match the value of the BlockName attribute of a CutBlock.

	BundleItemIndex ?
New in JDF 1.2
	IntegerRangeList
	The BundleItemIndex attribute selects a set of BundleItems from a Component resource.

	DocCopies ?
	IntegerRangeList
	Identifies a set of document copies to which the partition applies. DocCopies is a logical reference that may be independent of the RunList structure and must NOT be used as a partition key for spawning and merging of RunList resources.

	DocIndex ?
	IntegerRangeList
	The DocIndex attribute selects a set of logical instance documents from a RunList resource. DocIndex is a logical reference that may be independent of the RunList structure and must NOT be used as a partition key for spawning and merging of RunList resources.

	DocRunIndex ?
	IntegerRangeList
	The DocRunIndex attribute selects a set of logical pages from instance documents of a RunList resource. For example DocRunIndex = ”0 –1” specifies the first and last page of every copy of every selected instance document (assuming that additional partitioning using DocCopies and/or DocIndex is not also specified). DocRunIndex is a logical reference that may be independent of the RunList structure and must NOT be used as a partition key for spawning and merging of RunList resources. The index always refers to entries of the entire RunList and must not be modified if only a part of the RunList is spawned. Not to be used in conjunction with RunTags.

	DocSheetIndex ?
	IntegerRangeList
	The DocSheetIndex attribute selects a set of logical sheets from individual instance documents. For example DocSheetIndex = ”0 –1” specifies the first and last sheet of every selected copy of every instance document (assuming that additional partitioning using DocCopies and/or DocIndex is not also specified). DocSheetIndex is a logical reference that may be independent of the RunList structure and must NOT be used as a partition key for spawning and merging of RunList resources. The index always refers to entries of the entire RunList and must not be modified if only a part of the RunList is spawned.

	FountainNumber ?
	integer
	Zero based position index of the fountain. Used to partition fountains along the axis of a roller, may be used for web printing.

	LayerIDs ?

New in JDF 1.1
	IntegerRangeList
	The LayerIDs attribute selects a set layers that are defined by LayerID. If not specified, all layers are processed.

	Location ?
	string
	Name of the location, e.g., for example in MIS. This part key allows to describe distributed resources.

	Option ?
	string
	Option of an RFQ. Used mainly in Intent resources.

	PageNumber ?
	IntegerRangeList
	Page number in a Component or document, e.g., FileSpec that is not described as a RunList.

	PartVersion ?
	string
	Version identifier, such as the language version of a catalog.

	PreviewType ?

New in JDF 1.1
	enumeration
	Type of the preview. Possible values are:

Separation: separated preview in medium resolution.
SeparatedThumbNail: Very low resolution separated preview.
ThumbNail: Very low resolution rgb preview.
Viewable: rgb preview in medium resolution.

	RibbonName ?
	string
	A string that uniquely identifies each ribbon. Multiple ribbons are created out of one web after dividing in case of web printing.

	Run ?

Modified in JDF 1.1
	string
	The Run attribute selects a set of partitioned RunList elements from a RunList resource.

	RunIndex ?
	IntegerRangeList
	The RunIndex attribute selects a set of logical pages from a RunList resource in a manner that is independent from the internal structure of the RunList. It contains an array of mixed ranges and individual indices separated by whitespace. Each range consists of two indices connected with a tilde (~) and no whitespace. For example, RunIndex = “2~5 8 10 22~-1”. Negative numbers reference pages from the back of a file in base-1 counting. In other words, -1 is the last page, -2 the second to last, etc. Thus RunIndex = “0~-1” refers to a complete range of pages, from first to last. RunIndex is a logical reference that is independent of the RunList structure and must NOT be used as a partition key for spawning and merging. The index always refers to entries of the entire RunList and must not be modified if only a part of the RunList is spawned. Not to be used in conjunction with RunTags.

	RunTags ?

New in JDF 1.1
	NMTOKENS
	List of names in a named RunList. Used to partition resources that are linked from processes that also have a RunList as input when the sequence of the RunList is undefined. The partition is selected if the RunTag of the RunList matches any of the entries in RunTags. Not to be used in conjunction with RunIndex or DocRunIndex.

	RunPage ?

New in JDF 1.1
	integer
	Zero based page number. Used when a document / file based RunList is broken down into a page based RunList.

	Separation ?
	string
	Identifies the separation name. Possible values include:

Composite – Non-separated resource.

Separated – The resource is separated, but the separation definition is handled internally by the resource, such as a PDF file that contains SeparationInfo dictionaries.

Cyan – Process color.

Magenta – Process color.

Yellow – Process color.

Black – Process color.

Red – Additional process color.

Green – Additional process color.

Blue – Additional process color.

Orange – Additional process color.

Spot – Generic spot color. Used when the exact nature of the spot color is unknown.

Varnish – Varnish.

Other values may be any separation name defined in the Name attribute of a Color element in the ColorPool.

	SetIndex ?

New in JDF 1.1
	IntegerRangeList
	The SetIndex attribute selects a set of logical instance document sets from a RunList resource. SetIndex is a logical reference that may be independent of the RunList structure and must NOT be used as a partition key for spawning and merging of RunList resources. The index always refers to entries of the entire RunList and must not be modified if only a part of the RunList is spawned.

	SheetIndex ?

	IntegerRangeList
	The SheetIndex attribute selects a set of logical sheets from a RunList resource. In 1-up simplex printing, it is identical to RunIndex. SheetIndex is a logical reference that is independent of the RunList structure and must NOT be used as a partition key for spawning and merging.

	SheetName ?
	string
	A string that uniquely identifies each sheet. The value of this attribute must match the value of the Name attribute of a sheet.

	Side ?
	enumeration
	Denotes the side of the sheet. Possible values are:

Front
Back
If Side is specified, the Part element refers to one surface of the sheet. If it is not specified, it refers to both sides.

In case of web printing, Front is a synonym for the upper side and Back for the down side of the web.

	SignatureName ?
	string
	A string that uniquely identifies the signature within the partitionable resource.

	Sorting ?
	IntegerRangeList
	Mapping from the implied partitionable resource order to a process order. The indices refer to the elements of the complete partitionable resource, not to the index in the selection of parts defined by the Part element.
 Defaults to “0~-1”, i.e. the part order is the same as the sorting order.

Sorting must NOT be used as a partition key.

	SortAmount ?
	boolean
	If a sorted resource has an Amount attribute and SortAmount = true, each resource must be processed completely. If SortAmount = false (the default), each Part element must be processed the number of times specified in the Amount attribute before starting the next Part.

SortAmount must NOT be used as a partition key.

	TileID ?
	XYPair
	XYPair of integer values that identifies the tile. Tiles are identified by their X and Y indexes. Values are zero-based and expressed in the PS coordinate system. So

“0 0” is the lower left tile and “1 0” is the tile next to it on the right. Tile resources are described in detail in the Section 7.2.214 Tile.
May also be used to identify multiple plates per cylinder. Then the x-index corresponds to a zero based position index along the axis of a roller and the y-value to a zero based position index along the circumference of a roller.

	WebName ?
	string
	A string that uniquely identifies each web.

If multiple Part ID keys are used in a partitioned resource, for example PartIDKeys="SheetName Side Separation Location", then all part ID keys must be defined for each leaf in the partitioned resource. In other words, if you walk from a leaf of a partitioned resource up to the root, each of the part ID keys defined in PartIDKeys must occur exactly one time. For example, it is not allowed that only the part ID keys SheetName and Separation be defined for some leaves in a partitioned resource with PartIDKeys="SheetName Side Separation" defined in the root.

3.9.2.1 Options in Intent Resources

JDF defines Option as a part key in order to specify multiple options e.g. for multiple quotes in a non-redundant manner. A ResourceLink that links to a resource with an Option partition but has no Part element to choose the Option, defaults to the root resource.

3.9.2.2 Locations of Physical Resources

Modified in JDF 1.2
[Removed Table 3-26 Locations within Printers. Added new table, Printer input tray names. Added Continuous, Roll, and/or Disc (for printing on CD/DVD) values to LocationName attribute.]
Unlike other kinds of resources, physical resources may be stored at multiple, distributed locations. This is specified by including one or more Location parts in the resource element and accessing the location by specifying a Part element with a Location attribute in the respective ResourceLink.
Location:LocationName may also be used to specify a Location within a device, e.g., a paper input tray name. When specifying input tray names, the following values for LocationName are suggested. The input tray names that specify a position (e.g. Top) are identified by an asterisk (*). The positional input tray names should not be used if devices are clustered because the position of the input tray may not be the same for all of the devices in the cluster.
Table 3‑26 Printer input tray names

	Name
	Description

	AnyLargeFormat
	Tray that holds larger format media with one dimension larger than 11 inches.. The media dimensions must be specified. AnyLargeFormat is defined for a PPD.

	AnySmallFormat
	Tray that holds smaller format media. The media dimensions must be specified. AnySmallFormat is defined for a PPD.

	AutoSelect
	Requests the device to select an input tray based on the Media specification.

	Bottom
	*The input tray that, when facing the device, can best be identified as ‘bottom’.

	BypassTray
	The input tray used to handle odd or special papers. May be used to specify the input tray that is used for inserts sheets that are not to be imaged.

	BypassTray-N
	The input tray used to handle odd or special papers. May be used to specify the input tray that is used for inserts sheets that are not to be imaged. N = '1', '2', …

	Continuous
	The input tray or location to handle continuous media, i.e., continuously connected sheets.

	Disc
	The input tray to handle CD or DVD discs to be printed on.

	Disc-N
	The input tray to handle CD or DVD discs to be printed on.

	Envelope
	The input tray that is to contain envelopes.

	Envelope-N
	The input tray that is to contain envelopes. N = '1', '2', …

	Front
	*The input that, when facing the device, can best be identified as ‘front’.

	InsertTray
	The input tray that can best be identified as 'insert tray'. Used to specify the input tray that is used for inserts sheets (insert sheets are never imaged).

	InsertTray-N
	The input tray that can best be identified as 'insert tray-1', 'insert tray-2', … etc. Used to specify the input tray that is used for inserts sheets (insert sheets are never imaged).

	LargeCapacity
	The input tray that can best be identified as the ‘large capacity’ input tray (in terms of the number of sheets) with respect to the device.

	LargeCapacity-N
	The input tray that can best be identified as the ‘large capacity-1', 'large-capacity-2’ … etc., input tray (in terms of the number of sheets) with respect to the device.

	Left
	*The input tray that, when facing the device, can best be identified as ‘left.

	Middle
	*The input tray that, when facing the device, can best be identified as ‘middle’.

	Rear
	*The input that, when facing the device, can best be identified as ‘rear’.

	Right
	*The input tray that, when facing the device, can best be identified as ‘right.

	Roll
	The input tray or location to handle roll fed media.

	Roll-N
	The Nth input tray or location to handle the Nth roll fed media.

	Side
	*The input tray that, when facing the device, can best be identified as ‘side’.

	Top
	*The input tray that, when facing the device, can best be identified as ‘top’.

	Tray
	The input tray for a single tray device.

	Tray-N
	The input tray is identified as ‘Tray-1’, ‘Tray-2’ … etc.

	SystemSpecified
	The input tray selected is defined by the system. The default.

Following is a table that lists some common input tray names that are analogous to an input tray name in the above table. The input tray names listed in the table above should be used when possible.

	Name
	Input Tray Name to use instead

	Back
	Rear

	Cassette
	Tray-N

	Center
	Middle

	Lower
	Bottom

	Main
	LargeCapcity

	Upper
	Top

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

The following example describes a set of plates that are distributed over two locations:

<ExposedMedia ID="L1" PartIDKeys="Location" … >

 <ExposedMedia Amount="42" Location="Desk Drawer 1">

 <Location LocationName=”Desk Drawer 1" LocID="PP_01234">

 <Address … />

 </Location>

 </ExposedMedia>

 <ExposedMedia Amount="100" Location="Desk Drawer 2">

 <Location LocationName=”Desk Drawer 2" LocID="PP_01235">

<Address … />

 </Location>

</ExposedMedia>

…

<ExposedMediaLink ResourceID="L1" Amount="50" Usage="Input">

 <Part Location="Desk Drawer 2"/>

</ExposedMediaLink>

The following example describes two different Media in the top and bottom tray of a LayoutPreparation process. The Media is selected for the cover and inside pages respectively.

<Media ID="TopMedia" … >

 <Location LocationName=”Top"/>

</Media>

<Media ID="BottomMedia" … >

 <Location LocationName=”Bottom"/>

</Media>

…

<LayoutPreparationParams Sides=”TwoSidedFlipY” PartIDKeys=”RunIndex”(…)>

 <!-- Partition that defines the first and last page of the document -->

 <LayoutPreparationParams RunIndex=”0 1 –2 –1”>

 <MediaRef rRef=”TopMedia”/>

 </LayoutPreparationParams>

 <!-- Partition that defines the inside pages of the document -->

 <LayoutPreparationParams RunIndex=”2~-3”>

 <MediaRef rRef=”BottomMedia”/>

 </LayoutPreparationParams>

</LayoutPreparationParams>

3.9.3 Linking to Subsets of Resources

An agent can link to a subset of a resource by including a Part element in a ResourceLink element in order to define a specific subset of a resource. For details of the Part element, please refer to Table 3‑25 Contents of the Part element .

Partitionable hierarchies define an implied ordering of the individual parts. In the example in Section 3.9.2 Description of Partitionable Resources, the first element has a ProductID = S1FCPlateJ42 and the last has a ProductId = S2FKPlateJ42. If process ordering of a partitionable resource is important, the Part element of the ResourceLink must specify a Sorting attribute. If Sorting is not specified, process ordering is arbitrary. If Sorting is specified multiple times, the resolution of the sorting must be unambiguous.

The Sorting attribute maps the implied part ordering to a specified process ordering in a 0-based list. The first entry in Sorting defines the first entry to be processed. The following example, using a ResourceLink element, describes how the plates described in the previous example could be ordered by separation for the first sheet followed by the complete second sheet, in reverse order (back to front). Each set of two plates, as specified in the Amount attribute of the resource, would be processed together.

<ExposedMediaLink rRef="L1">

 <Part Sorting="0 4 1 5 2 6 3 7 –1~8" SortAmount=”false”/>

</ExposedMediaLink>

A partitionable resource may also be split into individual resources by an agent. In this case, one resource must be created for each individual part or set of parts. For example, a resource that describes a set of films that are also separated may be split into a set of resources that each describe all separations of a sheet.

3.9.3.1 Handling Amount in a ResourceLink to a Partitioned Resource

The Amount specified in a ResourceLink to a physical resource specifies the sum of individual resource partitions. Individual amounts are specified in the PartAmount elements of the AmountPool. The following example shows the ResourceLink that refers to the previous example for a total of five plates.

<ExposedMediaLink rRef="L1" Amount=”4”>

 <Part SheetName="S1" Separation="Cyan"/>

 <Part SheetName="S1" Separation="Magenta"/>

 <AmountPool Amount=”1”>

 <PartAmount>

 <Part SheetName="S1" Side="Front" Separation="Cyan"/>

 </PartAmount>

 <PartAmount>

 <Part SheetName="S1" Side="Back" Separation="Cyan"/>

 </PartAmount>

 <PartAmount>

 <Part SheetName="S1" Side="Front" Separation="Magenta"/>

 </PartAmount>

 <PartAmount Amount=”2”>

 <Part SheetName="S1" Side="Back" Separation="Magenta"/>

 </PartAmount>

 </AmountPool>

</ExposedMediaLink>

3.9.3.2 Referencing Partitioned Resources from Nodes That Allow Multiple ResourceLinks.

Some processes, e.g., Collecting, Gathering allow multiple input resources of the same type. These multiple input resources may be represented by multiple individual resources or by partitioned resources or by a mixture of both. If ordering is significant, the order of the leaves in a partitioned resource defines said ordering. The following examples of gathering three input sheets are equivalent:

Explicit reference of ordered partitioned resources:

<JDF ID="Link0037" Type="Gathering" Status="Waiting">

 <ResourcePool>

 <GatheringParams ID="Gather01" Class="Parameter" Locked="false" Status="Available"/>

 <Component ID="Sheets01" Class="Quantity" Status="Available" PartIDKeys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert sheets">

 <Component SheetName="Sheet1"/>

 <Component SheetName="Sheet2"/>

 <Component SheetName="Sheet3"/>

 </Component>

 </ResourcePool>

 <ResourceLinkPool>

 <GatheringParamsLink rRef="Gather01" Usage="Input"/>

 <!—three ComponentLink explicitly reference individual parts -->

 <ComponentLink rRef="Sheets01" Usage="Input">

 <Part SheetName="Sheet1"/>

 </ComponentLink>

 <ComponentLink rRef="Sheets01" Usage="Input">

 <Part SheetName="Sheet2"/>

 </ComponentLink>

 <ComponentLink rRef="Sheets01" Usage="Input">

 <Part SheetName="Sheet3"/>

 </ComponentLink>

 </ResourceLinkPool>

</JDF>

Implicit reference of ordered partitioned resources:

<JDF ID="Link0037" Type="Gathering" Status="Waiting">

 <ResourcePool>

 <GatheringParams ID="Gather01" Class="Parameter" Locked="false" Status="Available"/>

 <Component ID="Sheets01" Class="Quantity" Status="Available" PartIDKeys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert sheets">

 <Component SheetName="Sheet1"/>

 <Component SheetName="Sheet2"/>

 <Component SheetName="Sheet3"/>

 </Component>

 </ResourcePool>

 <ResourceLinkPool>

 <GatheringParamsLink rRef="Gather01" Usage="Input"/>

 <!—the ComponentLink implicitly references all three parts -->

 <ComponentLink rRef="Sheets01" Usage="Input"/>

 </ResourceLinkPool>

</JDF>

3.9.4 Splitting and Combining Resources

Depending on the circumstances, it may be appropriate either to split a resource into multiple new nodes or to specify multiple locations or parts for an individual resource. There are four possible methods for splitting and combining resources, each of which is illustrated in Figure 3.8, below. Both Case A and Case B in Figure 3.8 represent workflows that use the Amount attribute of their resource links to share resources. This method is practical when one controller controls all aspects of resource consumption or production. In Case A, the resource amount is split between subsequent processes. In Case B, individual processes produce amounts that are then combined into a unified resource that is, in turn, used by a single process. In both cases, a single, shared resource is employed. To enable independent parallel processing by multiple controllers, however, independent resources are required. To create independent resources from one resource, the Split process is used, as shown in Case C (for further details, see Section 6.2.9 Split). This process allows multiple processes to be spawned off, after which multiple processes can consume the same resource in parallel and may therefore run in parallel. Case D demonstrates the reverse situation, which occurs if resources have been produced by multiple processes and are then consumed, as a unified entity, by a single subsequent process. To accomplish this, the Combine process combines multiple resources to create the single resource.

[image: image132.jpg])

Figure 3.8 Splitting and combining physical resources

3.10 AuditPool

[image: image133.jpg]

Audit elements contain the post-facto recorded results of a process such as the execution of a JDF node or modification of the JDF itself. Audit elements become static after a process has been finished. They cannot ever be modified after the process has been aborted or completed. Therefore, if Audit elements link to resources, those resources should be locked in order to inhibit accidental modification of audited information, which is why JDF includes a locking mechanism for resources. The ID of all resources that are referenced by Audit elements must be included in the rRefs attribute of the AuditPool in order to enable spawning and merging. Audit elements record any event related to the following situations:

1. The creation of a JDF node by a Created element.

2. Spawning and merging, including resource copying by spawned and merged elements.

3. Errors such as unnecessary ResourceLink elements, wrongly linked resources, missing resources, or missing links, which may be detected by agents during a test run or by a Notification element.

4. Actual data about the production and resource consumption by a ResourceAudit element.

5. Any process phase times. Examples include setting up a device, maintenance, and washing, as well as down-times as a result of failure, breaks, or pauses. Changes of implementation resource usage, such as a change of operators by a PhaseTime element, would also constitute an example of a phase time.

6. Actual process scheduling data. For example, the process start and end times, as well as the final process state, as determined by a ProcessRun element.

7. Any modification of a JDF node not covered by the preceding items, as recorded by a Modified element.

Audit information may be used by MIS for operations such as evaluation or invoicing. Figure 3.9 depicts the structure of the AuditPool and Audit element types derived from the abstract audit type.

[image: image134.jpg]

Figure 3.9 Structure of Audit element types derived from the abstract Audit type

Audit entries are ordered chronologically, with the last entry in the AuditPool representing the newest. A ProcessRun element containing the scheduling data finalizes each process run. All subsequent entries belong to the next run. The following table defines the contents of the AuditPool element.

Table 3‑28 Contents of the AuditPool element

	Name
	Data Type
	Description

	rRefs ?
	IDREFS
	List of all resources that are referenced from within the AuditPool. Needed for Spawning.

	Audit *
	element
	Chronologically ordered list of Audit elements. The Audit elements are abstract and serve as placeholders for any audit. Audit elements are described in the sections that follow.

3.10.1 Audit Elements

All Audit elements inherit the content from the abstract Audit data type, described in the following table.

Table 3‑29 Contents of the abstract Audit type

	Name
	Data Type
	Description

	Author ?

Modified in JDF 1.1A
	string
	Text that identifies who made the entry. This can describe a person, an agent, or both. While the Author attribute is optional, it is strongly recommended to include this attribute whenever possible.

	SpawnID ?

New in JDF 1.1
	NMTOKEN
	Text that identifies the spawned processing step when the entry was generated. This is a copy of the SpawnID attribute of the root JDF node of the process that generates the Audit at the time the Audit is generated.

	TimeStamp
	dateTime
	In case of the audits Created, Modified, Spawned, Merged, and Notification, this attribute records the date and time when the related event occurred.

In case of the audits PhaseTime, ProcessRun, and ResourceAudit, the attribute describes the time when the entry was appended to the audit pool.

It is anticipated that additional attributes that clearly define the agent that inserted an Audit will be defined in JDF 1.2. The following table describes the preliminary syntax within the JDF extension namespace and is provided as a preview only that is subject to change. For details on extension namespaces see 3.11.1.2 JDF Extension Namespace:
Table 3-28- 1 Extensions of the abstract Audit type

	Name
	Data Type
	Description

	JDFX:AgentName ?
	String
	The name of the agent application that added the audit element to the audit pool (and was responsible for the creation or modification). Both the company name and the product name can appear, and should be consistent between versions of the application.

	JDFX:AgentVersion ?
	String
	The version of the agent application that added the audit element to the audit pool (and was responsible for the creation or modification). The format of the version string can vary from one application to another, but should be consistent for an individual application.

Listed in the following sections are the elements derived from the abstract Audit type. Following the description of each element is a table outlining the attributes associated with that element.

3.10.1.1 ProcessRun

This element serves two related functions. Its first is to summarize one complete execution run of a node. It contains attributes that record the date and time of the start, the end time, the final process state when the run is finished, and, optionally, the process duration of the process run. These attributes are described in Table 3‑30.

Table 3‑30 Contents of the ProcessRun element

	Name
	Data Type
	Description

	Duration ?
	duration
	Time span of the effective process runtime without intentional or unintentional breaks. That time span is the sum of all process phases when the Status is InProgress, Setup or Cleanup.

	End
	dateTime
	Date and time at which the process ends.

	EndStatus
	enumeration
	The Status of the process at the end of the run. For a description of process states, see Table 3‑3 Contents of a JDF node.
Possible values are:
Aborted

Completed

FailedTestRun

Ready

Stopped – The execution of the node is stopped and may commence at a later time, e.g., on another device.

	Start
	dateTime
	Date and time at which the process starts.

	Part *

New in JDF 1.1
	element
	Describes which parts of a process this ProcessRun belongs to. If Part is not specified for a ProcessRun, it refers to all parts. For example, imagine a print job that should produce three different sheets. All sheets are described by one partitioned resource. The Part elements define, unambiguously, the processing of the sheet to which the ProcessRun refers.

The second function of a ProcessRun element is to delimit a group of audits for each individual process run. Every group of audits terminates with a ProcessRun element, which contains the information described above. If a process must be repeated (as a result of a late change in the order, for example), all audits belonging to the new run will be appended after the last ProcessRun element that terminates the audits of the previous run. The number of ProcessRun elements is, therefore, always equivalent to the number of process runs.

If a node describes partitioned resources, one ProcessRun may be specified for each individual part.

3.10.1.2 Notification

This element contains information about individual events that occurred during processing. For a detailed discussion of event properties, see Section 4.6 Error Handling.

Table 3‑31 Contents of the Notification element

	Name
	Data Type
	Description

	Class
	enumeration
	Class of the notification. Possible values, in order of severity from lowest to highest, are:

Event – Indicates that a pure event due to any activity has occurred, for example, machine events, operator activities, etc. This class is used for the transfer of conventional event messages. In case of Class = Event, further event information should be provided by the Type attribute and NotificationDetails element.

Information – Any information about a process which cannot be expressed by the other classes. No user interaction is required.
Warning – Indicates that a minor error has occurred and an automatic fix was applied. Execution continues.

Error – Indicates that an error has occurred that requires user interaction. Execution cannot continue.

Fatal – Indicates that a fatal error led to abortion of the process.

	Type ?
	NMTOKEN
	Identifies the type of notification. Also defines the name of the abstract NotificationDetails element.
 A list of predefined Notification types is compiled in Appendix J NotificationDetails.

	Comment *
	telem
	The Notification element may contain Comment elements with a verbose, human-readable description of the event. If the value of the Class attribute is one of Information, Warning, Error, or Fatal, it should provide at least one Comment element. In case of Class = Event, Comment elements are optional.

	CostCenter ?
	element
	The cost center to which this event should be charged.

	Employee *
	refelement
	The Employee associated with this event.

	Notification​Details ?
	element
	Abstract element which is a placeholder for additional structured information. It provides additional information beyond the Class and Type attribute and beyond the Comment element. For a list of supported NotificationDetails elements, see Appendix J NotificationDetails.

	Part *

New in JDF 1.1
	element
	Describes which parts of a process this Notification belongs to. If Part is not specified for a Notification, it refers to all parts. For example, imagine a print job that should produce three different sheets. All sheets are described by one partitioned resource. The Part elements define, unambiguously, the sheet to which the audit refers.

Table 3‑32 Redundant table removed

	Name
	Data Type
	Description

3.10.1.2.1 NotificationDetails

The abstract Notification​Details element is a placeholder only with no additional attributes. For a list of supported NotificationDetails elements, see Appendix J NotificationDetails.
3.10.1.3 PhaseTime

This element contains audit information about the start and end times of any process states and substates, denoted as phases. Phases may reflect any arbitrary subdivisions of a process, such as maintenance, washing, plate changing, failures, and breaks.

PhaseTime elements may also be used to log the actual time spans when implementation resources are used by a process. For example, the temporary necessity of a fork lift can be logged if a PhaseTime element is added that contains a link to the fork lift device resource and specifies the actual start and end time of the usage of that fork lift.

The times specified in the PhaseTime elements should not overlap with each other and should cover the complete time range defined in the ProcessRun element that identifies the end of the run.

Table 3‑33 Contents of the PhaseTime element

	Name
	Data Type
	Description

	End
	dateTime
	Date and time of the end of the phase.

	Start
	dateTime
	Date and time of the beginning of the phase.

	Status
	enumeration
	Status of the phase. Possible values of JDF node states are:

TestRunInProgress

Setup

InProgress

Cleanup
Spawned
Stopped
The states listed above are a subset of the possible states of a JDF node. For all possible states of a JDF node see Table 3‑3. The remaining set of states, i.e. the end states — Ready, FailedTestRun, Aborted and Completed—must be logged by the ProcessRun audit element that terminates the list of audits for one process run.

	StatusDetails ?
	string
	Description of the status phase that provides details beyond the enumerative values given by the Status attribute. For a list of supported values, see Appendix G.

	Device *
	refelement
	Links to Device resources that are working during this phase.

	Employee *
	refelement
	Links to Employee resources that are working during this phase.

	ModulePhase *
	element
	Additional phase information of individual device modules, such as print units.

	Part *
	element
	Describes which parts of a job is currently being logged. If Part is not specified for a node that modifies partitioned resources, PhaseTime refers to all parts. For example, imagine a print job that should produce 3 different sheets. All sheets are described by one partitioned resource. In order to separate the different print phases for each sheet, the Part elements define, unambiguously, the sheet to which the audit refers.

	ResourceLink *

New in JDF 1.1
	element
	These resource links specify the actual consumption/usage or production of resources during this production phase.

It is possible to monitor the states of individual modules of a complex device, such as a printer with multiple print units, by defining ModulePhase elements. One PhaseTime element may contain multiple ModulePhase elements and can, therefore, record the status of multiple units in a device. In contrast to PhaseTime audit elements ModulePhase elements are allowed to overlap in time with one another. ModulePhase elements are defined in the following table.

Table 3‑34 Contents of the ModulePhase element

	Name
	Data Type
	Description

	DeviceID
	string
	Name of the device. This must be the DeviceID attribute of one of the Device elements specified in the PhaseTime audit.

	DeviceStatus
	enumeration
	Status of the device module. Possible values are:

Unknown – The module status is unknown.

Idle – The module is not used, for example, a color print module that is inactive during a black-and-white print.

Down – The module cannot be used. It may be broken, switched off etc.

Setup – The module is currently being set up.

Running – The module is currently executing.

Cleanup – The module is currently being cleaned.

Stopped – The module has been stopped, but running may be resumed later. This status may indicate any kind of break, including a pause, maintenance, or a breakdown, as long as running can be easy resumed.
These states are analog to the device states of Table 5‑46.

	End
	dateTime
	Date and time of the end of the module phase.

	ModuleIndex
	IntegerRangeList
	0-based indices of the module or modules. If multiple module types are available on one machine, it is device dependent whether the indices of each type restart at 0 or simply continue indexing.

	ModuleType
	NMTOKEN
	Module description. The allowed values depend on the type of device that is described. The predefined values are listed in Appendix A.

	Start
	dateTime
	Date and time of the beginning of the module phase.

	StatusDetails ?
	string
	Description of the module status phase that provides details beyond the enumerative values given by the DeviceStatus attribute. For a list of supported values, see Appendix G.

	Employee *
	refelement
	Links to Employee resources that are working during this module phase on this module (the module is specified by the attributes ModuleIndex and ModuleType).

3.10.1.4 ResourceAudit

The ResourceAudit element describes the usage of resources during execution of a node or the modification of the intended usage of a resource, in other words the modification of a resource link. It logs consumption and production amounts of any quantifiable resources, accumulated over one process run or one part of a process run. It contains one or two abstract ResourceLink elements. The first is required and specifies the actual consumption/usage or production of the resource. The second ResourceLink is optional and used to store information about the original resource link, which also refers to the original resource. If the original resource does not need to be saved, a boolean ContentsModified attribute in the ResourceAudit should be used to indicate that a change has been made.

Table 3‑35 Contents of the ResourceAudit element

	Name
	Data Type
	Description

	ContentsModified ?
	boolean
	Specifies that a modification has occurred but that the original resource has been deleted.

	Reason ?

New in JDF 1.1
	enumeration
	Reason for the modification. One of:

PlanChange – The resource was modified due to a change of plan before actual processing.
ProcessResult – The default.

	ResourceLink
	element
	The first resource link specifies the actual consumption/usage or production of a resource.

	ResourceLink ?
	element
	The second optional resource link logs the modification of a resource link and the modification of the resource it refers to. It holds the planned resource link which also refers to the planned resource. The planned and actual resource may be the same.

For details on ResourceLink elements and ResourceLink subclasses, see Section 3.8 Resource Links. The partitioning of resources using Part elements is defined in Section 3.9.2 Description of Partitionable Resources.

3.10.1.4.1 Logging Machine Data by Using the ResourceAudit

If a resource is modified during processing, any nodes that also reference the resource may also be affected. The following logging procedure is recommended in order to track the resource modification and to insure consistency of the job:

1.
Create a copy of the original resource with a new ID.

2.
Modify the original resource to reflect the changes.

3.
Insert a ResourceAudit element that references the modified original resource with the first ResourceLink and the copied resource with the second ResourceLink attribute.

The following example describes the logging of a modification of the media weight and amount. The JDF document before modification requests 400 copies of 80 gram media:

<JDF … >

 <ResourceLinkPool>

 <MediaLink rRef="RLink" Usage="Input" Amount="400"/>

 </ResourceLinkPool>

 <ResourcePool>

 <Media Weight="80" ID="RLink" Amount="400" (…)/>

 <ResourcePool/>

</JDF>
The JDF after modification specifies that 421 copies of 90-gram media have been consumed:

<JDF … >

 <ResourceLinkPool>

 <MediaLink rRef="RLink" Usage="Input" Amount="400"/>

<!—note that the ResourceLink has not changed -->

 </ResourceLinkPool>

 <ResourcePool>

 <Media Weight="80" ID="RPrev" Amount="400" (…) /> <!—Copy of the original resource-->

 <Media Weight="90" ID="RLink" Amount="421" (…)/> <!—modified resource-->

 <ResourcePool/>

 <AuditPool>

 <ResourceAudit (…)>

 <MediaLink rRef="RLink" Usage="Input" Amount="421"/>

 <MediaLink rRef="RPrev" Usage="Input" Amount="400"/>

 </ResourceAudit>

 </AuditPool>

</JDF>
3.10.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit

ResourceAudit elements may also be used to store the original intent resources of a product specification in a change order or request for requote. The mechanism is the same as above. The following example shows the structure of a MediaIntent with Option partitions, where a late change of options from Option1 (80 gram paper) to Option2 (90 gram paper) is requested.

<JDF … >

 <ResourceLinkPool>

 <MediaIntentLink rRef="id" Usage="Input">

 <Part Option=”Option2”/>

 </MediaIntentLink>

 </ResourceLinkPool>

 <ResourcePool>

 <MediaIntent PartIDKeys=”Option” (…)>

 <!— the common MediaIntent resource details -->

 <MediaIntent Option=”Option1” (…)>

 <Weight Preferred=”80”/>

 </MediaIntent>

 <MediaIntent Option=”Option2” (…)>

 <Weight Preferred=”90”/>

 </MediaIntent>

 </MediaIntent>

 <ResourcePool/>

 <AuditPool>

 <ResourceAudit (…)>

 <!— the actual MediaIntent resource link -->

 <MediaIntentLink rRef="id" Usage="Input">

 <Part Option=”Option2”/>

 </MediaIntentLink>

 <!— the original MediaIntent resource link -->

 <MediaIntentLink rRef="id" Usage="Input"/>

 <Part Option=”Option1”/>

 </MediaIntentLink>

 </ResourceAudit>

 </AuditPool>

</JDF>
3.10.1.5 Created

This element allows the creation of a JDF node or resource to be logged. If the element refers to a JDF node, it can be located in the AuditPool element of the node that has been created or in any ancestor node. If the element refers to a resource it must be located in the node where the resource resides so that the spawning and merging mechanism can work effectively.

Table 3‑36 Contents of the Created element

	Name
	Data Type
	Description

	ref ?
	IDREF
	Represents the ID of the created element. Defaults to the ID of the local JDF node.

3.10.1.6 Modified

This element allows any modifications affecting a JDF node, such as changes made to the NodeInfo element or CustomerInfo element, to be logged. Changes that can be logged by other audit element types, such as resource changes, must not use this common log entry. The modification can be described textually by adding a generic Comment element to the Modified element. The location of the element in the node tree is the same as the location of the corresponding Created element.

 Table 3‑37 Contents of the Modified element

	Name
	Data Type
	Description

	jRef ?
	IDREF
	The ID of the modified node. The modified element resides in the modified node. Defaults to the ID of the local JDF node.

3.10.1.7 Spawned

This element allows a job that has been spawned to be logged in the AuditPool of the parent node of the spawned job-part or in the AuditPool of the node that has been spawned in case of spawning of individual partitions. For details about spawning and merging, see Section 4.4 Spawning and Merging.

Table 3‑38 Contents of the Spawned element

	Name
	Data Type
	Description

	Independent ?
	boolean
	Declares that independent jobs that have previously been merged into a big job are spawned.

If it is set to true, the attributes jRefDestination, rRefsROCopied and rRefsRWCopied have no meaning and should be omitted.

Default = false

	jRef
	IDREF
	ID of the JDF node that has been spawned.

	jRefDestination ?
	NMTOKEN
	ID of the JDF node to which the job has been spawned.
 This attribute must be specified in the parent of the original node if independent jobs are spawned.

	NewSpawnID

New in JDF 1.1
	NMTOKEN
	Copy of the SpawnID of the newly spawned node. Note that a Spawned audit may also contain a SpawnID attribute, which is the SpawnID of the node that this audit is being placed into prior to spawning.

	rRefsROCopied ?
	IDREFS
	List of IDs separated by whitespace. Identifies the resources copied to the ResourcePool element of the spawned job during spawning. These resources should NOT be modified by the spawned job.

	rRefsRWCopied ?
	IDREFS
	List of IDs separated by white spaces. Identifies the resources copied to the ResourcePool element of the spawned job during spawning. These resources may be modified by the spawned job and must be copied back into their original location by the merging agent.

Resource copying is required if resources are referenced simultaneously from spawned nodes and from nodes in the original JDF document.

	Status ?

New in JDF 1.1
	enumeration
	Status of the spawned node at the time of spawning. Allowed values are defined in Table 3‑3 Contents of a JDF node, Status.

	URL ?

New in JDF 1.1
	URL
	Locator that specifies the location where the spawned node was stored by the spawning process.

	Part *
	element
	Identifies the parts that were selected for spawning in case of parallel spawning of partitionable resources (see Section 4.4.3).

3.10.1.8 Merged

This element logs a merging event of a spawned node. For more details, see Section 4.4 Spawning and Merging.

Table 3‑39 Contents of the Merged element

	Name
	Data Type
	Description

	Independent ?
	boolean
	Declares that independent jobs are merged into a big job for common production.

If it is set to true, the attributes jRefSource and rRefsOverwritten have no meaning and should be omitted.

Default = false

	jRef
	IDREF
	ID of the JDF node that has been returned or merged.

	jRefSource ?
	NMTOKEN
	ID of the JDF root node of the big job from which the spawned structure has been returned.

	MergeID

New in JDF 1.1
	NMTOKEN
	Copy of the SpawnID of the merged node. Note that a Merged audit may also contain a SpawnID attribute, which is the SpawnID of the node that this audit is being placed into prior to merging.

	rRefsOverwritten ?
	IDREFS
	Identifies the copied resources that have been overwritten during merging. Resources are usually overwritten during return if they have been copied during spawning with read/write access.

	URL ?

New in JDF 1.1
	URL
	Locator that specifies the location of the merged node prior to merging by the merging process.

	Part *
	element
	Specifies the selected parts of the resource that were merged in case of parallel spawning and merging of partitionable resources (see Section 4.4.3).

3.11 JDF Extensibility

JDF is meant to be flexible and therefore useful to any vendor, as each vendor will have specific data to include in the JDF files. JDF is able to provide this kind of versatility by using the XML namespaces. This chapter describes how JDF uses the XML extension mechanisms.

3.11.1 Namespaces in XML

JDF Extensibility is implemented using XML Namespaces. The Namespaces in XML specification is found at http://www.w3.org/TR/REC-xml-names/.

[image: image135.jpg]

XML namespaces are defined by xmlns attributes. A general example is provided below. The example illustrates how private namespaces are declared and used to extend an existing JDF resource by adding private attributes and a private element.

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:foo="fooschema URI" … >

 …

 <SomeJDFDefinedResource name="abc" foo:specialname="cba">

 …

 <foo:PrivateStuff type=""/>

 …

 </SomeJDFDefinedResource>

 …

</JDF>

Namespaces are inserted in front of attribute and element names. The associated namespace of element names with no prefix is the default namespace defined by the xmlns attribute. The associated namespace of attributes with no prefix is that one of the element (see Appendix A.2 XML Namespace Partitions in the specification Namespaces in XML). All namespaces prefixes must be declared using standard xmlns:xxx attributes.

3.11.1.1 JDF Namespace

The official namespace URI for JDF Version 1.0 is: "http://www.CIP4.org/JDFSchema_1".

The official namespace URI for JDF Version 1.1 is: "http://www.CIP4.org/JDFSchema_1_1".

It is strongly recommended to use either the default namespace with no prefix or a prefix of “JDF” as the jdf namespace prefix.

3.11.1.2 [image: image136.wmf]

1

2

3

F

B

JDF Extension Namespace

CIP4 defines an extension namespace where new features that are anticipated to be included in a future version of the specification are defined.

The official extension namespace URI for JDF Version 1.1 is: "http://www.CIP4.org/JDFSchema_1_1_X".

It is strongly recommended to use a prefix of “JDFX” as the jdf extension namespace prefix.

3.11.2 Extending Process Types

JDF defines a basic set of process types. Because JDF allows flexible encoding, however, this list, by definition, will not be complete. Vendors that have specific processes that do not fit in the general JDF processes and that are not combinations of individual JDF processes (see Section 3.2.3 Combined Process Nodes) can create JDF process nodes of their own type. Then the content of the Type attribute may be specified with a prefix that identifies the organization. The prefix and name must be separated by a single colon (‘:’) as shown in the following example:

<JDF Type="myCompaniesNS:MyVeryImportantProcess" xmlns=

"http://www.CIP4.org/JDFSchema_1_1" xmlns:myCompaniesNS="my companies namespace URI" … >

 …

</JDF>

The use of namespace prefixes in the Type attribute is for extensions only. Standard JDF process types must be specified without a prefix in the Type attribute or the Types attribute of a combined node.

If a process is simply an extension of an existing process, it is possible to describe the private data by extending the existing resource types. This is described in greater detail in the sections below.

Extending the NodeInfo and CustomerInfo nodes is achieved in a manner analogous to the extension of resources, which is described below. On the other hand, extending the direct contents of JDF nodes by adding new elements or attributes is discouraged.

3.11.3 Extending Existing Resources

All resources defined by JDF may be extended by adding attributes and elements using one’s own namespace for these resource extensions. This is useful when the predefined resource types need only a small amount of private data added, or if those resources are the only appropriate place to put the data. The namespace of the resource extended must not be modified. However, the mechanism for creating new resources in a separate namespace is provided in the next section.

This does not mean that duplicate functionality may be added into these resource types. You must make sure to use the JDF-defined attributes and elements where possible and extend them with additional information that cannot be described using JDF-defined constructs. For example, it is not allowed to extend the RIP resource that controls the resolution with a foo:Resolution or foo:Res attribute that overrides the JDF defined resolution parameter (see attribute Resolution of resource RenderingParams in Section 7.2.115).

3.11.4 Extending NMTOKEN Lists

Clarified in JDF 1.2
[Clarified the processing of unknown NMTOKEN extensions]
Many resources contain attributes of type NMTOKEN and some of these have a set of predefined, suggested enumerative values. These lists may be extended with private keywords. In order to identify private keywords, it is strongly suggested to prefix these keywords with a namespace-like syntax, i.e., a namespace prefix separated by a single colon (‘:’). Implementations that find an unknown NMTOKEN prefixed by a namespace prefix may then attempt to use the default value of that attribute if the value of SettingsPolicy in effect is BestEffort.
 For instance, if a JDF instruction contains the following text:

<TrappingParams TrapEndStyle=”HDM:FooBar” (…)/>

Based of the definition of TrappingParams, the best assumption is to use TrapEndStyle = “Miter”.

Example from TrappingParams

	Name
	Data Type
	Description

	TrapEndStyle ?
	NMTOKEN
	Instructs the trap engine how to form the end of a trap that touches another object. Possible values include:

Miter

Overlap
Other values may be added later as a result of customer requests.

Default = Miter

3.11.5 Creating New Resources

There are certain process implementations that have functionality that cannot be specified by the predefined Resource types. In these cases, it is necessary to create a new Resource-type element, which must be clearly specified using its own namespace. These resource types may only be linked to custom type JDF process nodes.

3.11.6 Future JDF Extensions

In future versions, certain private extensions will become more widely used, even by different vendors. As private extensions become more of a general rule, those extensions will be candidates for inclusion in the next version of the JDF specification. At that time the specific extensions will have to be described and will be included into the JDF namespace.

3.11.7 Maintaining Extensions

[image: image137.jpg])

Given the mix of vendors that will use JDF, it is likely that there will be a number of private extensions. Therefore, JDF controllers must be prepared to receive JDF files that have extensions. These controllers can and should ignore all extensions they don’t understand, but under no circumstance are they allowed to remove these extensions when making modifications to the JDF. If they do, it will break the extensibility mechanism. For example, imagine that JDF Agent A creates a JDF and inserts private information for Process P. Furthermore, the information is only understood by agent A and the appropriate device D for executing P. If the JDF needs to be processed first by another Agent/Device C, and that process removes all private data for P, Process P will not be able to produce the correct results on device D that were specified by Agent A.

3.11.8 Processing Unknown Extensions

If a node is processed by a controller or device and it encounters an unknown extension in one of its input resources, the expected behavior depends on the current value of SettingsPolicy.

If SettingsPolicy =”BestEffort”, a Notification audit element with Class = warning should be logged.

If SettingsPolicy =”MustHonor” the process must not continue and a Notification audit element with Class = error should be logged.

If SettingsPolicy =”OperatorIntervention” the process must stop and wait for an operator intervention and a Notification audit element with Class = warning should be logged.

3.11.9 Derivation of Types in XMLSchema

The XML Schema definition http://www.w3.org/TR/xmlschema-1/ describes a mechanism to create new types by derivation from old types. This is an alternative to extend or create new elements and is described in Section 4 of http://www.w3.org/TR/xmlschema-0/. This mechanism is not allowed to be applied to any elements defined by JDF because such new element types can only be understood by agents/devices that know the extension. The use of the derivation mechanism is allowed only for private extensions but not required.

Chapter 4 Life Cycle of JDF

Introduction
This chapter describes the life cycle of a JDF job, from creation through modification to processing. Information is provided about the spawning of individual aspects of jobs and in what way they are reincorporated into the job once the process is completed. Ancillary aspects of the life cycle, such as test running and error handling, are also discussed.

4.1 Creation and Modification

The life cycle of a JDF job will likely follow one of two scenarios. In the first scenario, a job is created all at once, by a single agent, and then is consumed by a set of devices. More often, however, a job is created by one agent and is then transformed, or modified, over time by a series of other agents. This process may require specification of product intent, which is defined in Section 4.1.1, below.

Jobs can be modified in a variety of ways. In essence, any job is modified as it is executed, since information about the execution is logged. The most common instance of modification of a JDF job, however, occurs during processing, when more detailed information is learned or understood and then added along the way. This information may be added because an agent knows more about the processing needed to achieve some result specified in a JDF node than the original, creating agent knew. For example, one agent may create a product node that specifies the product intent of a series of pages. This product node may include information about the number of pages and the paper properties. Another node may then be inserted that includes a resource describing how the pages should be Ripped. Later, another agent may provide more detail about the RIP’ing process by appending optional information to the RIP parameter resource.

Regardless of where in the life cycle they are written, nodes and their required resources must be valid and include all required information in order to have a Status of Ready (in case of nodes) or Available (in case of resources). This restriction allows for the definition of incomplete output resources. For example, a URL resource without a file name may be completed by a process. On the other hand, it is impossible to define a valid and executable node with insufficient input parameters.

Once all of the inputs and parameters for the process requested by a node are completely specified, a controller can route the JDF job containing this node to a device that can execute the process. When the process is completed, the agent/controller in charge of the device will modify the node to record the results of the process.

4.1.1 [image: image138.jpg]Activation =
TestRun or
TestRunAndGo

Activation

= Active

TestRunin
Progress

QueueEntryStatus
= Running

Test Run
Failed

In
Progress

Product Intent Constructs

JDF jobs, in essence, are requests made by customers for the production of quantities of some product or products. In other words, a job begins with a particular goal in mind. In JDF, product goals are often specified by using a construct known as product intent, represented by intent resources. In contrast to process resources that define precise values, intent resources allow ranges or sets of preferred values to be specified. Resources of this kind include FoldingIntent, ColorIntent, MediaIntent, and ShapeCuttingIntent, all of which are described in Chapter 7 Resources.

The product intent of a job is like a plan of action. The plan may be extremely vague, detailing only the general goal, or it may be very specific, stipulating the specific requirements inherent in meeting that goal. Product intent may be defined for an end product about which little is known or about which the processing details for the job are entirely unknown. Product intent constructs also allow agents to describe jobs that comprise multiple product components, and that may share some parts.
Product intent is defined by the initiating agent of a job. It is not required, however. Many JDF jobs are written with full knowledge of the necessary processes, and are therefore comprised entirely of the various kinds of process nodes described in Sections 3.2.1, 3.2.2, and 3.2.3. Any job that specifies product intent, however, must include nodes whose Type = Product. This representation is described in the following section.

4.1.1.1 Representation of Product Intent

The product description of a job is a hierarchy of Product nodes, and the bottom-most level of the product hierarchy represents portions of the product that are each homogeneous in terms of their materials and formats. All nodes below these Product nodes begin specifying the processes required to produce the products.

Product nodes are required to contain only one thing, and that is a resource that represents the physical result specified by the node. This resource is generally a Component. In addition, somewhere in the hierarchy of product nodes, it is a good idea to include an intent resource to describe the characteristics of the intended product. Although these are the only resources that should occur, product nodes can contain multiple resources. For example, some ResourceTypes, such as MediaIntent and LayoutIntent, are defined to provide more general mechanisms to specify product intent.

In some cases, more than one high level product node will use the output of a product node. These high level nodes represent the combination of homogeneous product parts. In this case, the Amount attribute of the ResourceLinks that connect the nodes will identify how the lower level product is shared.

4.1.1.2 Representation of Product Binding

Some product intent nodes, such as BindingIntent, define how to combine multiple products. To accomplish this, the respective Component resources must be labeled according to their usage. For example, the Cover and Insert attributes use the ProcessUsage attribute of the respective resource links. For more information about product intent, see Section 3.2.1 Product Intent Nodes.

4.1.2 Defining Business Objects Using Intent Resources

[image: image139.png]

Business objects like requests for quote, quote, invoice, etc. need to reference processes at a level that is well represented by product intent nodes. It is assumed that business object metadata such as financial information, business document type, customer information, etc. is defined by an XML envelope that contains JDF as a job description. If this is not the case, the business related metadata may be placed into the BusinessInfo element of the NodeInfo element of the root JDF and the customer related data may be placed into the CustomerInfo element of the root JDF.

This section sketches the usage of JDF in an eCommerce environment using the business object model that was defined by the PrintTalk www.PrintTalk.org consortium.

The following table describes the individual business objects and their relationships. Object Type defines the name of the XML element that defines the metadata. All object types are inherited from the abstract PrintTalk Request element. References defines the business objects that are responded to when generating the business object and buyer-provider arrow defines the direction of the transaction.

Table 4‑1. Business Objects as defined by PrintTalk

	Object Type
	Description
	References
	Direction

	Request for Quote (RFQ)
	Initiated by a buyer to a print supplier. It may instigate a new product process or it may supersede an existing RFQ. The Change Order and Request for Requote variations are included within Request for Quote.
	None, Quote, Confirmation
	B→P

	Quote
	Normally sent in response to a RFQ. The Requote and Change Order Quote variations are included within Quote. A Quote may supersede an existing Quote before the Print Buyer has answered with a RFQ or an Order.
	RFQ, PO, Confirmation
	B←P

	Purchase Order
	Typically sent as a response to a quote, but may be the initial document in a well defined buyer / print supplier relationship or when ordering finished goods items. The Change Order variation is included within Purchase Order. An order may supersede an existing Order prior to the Print Provider having confirmed it.
	None, Quote, Confirmation
	B→P

	Order Confirmation
	Sent by the print supplier to the buyer acknowledging receipt of the purchase order. It may contain information about expected due dates and final pricing that were undetermined at the time of the quote.
	PO
	B←P

	Cancellation
	Cancels a complete job. If only parts of a job should be cancelled, one must send a new RFQ, Quote, or PO. In case of canceling parts of a confirmed order the Change Order variations of these Business Objects must be sent.
	RFQ, Quote, PO, Confirmation
	B↔P

	Refusal
	Used to explicitly decline a Business Object sent by the counter party. Alternatively, the non-accepted Business Object expires.
	RFQ, Quote, PO
	B↔P

	Order Status Request
	Generated anytime one party requests status from another party.
	 Confirmation
	B↔P

	Order Status Response
	An Order Status Response can be sent as a response to an Order Status Request or it can be sent automatically.
	Confirmation, Order Status Request
	B↔P

	Proof Approval Request
	Provides a transport for proofing from supplier to buyer. This may contain MIME data or a URL where the proof is located.
	Confirmation
	B←P

	Proof Approval Response
	Contains buyer’s approval or denial of a proof.
	Proof Approval Request
	B→P

	Invoice
	Typically sent once the job is shipped, but can also be sent several times, when certain milestones during production are reached. May include additional charges or discounts.
	Confirmation, Cancellation
	B←P

In the following figure the workflow of these business objects is partly illustrated in a simplified manner. See the PrintTalk specification at www.printtalk.org for a complete picture.

[image: image49.jpg]Change Order
RFQ

Change Order
Quote

Superceding
Quote

Superceding
PO

Superceding
RFQ

Request for
Requote

Requote

Figure 4.1 Simplified PrintTalk workflow (negotiation phase)
The node that defines an RFQ must contain one or more DeliveryIntent resources that define the amounts and methods of delivery. The Usage of the ResourceLinks is Input, its Type is “Product” and the Business object is an RFQ.

The examples quoted in this section use an object model as defined by PrintTalk with the business objects defined in BusinessInfo. This does not preclude the use of other eCommerce systems. The following examples show equivalent PrintTalk and pure JDF document text. The highlights show the respective position of an RFQ.

PrintTalk example

<PrintTalk>

 <Header>

 Standard CXML header

 </Header>

 <Request>

 <RFQ AgentID="Lara" RequestDate=”2002-04-05T1700-0800” Expires="2002-04-15T1700-0800" Estimate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ_ID">
 <JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1" xmlns="http://www.CIP4.org/JDFSchema_1_1">

 <NodeInfo LastEnd="2000-12-24T06:02:42+01:00"/>

 (…)

 </JDF>

 </RFQ>

 </Request>

</PrintTalk>

Equivalent pure JDF Example

<JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1" xmlns="http://www.CIP4.org/JDFSchema_1_1">

 <NodeInfo LastEnd="2000-12-24T06:02:42+01:00">

 <BusinessInfo>

 <RFQ AgentID="Lara" RequestDate=”2002-04-05T1700-0800” Expires="2002-04-15T1700-0800" Estimate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ_ID"/>
 </BusinessInfo>

 </NodeInfo>

 (…)

</JDF>

4.1.3 Specification of Delivery of End Products

A job may define one or more products and specify a set of deliveries of end products. To accomplish this, a node of Type = Product is created to define each delivery mode to be made. A delivery contains a set of drops, which in turn contain a set of drop items. Each drop has a common delivery address and each package contains the amount of an individual Component or ComponentRef that is to be delivered to this address. Quote generation as defined in the previous chapter includes the specification of delivery addresses. For more information, see section 6.2.4 Delivery.

4.1.4 Specification of Process Specifics for Product Intent Nodes

Product intent nodes are designed to represent a customer’s view of the product. In some instances, a knowledgeable customer may want to specify production details that are only available in JDF process resources for a given product. Examples include scanning or screening parameters. This customer will still have no knowledge or control of the process workflow.

Individual JDF process or ProcessGroup
nodes may be inserted into a product intent node. These nodes will contain the requested process resource definitions as input resource links. The Status attribute of these resources should be “Incomplete”. No output resources should be defined. In other words the actual specification of the process workflow should be left undefined. The application that sets up the actual workflow can then use these resource templates as a starting point for defining the process. The following example shows how an ellipse spot function is requested within a simple product description. The JDF node in yellow highlight defines the screening parameters of the product.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="HDM20001106181236" Type="Product" JobID="HDM20001106181236" Status="Waiting" Version="1.0">

<ResourcePool>

 <Component ID="Link0003" Class="Quantity" Amount="10000" Status="Unavailable" DescriptiveName="complete 16-page Brochure"/>

 <LayoutIntent ID="Link0004" Class="Intent" Status="Available">

 <Dimensions Range="576 720~648 864" DataType="XYPairSpan" Preferred="612 792"/>

 <Pages DataType="IntegerSpan" Preferred="16"/>

 </LayoutIntent>

 <MediaIntent ID="Link0005" Class="Intent" Status="Available" PartIDKeys="Option">

 <FrontCoatings DataType="NameSpan" Preferred="None"/>

 <MediaIntent Option="1">

 <FrontCoatings DataType="NameSpan" Preferred="Glossy"/>

 </MediaIntent>

 <BackCoatings DataType="NameSpan" Preferred="None"/>

 </MediaIntent>

 </ResourcePool>

 <ResourceLinkPool>

 <ComponentLink rRef="Link0003" Usage="Output"/>

 <LayoutIntentLink rRef="Link0004" Usage="Input"/>

 <MediaIntentLink rRef="Link0005" Usage="Input"/>

 </ResourceLinkPool>

 <AuditPool>

 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-06T18:12:36+01:00"/>

 </AuditPool>

 <JDF ID="Link0006" Type="Screening" Status="Waiting">

 <ResourcePool>

 <ScreeningParams ID="ScreenID" Class="Parameter" Status="Incomplete">

 <ScreenSelector SpotFunction="Ellipse" ScreeningFamily="My favorite screen"/>

 </ScreeningParams>

 </ResourcePool>

 <ResourceLinkPool>

 <ScreeningParamsLink rRef="ScreenID" Usage="Input"/>

 </ResourceLinkPool>

 </JDF>
</JDF>

4.2 Process Routing

A controller in a JDF workflow system has two tasks. The first is to determine which of the nodes in a JDF document are executable, and the second is to route these nodes to a device that is capable of executing them. Both of these procedures are explained in the sections that follow.

In a distributed environment with multiple controllers and devices, finding the right device or controller to execute a specific node may be a non-trivial task. Systems with a centralized, smart master controller may want to route jobs dynamically by sending them to the appropriate locations. Simple systems, on the other hand, may have a static, well defined routing path. Such a system may, for example, pass the job from hot folder to hot folder. Both of these extremes are valid examples of JDF systems that have no need for additional routing metadata.

In order to accommodate systems between these extremes, the NodeInfo element of a node contains optional Route and TargetRoute attributes that let an agent define a static process route on a node-by-node basis. If no Route or TargetRoute attribute is specified and if a controller has multiple options where to route a job, it is up to the implementation to decide which route to use.

The controller or device reading the JDF job is responsible for processing the nodes. A device examines the job and attempts to execute those nodes that it knows how to execute, whereas a controller routes the job to the next controller or device that has the appropriate capabilities.

4.2.1 Determining Executable Nodes

In order to determine which node should be executed, the controller/device uses the following procedures:

1. [image: image140.jpg]

First, it searches the JDF document for node types it can execute by comparing the Type attribute of the node to its own capabilities, and by determining the Activation of the nodes. It should also verify that the Status of the node is either Waiting or Ready.

2. The controller/device may then determine whether no resources have a Status of Incomplete or a SpawnStatus of SpawnedRW. It should also determine whether all of the input resources of the respective nodes have a Status of Available and that all processes that are attached through pipes are ready to execute. A controller may optionally skip these checks and expect the lower level controller or device that it controls to perform this step and return with an error if it fails.

3. Finally, if scheduling information is provided in the NodeInfo element, the specified start and/or end time must be taken into account by the executing device. If no process times are specified, it is up to the device in charge of queue handling to execute the process node.

The node will go through various stati during its life time as is described in the following diagram:

[image: image141.png]

Figure 4.2 Life Cycle of a JDF node

4.2.2 Distributing Processing to Work Centers or Devices

JDF syntax supports two means of distributing processes to work centers or devices. Its first option is to use a “smart” controller that has the ability to parse a JDF job and identify individual processes or process groups that may be distributed to a particular work center or device. This smart controller may use spawning and merging facilities to subdivide the job ticket and pass specific instructions to a work center or device.

The second option, which is applicable when the controller being used isn’t “smart,” is to employ a simple controller implementation that routes the entire job to each workcenter or device, thus leaving it up to the recipient to determine which processing it can accomplish. For this option to work, each JDF-capable device must be able to identify process nodes it is capable of executing. Furthermore, each device must have sufficient JDF-handling capabilities to identify processes that are ready to run.

4.2.3 Device / Controller Selection

The method used to determine which is the appropriate device or lower level controller to use to execute a given node depends greatly on the implemented workflow being used. Although JDF provides a method for storing routing information in the Route attribute of the NodeInfo element of a node, it does not prescribe any specific routing methods. However, some of the tools available to figure out alternative workflows are described below.

Knowledge of the capabilities of lower level controllers/devices either may be hard-wired into the system or gained using the KnownJDFServices message. Since JDF does not yet provide mechanisms to determine whether a given device is capable of processing a node without actually performing a test run, a controller must either have a priori knowledge of the detailed capabilities of devices that it controls or it must perform a test run to determine whether a device is capable of executing a node. Furthermore, in addition to the explicit routing information in the Route attribute of the NodeInfo element of a node, JDF may contain implicit routing information in the form of Device implementation resources.

JMF defines the KnownControllers query to find controllers and the KnownDevices query to find devices that are controlled by a controller. The [image: image142.png](ow

information provided by these queries can be used by a controller to infer the appropriate routing for a node. In a system that does not support messaging, this information must be provided outside of JDF.

4.3 Execution Model

JDF provides a range of options that help controllers tailor a processing system to the needs of the workflow and of the job itself. The following sections explain the ways in which controllers execute processes using these various options.

The processing model of JDF is based on a producer/consumer model, which means that the sequencing of events is controlled by the availability of input resources. As has been described, nodes act both as producers and consumers of resources. When all necessary inputs are available in a given node, and not before, the process may execute. The sequence of processing, therefore, is implied by the chain of resources in which the output resources of one node become the input resources of a subsequent node.

JDF supports four kinds of process sequences: serial processing, overlapping processing, parallel processing, and iterative processing. All four are described in the following sections.

4.3.1 Serial Processing

The simplest kind of process routing, known as serial processing, executes nodes sequentially and with no overlap. In other words, no nodes are executed simultaneously. Once the process has acted upon the resource in some way, the resource availability is described by the Status attribute of the resource, as described above. When the process state is Ready or Waiting, the process can begin executing.

In a workflow using serial processing, the controller is responsible for comparing the actual amount available with the specified amount in the corresponding PhysicalLink element to determine whether or not the input resource can be considered available. If no amount is specified in the PhysicalLink, the process is assumed to consume the entire resource.

[image: image50.jpg]O

P1 }——(RZ}—

Figure 4.3 Example of a simple process chain linked by resources

Figure 4.3 depicts a simple process chain that produces and consumes Quantity resources and uses an implementation resource. The resources R1, R2, and R3 represent Quantity resources. Process P1 consumes resource R1 and produces resource R2. R2 is then completely consumed by P2, which also requires the implementation resource R4 for processing. Process P2 uses these two resources and produces resource R3. All of this is accomplished along a linear time axis.

Table 4‑2 shows the value of the Status attribute of each of the resources and processes used in Figure 4.3. The time axis runs from left to right both in Figure 4.3 and in Table 4‑2. Note that no process may execute until all resources leading up to that process are in place. In other words, the job executes serially and sequentially. For more information about the values of the Status attribute of resources, see Table 3‑11. For more information about the values of the Status attribute of processes, see Table 3‑3.

Table 4‑2 Examples of resource and process states in the case of simple process routing

	Object Status
	before running P1
	during running P1
	after running P1, before P2
	during P2
	after P2

	resource R1
	Available
	InUse
	Unavailable
	Unavailable
	Unavailable

	resource R2
	Unavailable
	Unavailable
	Available
	InUse
	Unavailable

	resource R3
	Unavailable
	Unavailable
	Unavailable
	Unavailable
	Available

	resource R4
	Available
	Available
	Available
	InUse
	Available

	process P1
	Waiting or Ready
	InProgress
	Completed
	Completed
	Completed

	process P2
	Waiting or Ready
	Waiting or Ready
	Waiting or Ready
	InProgress
	Completed

When the attribute Amount is used in connection with the quantifiable resources R1, R2, or R3 and their links, then the controller must decide whether or not a resource is available by comparing the individual values. If the amounts are used to define the availability, then the resource Status may be set to Available for all Quantity resources. Note that when the value of the Status attribute of the resource is Unavailable, the resource is not available even if a sufficient amount is specified.

If amounts are specified in the resource element, they represent the actual available amount. If they are not specified, the actual amount is unknown, and it is assumed that the process will consume the entire resource. Amounts of PhysicalLink elements must be specified for output resources that represent the intended production amount. The specification of the Amount attribute for input resources is not required, although it can be specified. If the controller cannot determine the amounts, this constitutes a JDF content error, which is logged by error handling. This process is described in Section 4.6 Error Handling.

If a process in a serial processing run does not finish successfully, the final process status is designated as aborted. In an aborted job, only a part of the intended production may be available. If this occurs, the actual produced amount is logged into the audit pool by a resource audit element.

4.3.2 Overlapping Processing Using Pipes

Whereas pipes themselves are identified in the resource that represents the pipe, pipe dynamics are declared in the resource links that reference the pipe. This allows multiple nodes to access one pipe, each of them with its own pipe buffering parameters.

In some situations, resource linking is a continuous process rather than a chronological one. In other words, one process may require the output resources of another process before that process has completely finished producing them. The ability to accomplish this kind of resource transfer is known as overlapping processing, and it is accomplished with the use of a mechanism known as pipes. Pipes are considered to be active if any process linking to the pipe simultaneously consumes or produces that pipe resource.

[image: image143.png]

Any resource may be transformed into a pipe resource. All that is required is that the PipeID attribute be specified in the resource. Pipes of quantifiable resources resemble reservoir tanks that hang between processes. Processes connected to the pipe via output links fill the tank with necessary resources, while processes connected via input links deplete it (see Figure 4.4). The level is controlled by the PhysicalLink attributes PipeResume, PipePause, RemotePipeEndPause, and RemotePipeEndResume (see Table 3‑21). If none of them are specified, any produced Quantity may be immediately consumed by the consuming end of the pipe. The unit of the buffers is defined by the Unit attribute of the resource.

The two following diagrams show the ways in which pipes mediate between the process producing the resource and the process consuming the resource. The following optional attribute values are defined for pipes: PipePartIDKeys, PipePause, PipeResume, RemotePipeEndPause, and RemotePipeEndResume. The latter two—RemotePipeEndPause and RemotePipeEndResume—are use to control the level in context with pipe command messages which will be described in Section 4.3.2.2 Dynamic Pipes. The specified value of each of these attributes in any given node dictates the levels at which a pipe should resume or pause execution. Figure4.5 gives an example of a view on the dynamics of a pipe resource. The available level of the pipe resource, represented as R2, and the availability status of two entity resources, represented as R1 and R3, are changing along a consistent time line. Below the progressions of these resources is the status of two processes—P1 and P2. P1 represents the process producing the pipe resource and P2 represents the process consuming that resource. The resource status of a active pipe (here R2) is defined to be Status = InUse (see also Table 3‑11).

[image: image51.jpg]Pipe Resource R2

EHE

PipeResume (of input, P2)

PipePause (of input, P2)

Supply
Level
R2

PipePause = maximum (of output, P1)

PipeResume (of output, P1)

P2

Figure 4.4 Example of a Pipe resource linking two processes

[image: image144.jpg]Book block VisibleLength
LengthOverall - VisibleLength

>
X

Origin of the process coordinate system

Figure 4.4 is a view on the structure and Figure4.5 a view on the dynamics of the pipe example considered here. R1 represents an input resource for P1, which feeds into the intermediate pipe resource R2. Once the tank R2 is filled to the predetermined level, it is used as the input resource for P2, which in turn produces output resource R3.

Figure4.5 Example of status transitions in case of overlapping processing

Resource linking through pipes is controlled through the specification of the PipePause and PipeResume attributes. The intended amount of a resource must be specified in advance in the output link. Whenever the level representing the available quantity of the pipe resource exceeds the PipePause level of the output link, the process P1 is halted (Status = Stopped) so that the process does not overproduce. Once the level falls below the PipeResume value, the process P1 resumes execution. P1 is completed when it has produced the intended amount. Once P1 has performed its task, the resources still in the pipe are consumed by the subsequent process without level control. In other words, after a process filling a pipe buffer has completed, pipe buffering becomes disabled.

Conversely, if the level representing the actual amount exceeds the PipeResume level of the input link, P2 can start or resume execution. If it falls below the PipePause level, P2 is halted (Status = Stopped) unless the intended amount of the pipe resource R2 has already been produced. Then the PipePause level is ignored and the pipe resource is completely consumed.

In the case of output links, the PipeResume value must be smaller than the PipePause value, whereas in the case of input links, the PipeResume value must be greater than the PipePause value. If PipePause is specified for an input or an output link and PipeResume is not specified, the related process may run into a deadlock state. In other words, the process stops and cannot resume execution automatically. Once a process is stopped under these circumstances it can only be resumed manually or by sending a pipe control message for resumption that allows interconnected execution control (halting and resumption of processes by pipe control messages is described in Section 5.5.3 Pipe Control). If the attributes PipeResume or PipePause of links to pipe resources are not specified, the controller is responsible when the linked processes start and stop in dependence of the level.

4.3.2.1 Pipes of Partitionable Resources

Pipes of partitionable resources may also define the granularity of the resources that are considered to be one part. To accomplish this, the PipePartIDKeys attribute must be specified in the appropriate ResourceLink element. For instance, a partitioned ImageSetting process may be defined for multiple sheet separations, but a complete set containing all separations of both sides of a single sheet should be sent to the pressroom as one pipe request. In this case, the value of the PartIDKeys attribute of the ExposedMedia resource would be SheetName Side Separation and the value of the PipePartIDKeys attribute of the resource link to the pipe would be SheetName.

4.3.2.2 Dynamic Pipes

In addition to abstractly declaring pipe properties, JMF provides pipe messages that allow dynamic control of pipes. Dynamic pipes can be used to model situations where the required amount of resources is not known beforehand but becomes known during processing. An example of this behavior is a long press run where new plates are required during a press run because of quality deterioration. The exact point in time where quality becomes unacceptable is not predetermined and may even vary from separation to separation. Dynamic pipes provide the flexibility to adjust to changing situations of this nature.

Dynamic pipes provide a PipeURL attribute that allows dynamic requests for a status change of the pipe while a process is executing. Dynamic requests use JMF pipe control messages (see Section 5.5.3 Pipe Control) sent to another controller whose URL address is specified by the PipeURL attribute of the respective resource link. Depending on the values of the resource link's Usage attribute, the following actions are possible:

· Input – The consumer sends a PipePull message to its PipeURL in order to request additional resources or a PipePause to halt production by the creator. The consumer sends a PipeClose message to the producer if the consumer does not require any further resources.

· Output – The creator sends a PipePush message to its PipeURL in order to deliver additional resources or a PipePause to halt consumption by the consumer.

When dynamic pipes are used—i.e., when the PipeURL attribute is specified—the pipe buffering parameters RemotePipeEndResume and RemotePipeEndPause define the buffering parameters of the remote (controlled) end. PipeResume and PipePause, meanwhile, define the buffering parameters of the local node as described in Section 4.3.2. The buffering parameters of a non-dynamic pipe may control the process that contains the resource link, whereas the buffering parameters of a dynamic pipe control the process at the other end of the pipe. The pipe control messages described later in Section 5.5.3 Pipe Control are designed to establish communication between processes at both ends of dynamic pipe, even if the corresponding processes are spawned separately.

The following table summarizes the actions to be taken when the buffer in a dynamic pipe reaches a certain level L:

J. 1 Actions generated when a dynamic-pipe buffer passes various levels

	Controlling Pipe End
	Situation
	Message
	Description

	Output (creator)
	L > RemotePipeEndResume
	PipePush
	Sufficient resources have been produced by the creator and are ready for delivery to the consumer.

	Output (creator)
	L < RemotePipeEndPause
	PipePause
	The consumer has consumed to the low water mark and must pause until a sufficient amount of resources have been produced.

	Input (consumer)
	L < RemotePipeEndResume
	PipePull
	More resources are requested from the creator and processing may continue by the consumer.

	Input (consumer)
	L > RemotePipeEndPause
	PipePause
	The creator has produced to the high water mark and must wait until a sufficient amount of resources have been consumed.

Dynamic pipes are initially dormant, and must be activated by an explicit request. Dynamic pipe requests may be initiated by both ends of the pipe. For example, a print process may notify an off-line finishing process when a certain amount is ready by sending a PipePush message, or the printing process may request a new plate by sending a PipePull message.

4.3.2.3 Comparison of Non-Dynamic and Dynamic Pipes

The resource link between non-dynamic pipes provides the buffering parameters for the process to which the link belongs. Therefore, many processes can link to the same pipe resource. Furthermore, each process has its own buffering parameters, whether it is a consumer or a producer. In order to control non-dynamic pipes, one master-controller must control all processes linked to the pipe resource.

In contrast, dynamic pipes provide a URL address to control a process at the other pipe end. Then the buffering parameters of the resource link control the process at the other end. In the case of dynamic pipes, no master-controller is required in order to control the pipe. Control is accomplished by sending pipe messages. If pipe resources are linked to multiple consumers or producers, such as two finishing lines that consume the output of one press one palette at a time, it is up to implementation to ensure consistency of the processes.

When using pipe resources, it is recommended that scheduling data for the process be specified only in the NodeInfo element of the parent node of the processes linked by pipe resources in order to avoid scheduling deadlocks. In Figure4.5, for instance, the actual start and end time of the corresponding parent of P1 and P2 are marked on the time axis.

4.3.3 Parallel Processing

While serial processing assumes that all resources will be produced and consumed in a linear fashion, and while overlapping processing uses multiple processes that work together to use and create resources, there are times when it makes sense to run more than one process simultaneously, creating a more multi-pronged workflow. This kind of process routing is known as parallel processing. Subsections of jobs are spawned off so that nodes may be executed individually and simultaneously by the appropriate devices. Once the processes are complete, the spawned nodes are merged back into the original job. The output resources of the merged nodes become inputs for later processes. For example, an insert may be produced independently of a cover, and both will be bound together later.

In parallel processing, processes can be run in a coordinated parallel fashion by using independent resources. An independent resource is a resource that is not shared between multiple processes. Implementation resources, for example, cannot be shared and are therefore always independent, and Consumable and Quantity resources can each be split to function as independent resources. Individual partitions of partitionable resources are independent and may be processed in parallel. Read-only resources, such as parameters, can be shared without any restrictions, and can therefore be used in read-only mode for parallel processing. Process chains created using independent resources are known as independent process chains.

Parallel processing can proceed in one of two ways. Either a controller may organize the JDF nodes in a way that allows it to initiate parallel processing or it can use the spawning-and-merging mechanism to field out chunks of the job to execute simultaneously. If a controller chooses the latter method, parent nodes that contain independent process chains can be spawned off and processed independently. For example, in order to improve production capacity, an agent may split consumable resources and create independent process chains in which each chain consumes its own resource part. Afterwards, the agent can submit one of the created job parts to a subcontractor and process the other part with its own facilities.

Parallel processing is used only to process multiple aspects of a job simultaneously; it is not used to process multiple copies of a JDF job. In other words, a job must not be copied and sent to different controllers for parallel processing. For more information about spawning of jobs, see Section 4.4 Spawning and Merging.

4.3.4 Iterative Processing

Some processes, especially in the prepress area of production, cannot be described as a serial or parallel set of process steps. Instead, a set of interdependent processes is iterated in a non-deterministic order. These processes are known as iterative processes. For example, an advertisement is laid out that requires a photographic image. During the layout phase, changes must be made to the color settings of the image, which is the reinserted to the layout. Changes such as these can be described in a high level fashion by defining a resource Status attribute of Draft. As long as an input resource to a process has a status of Draft, the Status of the output resource must not be Available.

The ResourceLink that links to a draft input resource must include a DraftOK attribute to state that a draft input resource is acceptable for a process. Thus a prepress layout process can be abstractly defined to work on draft resources until an acceptable output has been achieved, but the output PDL file must not be used for printing until it is Available and no longer designated as a Draft.

Iterative processes may be set up in a formal fashion using dynamic pipes to convey parameter change requests or in an informal way that assumes that the operators of the various processes have an informal communication channel. Both are described in greater detail below.

4.3.4.1 Informal Iterative Processing

Informal iterative processing does not require a complete redefinition of the required resources at every iteration. This kind of processing is generally used in a creative workflow, where a job is defined and gets refined in a series of steps until it is completed. The information about the changes is transferred through channels that bypass JDF. Nonetheless, the description of these processes in JDF is useful for accounting purposes, as the status of each process may be monitored individually.

The ResourceLink elements for informal processing contain an additional DraftOK attribute, but in all other ways they are identical to the ResourceLink elements used in simple sequential processing. Furthermore, the nodes run through the same set of phases as they would in sequential processing. Nodes are designated only as Stopped and not as Completed after being processed for an iterative cycle. They are marked as completed after their output resources lose their Status of Draft.

4.3.4.2 Formal Iterative Processing

In formal iterative processing, all ResourceLink elements between interacting processes are dynamic pipes. Every request for a new resource is initiated by a PipePush or PipePull message that contains at least one Resource element with the updated parameters. This resource is used by the process, and the resulting new output resource can be consumed by the requesting process. The Status of Draft can be removed from a resource by sending the creator a PipeClose message that has the optional UpdatedStatus attribute set to Available. A node can only reach a Status of Completed if it has no remaining draft resources. Another method to remove the draft status is to define a node for an Approval process that accepts draft resources as inputs and has non-draft resources representing the same entities as outputs.

4.3.5 Proofing and Verification

ISSUE (Color, DP, and O&P): Is this description of the use of the Approval process for proofing OK?]
In many cases, it is desirable to ensure that an executed process or set of processes have been executed correctly. In the graphic arts industry this is verified by generating approvals and signing them. JDF allows modeling of the proof process and modeling of the verification processes by allowing an optional ApprovalSuccess input resource in any process. The Approval and Verification processes accept any resource as input and output that resource along with ApprovalSuccess resource if approved. An ApprovalSuccess resource may only be set as Available if it has been signed by an authorized person. For hard proofing, a combined process (e.g., ending with the ImageSetting, ConventionalPrinting, or DigitalPrinting process) generates the hard proof which is input to a separate Approval process. For soft proofing, a combined process (ending with Approval process) generates the soft proof which is approved by that Approval process.
If an approval fails and one or more processes that create the approved resource must be rerun, an agent must modify the job appropriately and resubmit it to the corresponding controllers and devices. All interchange resources from the first unsuccessful process to the approval must be designated as Unavailable.

4.4 Spawning and Merging

JDF spawning is the process of extracting a JDF subnode from a job and creating a new, complete JDF document that contains all of the information needed to process the subnode in the original job. Merging is the process of recombining the information from a spawned job part with the original JDF job, even after both documents have evolved independently. By using the mechanism for spawning and merging different parts of a job, it is possible to submit job parts to distributed controllers, devices, other work areas, or other work centers.

The JDF spawning-and-merging mechanism can be applied recursively, which means that subjobs that have already been spawned may in turn spawn other sub-subjobs, and so on. This does not mean, however, that a node may be respawned. If a node is spawned a second time, the previously submitted version must first be deleted and the spawning procedure must be applied again to the original node.

No matter how many job parts have been spawned, however, merging is realized by copying nodes back to their original location and synchronizing the appropriate resources. Therefore, each spawning must be logged in the job by the agent performing the actions that result in a spawned job. Furthermore, in order to avoid inconsistent JDF states after merging, each merging should be logged, or the appropriate spawn audit must be removed from the AuditPool element.

Figure 4.6, shows, schematically, the spawning and merging of a subjob, designated as P.b. The following three phases are defined on a the demonstrated time scale:

1. The first phase occurs before the subjob is spawned off.

2. The second phase occurs during the spawn phase, when the spawned subjob is executed separately.

3. The third phase occurs after the spawned job has been merged back into the original job.

[image: image52.jpg]Spawning Diagram of
Existing Job Tickets Existing Job Tickets

r L R
————————» Spawning Depth
JobP Job P.b
r

Spawn Point:
time of spawning off
Phase Before P.b as a separate job

b @3 - - =

Spawn Phase'

Original Spawned Job
)-.— ———————————————————————————————————

Return Point:
time of merging back P.b
to its original Icoation

Phase After

LY

Time

Figure 4.6 The spawning and merging mechanism and its phases
The three phases of the job part are bordered by the spawning point and the merging point. On a job scale, denoted as spawning depth in Figure 4.6, one job ticket exists during the phases before and after spawning, and the following two job tickets exist during the spawning phase: The job with the parent (P) of the original job part (P.b', also denoted as a subjob) that has been spawned; and the spawned job (P.bs) itself.

This section provides examples that outline the various ways in which spawning and merging can be applied. The six following cases are considered in the next six sections:

1. Standard spawning and merging.

2. Spawning and merging with resource copying.
3. Parallel spawning and merging of partitioned resources.
4. Nested spawning and merging in reverse sequence.
5. Spawning and merging of independent job tickets.
6. Simultaneous spawning and merging of multiple nodes.

JDF can support any combination of the cases described, but these six represent a cross-section of likely scenarios. Case one is the simplest of all of the cases and is required in every instance of spawning and merging, regardless of the circumstances surrounding the process. Each subsequent case requires additional processing that builds upon the processing described in the cases that precede it.

4.4.1 Case 1: Standard Spawning and Merging

[Typo]
The actions described in this case must be applied in every spawning and merging process. All cases described in this chapter, as well as any other that may be invented, begin with these procedures.

Spawning

When spawning a JDF subnode, the JDF elements CustomerInfo and NodeInfo elements of the spawned job may be created and/or filled with the appropriate information (for details, see Sections 3.4 Customer Information and 3.5 Node Information). All resources that are referenced in the spawned node and its subnodes are located in the ResourcePool containers of the nodes in which they reside.

To indicate that a process has been spawned, the Status attribute of the original JDF node must be set to the value Spawned (see Table 3‑3). The Status attribute of the spawned node remains unchanged.

A unique SpawnID attribute should be set in the spawned node and a copy of its value should be set in the NewSpawnID of the newly created Spawned audit. This simplifies bookkeeping of audits and merging in case a node is multiply spawned, either due to error conditions or in parallel with individual partitions. The value of SpawnID should also be appended to the SpawnIDs list of all spawned resources.

In order to identify all of the ancestors of job that has been spawned, an AncestorPool element is included in the root node of every spawned job. This element contains an Ancestor element that identifies every parent, grandparent, great-grandparent, and so on of the spawned subnode. In this way, the family tree of every spawned node is tracked in an ordered sequence that allows an unbroken trace back through all predecessors. Consequently, the elements that comprise the AncestorPool of a spawned job must be copied into the AncestorPool element of the newly spawned job before the ancestor information of the previously spawned job is appended to the AncestorPool element of the newly spawned job. The last Ancestor element in each AncestorPool is the parent, the second-to-last the grandparent, and so on. The following code is an example of a family tree:

<AncestorPool>

 <Ancestor NodeID="p_01" FileName=“file://grandparent.jdf”/>

 <Ancestor NodeID="p_02” FileName=“file://parent.jdf”/>

</AncestorPool>

The complete ancestor information is required in order to merge back semi-finished jobs with nested spawns. If the last spawn is always merged first (LIFO) then knowing the direct parent is sufficient, as each parent will in turn know its own parent back to the original and a complete ancestor line may be inferred.
When a job is spawned, the action must be logged in the parent node of the spawned node in the original job. This is accomplished by creating a Spawned element with the jRef attribute set to the ID of the spawned JDF node. This Spawned element must be appended to the AuditPool container of the original parent node. If no AuditPool container exists in the parent node, one must be created for the purpose.

After a node has been spawned, it is legal although not necessary, to remove all contents of the spawned node in the original node except for the required attributes ID, Status, and Type. It is not, however, possible to undo the spawning operation without accessing the spawned node once the contents of the spawned node have been removed.

Merging

After processing, the spawned job must be merged back to its original location. Before this can occur, however, duplicate information contained in any elements that are not required for further processing (such as CustomerInfo or NodeInfo) may optionally be deleted by the agent executing the spawning and merging. Once this has been accomplished, the spawned node is copied to the location of the original node, completely overwriting the original node. The Status of the original node is then overwritten with the result.

To complete the merging process, the merging agent must add a Merged audit to the AuditPool (see Section 3.10 AuditPool). The MergeID of the Merged audit should be set to the value of the SpawnID attribute of the merged node. Furthermore, the AncestorPool container with all child elements must be removed and the value SpawnID of should be removed from the SpawnIDs attribute of the appropriate resources.

4.4.2 Case 2: Spawning and Merging with Resource Copying

Figure 4.7, shown below, represents an example of a job that requires that resources be copied during spawning. In this job, the nodes B1 and B2 are linked to the same resource, which is localized in the resource pool of an ancestor node, denoted as node A. This node is the parent node.

[image: image53.jpg]JDF Node A
Resource 1

JDF Node B, JDF Node B,
Link to Resource 1 Link to Resource 1

Figure 4.7 JDF node structure that requires resource copying during spawning and merging

When node B1 is spawned, its resources must also be duplicated. To accomplish this, the affected resources must be copied to the spawned job and purged during merging, a process that is described below.

4.4.2.1 Spawning of Resources with Inter-Resource Links

Resources may be linked to a node by three mechanisms:

· Explicit links defined by a ResourceLink in the ResourceLinkPool of the node.

· Implicit links defined by the rRefs attribute of linked Resources. Implicit links are recursive.

· Implicit links defined by the rRefs attribute of the AuditPool, CustomerInfo or NodeInfo element of the node.

A spawning or merging agent must resolve all of these links by copying any non-local resources into the local ResourcePool.

Spawning

Spawning begins as it did in Case 1. The affected resources must then be copied to the resource pool of the spawned job. The copied resources retains the same ID values as the original resources. These resources can be spawned for read-only access, which allows multiple simultaneous spawning of one resource, or for read/write access, in which case a resource may only be spawned one time. The read/write spawning of a resource locks the resource in the original file in order to avoid conflicts that result from simultaneous modification or reading and modification of a resource. The SpawnStatus attribute of the original resource must be set to SpawnedRW (which stands for “spawned read/write ”) or SpawnedRO (which stands for “spawned read-only ”) to indicate that the resource is spawned. In other words, a copy of the resource is spawned together with the spawned job. Read/write access effectively locks the original resources, just as if the attribute Locked = true
 were present. If a resource is spawned as read-only, it is not a good idea to modify the original resource that remains in the parent job ticket as this may lead to inconsistencies. The Locked attribute of spawned resources that are copied read-only should also be set true. Furthermore, the value of the ID attribute of each copied resource must be appended to the appropriate rRefsROCopied or rRefsRWCopied values of the Spawned element that resides in the AuditPool of the parent node.

Merging

Merging begins as it did in Case 1. Then, if resources have been copied for spawning, they must be purged after merging. Read-only resources may simply be deleted in the spawned node before merging. If the original resource and the spawned resource are not identical, however, a JDF content error should be logged by a Notification element of Class = Error (see Section 4.6 Error Handling). Read/write resources must be copied into their original location, completely overwriting the original resource. The ID attributes of the overwritten resources must be specified in the rRefsOverwritten attribute of the Merged element. The Merged element is then inserted into the AuditPool container of the parent during the usual merging procedure, which is shown as the return point in the spawning diagram.

4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources

In many cases, it is desirable to define a parallel workflow for partitioned resources. This is modeled by spawning a node that defines the process for each part that is to be processed individually.

Spawning

Spawning begins as it did in Case 1 or Case 2. Then the spawning agent must loop over all ResourceLinks and ensure that the appropriate Part element or elements exist in any resources in the spawned ticket, where only the individual parts are required. This is accomplished either by adding Part elements if none exist in ResourceLinks of the parent node or by modifying the copies of existing Part elements. Part elements must be included in all ResourceLinks that point to resources that are spawned with write access. Part elements may be included in ResourceLinks that point to resources that are spawned with read only access, e.g. Physical resources where only a part is provided to a process as input. In addition, copies of the Part elements are appended to the Spawned audit element. The Status of any partitioned resource is defined individually for each partition. The Status of the parent node is set to “Pool” and a StatusPool is generated with the appropriate information. The PartStatus that describes the newly spawned node is set to “Spawned”.

The spawning procedure described in this section can be performed iteratively for multiple parts, effectively generating one Spawned audit element and one PartStatus in the StatusPool per part. The Spawned and Merged audit elements are not placed in the parent node of the node to be spawned, but rather in the node itself.

Merging

After an individual partitioned spawned node has been processed, it is merged back to the parent as was described in Case 1. In addition, a copy of the Part elements of the corresponding Spawned audit is appended to the Merged element and any read/write resources are merged into their appropriate parts. The Status of the spawned node is copied into the appropriate PartStatus in the StatusPool.

An example of partitioned Spawning and Merging can be found in K.3 Spawning and Merging.
4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence

Figure 4.8 shows an example of nested spawning and merging in reverse sequence. Process A spawns node B, and node B spawns node C. Even if B is merged back to A for any reason before C is merged back to B, C still contains the information of its grandparent in the AncestorPool element. In this way, C can trace back its ancestors and find the localization of its parent, node B, in node A even though the spawned job, with B as root node, has already been deleted.

[image: image54.wmf]

Time

Job A

Job B

Correctly nested

JDF

-

node: A

Status

="W

aiting

"

JDF

-

node: B

Status

="S

pawned

"

JDF

-

node: B

Status

="W

aiting

"

Ancestors

 := (A)

JDF

-

node: C

Status

="S

pawned

"

JDF

-

node: C

Status

="W

aiting

"

Ancestors

 := (A, B)

Spawning Depth

Job C

Spawning Diagrams

Time

Job A

Job B

Reversely nested

Job C

Figure 4.8 Example for a JDF node structure with nested spawning

4.4.5 [image: image145.jpg]Accounting
& Financial

Pricing &
Marketing Info

HTML

L—p

Internet

Browser

Case 5: Spawning and Merging of Independent Jobs

Note that Spawning and Merging of Independent Jobs is under development and subject to major changes in a future release of this specification.

It is useful to spawn and merge independent jobs in situations where the execution of separate, independent small jobs is not efficient in a commercial sense. Business cards for individual customers that are printed on one set of sheets and subsequently cut are an example of this kind of situation. In cases such as these, small jobs can be collected in order to form a big job that may then be executed as a whole. This allows job aspects such as production, equipment load, and balancing of implementation resources to be performed more efficiently.

Note that production devices will generally require their resources to unambiguously define the production details. Thus a JDF Agent must prepare the resources in a way that the exact positioning of the contents of individual small jobs is specified. It is therefore recommended to use the procedure that is described in this section for Product intent nodes only.

In this example, diagrammed in Figure 4.9, nodes C and E represent small jobs of identical type. Node bigF represents a big job, which may exist already or which may have been created for the purposes of this spawning-and-merging process. Once nodes C and E are gathered beneath node bigF, as described below, a big job may then be executed as a whole for the sake of efficiency. When the big job is executed, the small jobs are effectively executed simultaneously. Nodes A, B, and D are provided to demonstrate that spawned nodes in this example may be related to other nodes in various ways.

[image: image55.wmf]

Time

Nodes A, B, C

independent job X

Spawning Diagram

Time

Nodes D, E

JDF

-

node: B

Status

=" W

aiting

 "

JDF

-

node: D

Status

="W

aiting

"

JDF

-

node: E

Status

="S

pawned

"

Type

="XYZ"

JDF

-

node: bigF

Status

="W

aiting

"

Type

="XYZ"

AuditPool

:

 Merged

 (C, Indep.="true")

Merged

(E, Indep.="true")

JDF

-

node: C

Status

="S

pawned

"

Type

="XYZ"

JDF

-

node: C

Status

="W

aiting

"

Type

="XYZ"

Activity

="I

nactive

"

JDF

-

node:

 E

Status

="W

aiting

 "

Type

="XYZ"

Activity

="I

nactive

"

JDF

-

node: A

Status

=" W

aiting

 "

Node bigF

small Job X

small Job Y

independent job Y

big job b

igZ

execution phase

Figure 4.9 Example of the spawning and merging of independent jobs

Spawning

Spawning begins as it did in Case 1 or Case 2. Then, the process to be spawned (job C in Figure 4.9) is copied into a newly created, or already existing, big job (big job bigZ in Figure 4.9). The process type of the root node of the big job must be identical to that of the spawned processes. The Activation state of the spawned processes is set to Inactive, and an AncestorPool element is added to the inactive spawned job to define the ancestry (as was described above). A Merged element containing information about the spawned independent jobs and when they have been received is added to the big job.

In the original jobs, the Status of the process is designated as Spawned, and a Spawned element with the optional attribute jRefDestination specified is added to the parent of the original job. The attribute jRefDestination contains the ID of the big job beneath which the spawned process has been placed. The changes in the parent are the equivalent of those described in Case 1, except for the specification of the attribute jRefDestination in the Spawned element.

Where necessary, resource instances must be copied and logged as in Case 2 by appending the IDs to the appropriate attribute (rRefsROCopied or rRefsRWCopied) of the Spawned element in the parent of the original job. This is required in single spawning and merging. Furthermore, the ResourceLink elements of the spawned process must be copied to the ResourceLinkPool of the active, big process node. In this way, the input resources and the resources to be produced are linked to the big job.

Merging

For each of the spawned small jobs, the return procedure is performed as it was in the preceding cases. Once the process explained in Case 1 is performed, the completed job is copied back to its original location and the attribute Activation is restored by setting it to the activation of the big-job node after completion.

Eventually, copied resources must be purged and handled just as they were in Case 2. Then, the merging must be logged by appending the Merged element to the AuditPool container of the parent of the original node. In independent spawning and merging, the attribute jRefSource must be specified in the appropriate Merged element.

If the big job is retained, a Spawned element with the attribute Independent = true must be appended to the AuditPool of the big job. For instance, saving the finished big job may be desirable if the audit information contained in the big job should be available for an individual invoicing. Finally, the newly created big JDF should be deleted to avoid the double existence of nodes.

4.4.6 Case 6: Simultaneous Spawning and Merging of Multiple Nodes

It is not possible to explicitly spawn multiple nodes simultaneously. The nodes must be grouped into a single ProcessGroup node, and this node can then be spawned and merged as described in the previous sections.

4.5 Node and Resource IDs

Clarified in JDF 1.2
[Clarified pureID]
All nodes and resources must contain a unique identifier, not only because it is important to be able to identify individual components of a job, but because JDF uses these IDs for internal linking purposes. Each agent that creates resources and subnodes or that performs spawning and merging is responsible for providing IDs that are unique in the scope of the file, taking into account all of the phases of a job’s life cycle.

IDs come in two flavors: pure and composite. A pure ID is an ID that does not contain the character period (“.”). A composite ID is made up of pure IDs separated by periods.

IDs are used differently under different circumstances. Several different circumstances are described below.

In case of no spawning — If an agent inserts new elements requiring IDs into an original job, then the agent assigns pure IDs to the new elements and must guarantee their uniqueness.

In case of single spawning — If an agent inserts new elements into a spawned job, then the agent creates composite IDs by using the ID of the root node and appending a unique pure ID delimited by a period. For example:

· ID of spawned root node: ID = "Job_01234.Proc1"

· ID used for new element: ID = " Job_01234.Proc1.newpureID"

In case of independent spawning — The agent that merges the independent jobs beneath a big job inserts a unique, pure ID (delimited by a period) in front of all IDs of each small job it receives. That means that the agent must replace all IDs of each job it receives whenever it encounters an ID collision. If an agent inserts new elements into a spawned job, then the agent creates composite IDs by using the ID of the respective root node of the small job and appends unique pureID, delimited by a period. For example:

· ID of the big job with node ID = “A”

· Receives small job A1 with some IDs: ID = “A” ID = “A.A” ID = “A.B” where the first is the ID of the root node.

· Receives small job A2 with some IDs: ID = “A” ID = “A.A” ID = “anything” …

· The agent creates locally unique pure IDs: ID = “A1” and ID = “A2” each prepended to all IDs of each received small job; the IDs of the small job A1 become: ID = “A1.A” ID = “A1.A.A” ID = “A1.A.B” and the IDs of the small job A2 become: ID = “A2.A” ID = “A2.A.A” ID = “A2.anything”. All IDs in the big job are unique.

· The agent creates a new element added to the small job A1 with ID: ID = “A1.A.C”. Here the agent must resolve the possible conflict if it would append the pure ID = “A” to the root ID = “A1.A”. That means the agent has to check the uniqueness of each created ID.

· Before merging the jobs back to its original location the agent must remove the prepended pure IDs of all IDs, here “A1”, “A2” respectively. Then the newly created element will be merged back with the ID = “A.C”.

4.6 Error Handling

Error handling is an implementation-dependent feature of JDF-based systems. The AuditPool element provides a container where errors that occur during the execution of a JDF may be logged using Notification elements. Notification elements may also be sent in JMF Signal messages. The content of the Notification element is described in Table 3‑31. Further details about error handling are provided in the next four sections.

4.6.1 Classification of Notifications

Notification elements are classified by the attribute Class. Every workflow implementation must associate a class with all events on an event-by-event basis. The following list shows the possible values for Class:

· Event
Indicates a pure event which occurred due to a certain operation-related action, for example, machine events, operator activities, etc. This class is used for messaging.

· Information
Indicates not an error, but rather any information about a process that cannot be expressed by the other classes, for example, the beginning of execution.

· Warning
Indicates that a minor error has occurred and an automatic fix was applied. Execution continues. The node’s Status is unchanged. Appears in situations such as A4-Letter substitutions, when toner is low, or when unknown extensions are encountered in a required resource
· Error
Indicates that an error has occurred that requires user interaction. Execution cannot continue until the problem has been fixed. The node’s Status is Stopped. This value appears in situations such as when resources are missing, when major incompatibilities are detected, or when the toner is empty.

· Fatal
Execution must be aborted. The node’s Status is Aborted. This value is seen with most protocol errors or when major device malfunction has occurred.
4.6.2 Event Description

A description of the event is given by a generic Comment element, which is required for the notification classes Information, Warning, Error, or Fatal. For example, after a process is aborted, error information describing a device error may be logged in the Comment element of the Notification element. If phase times are logged, the PhaseTime element that logged the transition to the Aborted state may also contain a local Comment element that describes the cause of the process abortion. PhaseTime and Notification elements are optional subelements of the AuditPool, which is described in Section 3.10.
4.6.3 Error Logging in the JDF File

A JDF-compliant controller/agent should log an error by inserting a Notification element in the AuditPool of the node that generated the error. The NodeInfo element may contain NotificationFilter elements to define the notification events (or, more specifically, errors) that should be logged.

4.6.4 Error Handling via Messaging (JMF)

A JMF Signal message with a Notification element in the message body should be sent through all persistent channels that subscribed events of class error. How to subscribe error events via JMF, see Sections 5.2.2.3 Persistent Channels and 5.5.1.1 Events. Note that this is different from the NotificationFilter elements of the NodeInfo element, which is defined for logging events by Notification elements to the AuditPool.

4.7 Test Running

In JDF, the notion of a test run is similar to the press notion of preflight. The goal is to detect JDF content errors and inconsistencies in a job before the job is executed.

The ability to perform a test run may be built into individual devices or controllers. Alternatively, a controller implementation may perform test runs on behalf of its devices. A test run may be routed through all of the different devices and controllers in a workflow, just as if the test run were a standard execution run. For the routing of jobs and nodes through different devices and controllers for a test, the spawning and merging mechanism may also be applied. The devices/controllers receiving a job read it and analyze WITHOUT initiating execution. Rather, they investigate the content of the node they would execute. A device/controller with agent capabilities may record results into the audit pool associated with a given process.

During test running, the requirements of the processes specified are compared to the capabilities of the devices targeted. A device or controller explicitly tests whether the inputs that have been specified as required are actually the inputs that are required, and that none are missing or in error. For example, an input requirement may be a URL that, when a test run is performed, is found to point to an item that no longer exists in that location. Test running is meant to prevent errors as a result of that kind of misinformation. It is particularly useful when running expensive or time-consuming jobs.

It is also possible to test run specific parts of a workflow, or even individual nodes. An agent may request a test of certain nodes by setting the JDF attribute Activation to TestRun (see Table 3‑3), which is inherited by all descendent nodes that are not inactive (Activation = Inactive). If a device or controller
 detects an error in a node a Notification element containing a textual description should be appended to the AuditPool element of the node in which the error occurred, and, if messaging is supported, the error should be also communicated to the connected listeners via messaging (for more information see Section 5.4 Error and Event Messages). If an error has been detected, the agent can modify the job in order to correct the error. Once a test run has been completed successfully, the device/controller with agent capabilities changes the Status attribute of the tested node to Ready. If a test run fails, the device/controller is required to record the process status as FailedTestRun. After the test run has finished, the agent should log the result by appending a ProcessRun element to the AuditPool element. For more information about audits, see Section 3.10 AuditPool.

In principle, execution and test runs may be run simultaneously. For example, one job part may be executed while another part requests only a test. JDF also defines an Activation value of TestRunAndGo that requests a test run and, upon successful completion, automatically initiates processing.

4.7.1 Resource Status During Testrun

In order to test run a complete set of nodes, it is sometimes necessary to imply the Status of resources that are produced by prior nodes. Successful test running does not set the Status attribute of a resource to Available unless the resource actually is available. Nodes that require an output resource of a node that has completed test running for purposes of test running may assume that these resources have a Status of Available for the purpose of test running as long as the producing node has a Status of Ready.

[image: image56.jpg]) by device
) capabilities
1

@ Valid Parameter Point
@ |Invalid Parameter Point

Figure 4.10 Parameter Space in device Capabilities

4.8 Describing Device Capabilities with JDF

Device capabilities are described as a space of allowed resource parameter values within JDF. A device in this context is assumed to execute one or more JDF nodes. Its capabilities are defined by the space of acceptable JDF resources for the product intent or process described by the node. An individual JDF job description can be compared to the device capabilities of a device by looping over all resource parameters of a JDF node that is to be executed by a device. The job can be executed if all job parameter values are within the ranges specified by the device capabilities. Note that only orthogonal parameter relationships can be described. Functional dependencies between individual resources and resource attributes are NOT supported. If the device capabilities describe product intent, the job is executable when all product intent ranges overlap with the device capabilities description.

Details of the elements needed for device capability description are specified in Section 7.3 Device Capability Definitions.

It is assumed that Device elements that describe device capabilities will be transported in JMF KnownDevices messages. It is not recommended to specify the capabilities of a Device that is linked to a process to specify that it should execute the given process.

Chapter 5 JDF Messaging with the Job Messaging Format

Introduction

[image: image146.jpg]output Resource input

Example:

A workflow system is a dynamic set of interacting processes, devices and MIS systems. For the workflow to run efficiently, these processes and devices must communicate and interact in a well defined manner. Messaging is a simple but powerful way to establish this kind of dynamic interaction. The JDF-based Job Messaging Format (JMF) provides a wide range of capabilities to facilitate interaction between the various aspects of a workflow, from simple unidirectional notification through the issuing of direct commands. This chapter outlines the way in which JMF, accomplishes these interactions. The following list of use cases is considered:

· System setup

· Dynamic status and error tracking for jobs and devices

· Pipe control

· Device setup and job changes

· Queue handling and job submission

· Device Capability description

Both Controllers and Devices may support JMF. This support requires hosting by a Web server. JMF messages are most often encoded in pure XML, without an additional MIME/Multipart wrapper. Only controllers that support JDF job submission via the message channel must support MIME for messages.

5.1 JMF Root

JMF and JDF have an inherently different structure. In order to allow immediate identification of messages, JMF uses the unique name JMF as its own root-element name.

The root element of the XML fragment that encodes a message, like the root element of a JDF fragment, contains a series of predictable attributes and instances of Message elements. These contents are defined in the tables that follow, and are illustrated in Figure 5.1. Message elements are abstract, as is indicated by the dashed line surrounding the Message element in Figure 5.1.

Table 5‑1 Contents of the JMF root

	Name
	Data Type
	Description

	DeviceID ?
	string
	Identifies the recipient device or controller. The envelope of the message contains the URL address of the controller that receives the message via HTTP. Therefore, if DeviceID does not specify a recipient, that controller is assumed to be the recipient.

	SenderID
	string
	String that identifies the sender device, controller or agent.

	TimeStamp
	dateTime
	Time stamp that identifies when the message was created.

	Version ?

Modified in JDF 1.1
	string
	JMF version. The current and default version is “1.1”.

	xmlns ?

New in JDF 1.1
	URI
	JDF supports use of XML namespaces. The namespace must be declared. For details on using namespaces in XML, see http://www.w3.org/TR/REC-xml-names/.

	Message +
	element
	Abstract message element(s).

The following table describes the contents of the abstract Message element. All messages contain an ID and a Type attribute.

Table 5‑2 Contents of the abstract Message element

	Name
	Data Type
	Description

	ID
	ID
	Identifies the message.

	Time ?
	dateTime
	Time at which the message was generated. This attribute is only required if this time is different from the time specified in the TimeStamp attribute of the JMF element.

	Type
	NMTOKEN
	Name that identifies the message type. Message types are described in Sections 5.5 and 5.6.

[image: image147.wmf]

ResourceLink:Transformation

process coordinate system

resource coordinate system

of input resource 2

ResourceLink:Transformation

resource coordinate system

of input resource 1

ResourceLink:Transformation

resource coordinate system

of input resource n

...

resource coordinate system

of output resource 2

resource coordinate system

of output resource

1

resource coordi

nate system

of output resource n

...

identity transformation

identity transformation

identity transformation

The following figure depicts the basic messaging structure and the message families.

Figure 5.1 Contents of a JMF root element and the message families

5.2 JMF Semantics

JMF encodes messages of several types. The first part of this section describes message elements that contain and convey content, while the second describes the way in which these element types can be used to establish communication.

5.2.1 Message Families

[image: image148.wmf]Node 1

Res1+2+3

Node B

Node 2

Node 3

 Amount 2

 Amount 1+2+3

 Amount 1

 Amount 3

Node 1

Res 1

Combine-Node

Res1+2+3

Node B

Node 2

Res 2

Node 3

Res 3

Split-Node

Node 1

Node A

Res 1+2+3

Res 1

Node 2

Res 2

Node 3

Res 3

Node 1

Node A

Res 1+2+3

 Amount 1+2+3

 Amount 1

Node 2

Node 3

 Amount 2

 Amount 3

D

: exact workflow for combining

B

: brief workflow for combining by a shared output resource

C

: exact workflow for splitting

A

: brief workflow for splitting by a shared input resource

A message contains one or more of the following five high level elements, referred to as message families, in the root node. These families are Query, Command, Response, Acknowledge, and Signal. An explanation of each family is provided in the following sections, along with an encoding example.

5.2.1.1 Query

A Query is a message that retrieves information from a controller without changing the state of that controller. A query is sent to a controller. After a Query is sent, a Response is returned. If the Query included a Subscription, Signals are sent to the designated URL until a StopPersistentChannel Command is sent.

[image: image57.jpg]Query with Subscription

Client's
Client Controller Subscription URL

Response
Response

Interestipg event 1

Signal 1
Interestipg event 2

Signal 2

Interestipg event n
Signal n
StopPersistentChannel
Response

Command

Figure 5.2 Interaction of Messages with a subscription

It contains an ID attribute and a Type attribute, which it inherits from the abstract message type described in Table 5‑2 Contents of the abstract Message element. JMF supports a number of well defined query types, and each query type can contain additional descriptive elements, which are described in Sections 5.5 and 5.6. The following table shows the content of a Query message element.

Table 5‑3 Contents of the Query message element

	Name
	Data Type
	Description

	QueryTypeObj *
	element
	Abstract element that is a placeholder for any descriptive elements that provide details required for the query. The element type of QueryTypeObj is defined by the Type attribute of the abstract Message element.

	Subscription ?
	element
	If specified creates a persistent channel. For the structure of a Subscription element, see Section 5.2.2.3 Persistent Channels.

The following is an example of a query message:

<JMF TimeStamp="2000-07-25T11:38:23.3+02:00" SenderID="Controller-1">

xmlns="http://www.CIP4.org/JDFSchema_1_1"
 <Query Type="KnownJDFServices" ID="M007"/>

</JMF>
5.2.1.2 Response

A Response to a Query or a Command is always a direct answer of a Query or a Command. A response is returned from a controller to the controller that put the query/command. Responses are not acknowledged themselves.

A command response indicates that the command has been received and interpreted. The response of commands with short latency also includes the information about the execution. Commands with long latency may additionally generate a separate Acknowledge message (see Section 5.2.1.5 Acknowledge) to broadcast the execution of the command. Command responses should comprise a Notification element that describes the return status in text. Responses contain an attribute called refID, which identifies the initiating query or command. The following table shows the content of a Response message.

Table 5‑4 Contents of the Response message element

	Name
	Data Type
	Description

	Acknowledged ?
	boolean
	Used only in responses to command messages. Indicates whether the command will be acknowledged separately. If true, an Acknowledge message will be supplied after command execution. If false, no Acknowledge message will be supplied. Default = false

	refID
	NMTOKEN
	Copy of the ID attribute of the initiating query or command message to which the response refers.

	ReturnCode ?
	integer
	Describes the result. 0 indicates success. For all other possible codes see Appendix I. Default = 0

	Subscribed ?
	boolean
	If a Subscription element has been supplied by the corresponding query, this attribute indicates whether the subscription has been refused or accepted. If true, the requested subscription is accepted. If false, the subscription is refused because the controller does not support persistent channels. For details, see Section 5.2.2.3 Persistent Channels. Default = true

	Notification ?
	element
	Additional information including textual description of the return code. The Notification element should be provided if the ReturnCode is greater than 0, which indicates that an error has occurred, or if the initiating message is a command.

	ResponseTypeObj *
	element
	Abstract element that is a placeholder for any descriptive elements that provide details queried for or details about command execution.

An example of a response on a command is provided in the Section 5.2.1.4 Command. The encoding example for the query, shown above, might generate the following response:

<JMF TimeStamp="2000-07-25T11:38:25+02:00" SenderID="RIP-1">

 <Response Type="KnownJDFServices" ID="M107" refID="M007">

 <JDFService Type="Rendering"/>

 <JDFService Type="Imposition"/>

 <JDFService Type="Trapping"/>

 </Response>

</JMF>
5.2.1.3 Signal

A signal message, which is syntactically equivalent to a combination of a Query message and a Response message, is a unidirectional message sent on any event to other controllers. This kind of message is used to automatically broadcast some status changes.

Controllers can get signal messages in one of three ways. The first way is to subscribe for them with an initiating query transmitted via a message channel that includes a Subscription element. The second way is to subscribe for them with an initiating query defined in the NodeInfo element of a JDF node that also includes a Subscription element (see JMF elements in Table 3‑7). The first query is transmitted separately via a mechanism such as HTTP, whereas the second is read together with the corresponding JDF node. Once the subscription has been established, signals are sent to the subscribing controllers via persistent channels. In both cases, however, the Signal message contains a refID attribute that refers to the persistent channel. The value of the refID attribute identifies the persistent channel that initiated the Signal.

The third way in which a controller may receive a signal is to have the signal channels hard-wired, for example, by a tool such as a list of controller-URLs read from an initialization file. For example, signals may be generated independently when a service is started, or when subcontrollers that are newly connected to a network want to inform other controllers about their capabilities. Hard-wired signals, however, must not have a refID attribute. If no refID is specified, the corresponding query parameters must be specified instead.

Table 5‑5 Contents of the Signal message element

	Name
	Data Type
	Description

	LastRepeat ?
	boolean
	If true, the persistent channel is being closed by the controller and no further messages will be generated that fulfill the persistent channel criteria. If false, further signals will be sent. For further details, see Section 5.2.2.3 Persistent Channels. Default = false

	refID ?
	NMTOKEN
	Identifies the initiating query message that subscribed this signal message. Hard-wired signals must not contain a refID attribute.

	Notification ?
	element
	Textual description of the signal. The Notification element should be provided if the severity of the event that caused this signal is greater than warning, or if pure events have been subscribed. For details about subscribing pure events see Section 5.5.1.1 Events.

	QueryTypeObj ?
	element
	If no refID is specified, the corresponding query parameters must be specified instead by providing this element.

This element is an abstract element and a placeholder for any descriptive elements that provide details for the virtual Query, which, if sent, would convey the same ResponseTypeObj elements. The element type of QueryTypeObj is defined by the Type attribute of the abstract Message element.

	ResponseTypeObj *
	element
	Abstract element that is a placeholder for any descriptive elements that provide details subscribed. These element types are the same as in the Response message element.

	Trigger ?
	element
	Describes the trigger event which caused this signal. The Trigger element recalls some information provided during the subscription of the signal messages. For details on subscribing signals see Section 5.2.2.3 Persistent Channels.

The following table describes the structure of the Trigger element.

Table 5‑6 Contents of the Trigger element

	Name
	Data Type
	Description

	RepeatStep ?
	integer
	Recalls the RepeatStep attribute specified during subscription of the signal. For details see Table 5‑12.

	RepeatTime ?
	number
	Recalls the RepeatTime attribute specified during subscription of the signal. For details see Table 5‑12.

	ChangedAttribute *
	element
	If a change of an attribute triggered this signal, this element describes the attribute that changed.

	Added ?
	element
	A pool that contains the description of trigger events caused by the adding of elements like services, controllers, devices, or messages.

	Removed ?
	element
	A pool that contains the description of trigger events caused by the removal of elements like services, controllers, devices, or messages.

The following describes the structure of the ChangedAttribute element referenced in the table above.

Table 5‑7 Contents of the ChangedAttribute element

	Name
	Data Type
	Description

	AttributeName
	NMTOKEN
	Name of the attribute that changed.

	ElementID ?
	NMTOKEN
	ID of the element that changed. Used only in conjunction with a change of a certain resource or node which cannot uniquely be addressed by the other attributes of this element. Default = none.

	ElementType
	NMTOKEN
	Name of the element which contains the changed attribute.

	OldValue
	string
	Old value. The string has to be cast to the appropriate data type that depends on the attribute's data type.

	NewValue
	string
	New value of the attribute.

The following describes the structure of the Added element referenced in Table 5‑6.

Table 5‑8 Contents of the Added element

	Name
	Data Type
	Description

	AddedElement *
	element
	If the appending of an element like a service, controller, device, or message triggered this signal, this element describes which service, controller, device, or message etc. has been added.

This is an abstract element. It is a placeholder for a ResponseTypeObj like NotificationDef, a JDFController, a Device, a JDFService, or a MessageService.

For details on these elements see Section 5.5.1 Controller Registration and Communication Messages.

The following describes the structure of the Removed element referenced in Table 5‑6.

Table 5‑9 Contents of the Removed element

	Name
	Data Type
	Description

	RemovedElement *
	element
	If the removal of an element like a service, controller, device, or message triggered this signal, this element describes which service, controller, device, or message etc. has been removed.

This is an abstract element. It is a placeholder for a ResponseTypeObj like NotificationDef, a JDFController, a Device, a JDFService, or a MessageService.

For details on these elements see Section 5.5.1 Controller Registration and Communication Messages.

The following is an example of a signal message:

<JMF TimeStamp="2000-07-25T12:28:01+02:00" SenderID="Press 45">

 <Signal Type="Status" ID="s123">

 <StatusQuParams JobID=”42” JobPartID=”66”/>

 <DeviceInfo DeviceStatus=”Setup”/>

 </Signal>

</JMF>
5.2.1.4 Command

A command is syntactically equivalent to a Query, but rather than simply retrieving information, it also causes a state change in the target device. The following table contains the contents of a Command message. A Response is returned immediately after a Command. If the Command included an AcknowledgeURL, and the Command was going to take a while, the device controller may elect to return the Response with Acknowledge = true, and send an Acknowledge to the AcknowledgeURL when the Command completes.

Table 5‑10 Contents of the Command message element

	Name
	Data Type
	Description

	AcknowledgeURL ?
	URL
	URL of the recipient of any Acknowledge. If specified, the command requests for a Acknowledge message depending on the value of AcknowledgeType.

	Acknowledge​Type ?

New in JDF 1.1
	enumerations
	Defines the actions that should be acknowledged. This is necessary mainly for device-machine pairs where the machine is not accessible online.

Received: The Command has been received and understood, e.g. by an operator.

Applied: The Command has been applied to the machine, e.g. by an operator.

Completed: The Command has been executed. The default.

	CommandTypeObj *
	element
	Abstract element that is a placeholder for any descriptive elements that provide details of the command.

The following example demonstrates how a ResumeQueueEntry command may cause a job in a queue to begin executing:

<JMF DeviceID="A3 Printer" TimeStamp="2000-07-25T12:32:48+02:00" SenderID="MIS master A">

 <Command ID="M009" Type="ResumeQueueEntry">

 <QueueEntryDef QueueEntryID="job-0032"/>

 </Command>

</JMF>
The following example shows a possible response to the command example above:

<JMF … SenderID="A3 Printer">

 <Response ID="M109" Type="ResumeQueueEntry" refID="M009">

 <Queue DeviceID="A3 Printer”>

 <QueueEntry QueueEntryID="job-0032" Status=”Running” JobID=”job-0032”/>

 </Queue>

 </Response>

</JMF>
5.2.1.5 Acknowledge

An Acknowledge message is an asynchronous answer to a Command issued by a controller. Each Acknowledge message is unidirectional and syntactically equivalent to a command Response, and the refID attribute of each refers to the initiating command. Acknowledge messages are generated if commands with long latency have been executed in order to inform the command sender about the results. Acknowledge messages are only generated if the initiating command has specified the attribute AcknowledgeURL.

[image: image58.jpg]Command with Acknowledge

Client's
Client Controller Acknowledge URL

Response

Job Completion
(Acknowledge)

Figure 5.3 Interaction of Command and Acknowledge Messages

They are announced in the Response message to the command by the setting the attribute Acknowledged = true.

Table 5‑11 Contents of the Acknowledge message element

	Name
	Data Type
	Description

	Acknowledge​Type ?

New in JDF 1.1
	enumerations
	Defines the context of this message. This is necessary mainly for device-machine pairs where the machine is not accessible online.

Received – The initiating Command has been received and understood, e.g. by an operator.

Applied – The initiating Command has been applied to the machine, e.g. by an operator.

Completed – The initiating Command has been executed. The default..

	Notification ?

Modified in JDF 1.1A
	element
	Textual description of the command execution.

	refID
	NMTOKEN
	Identifies the initiating command message the acknowledge refers to.

	ReturnCode ?
	integer
	Describes the result. 0 indicates success. For all other possible codes see Appendix I. Default = 0

	ResponseTypeObj *
	element
	Abstract element that is a placeholder for any descriptive elements that provide details about command execution.

Delayed Acknowledge messages contain the same ResponseTypeObj elements as direct Response messages.

The following is an example of an Acknowledge message:

<JMF … >

 <Acknowledge ID="M109" Type="PipePush" refID="M010">

 <JobPhase … />

 </Acknowledge>

</JMF>

5.2.2 JMF Handshaking

JMF can seek to establish communication between system components in several ways. This section describes the actions and appropriate reactions in a communication using JMF.

5.2.2.1 Single Query/Command Response Communication

The handshaking mechanisms for queries and commands are equivalent. The initiating controller sends a Query or Command message to the target controller. The target parses the Query or Command and immediately issues an appropriate Response message. If a Command with long latency is issued, an additional Acknowledge message may be sent to acknowledge when the command has been executed.

5.2.2.2 Signal

JMF signal messages are “fire and forget.” In other words, no acknowledgment is sent by the receiver besides the standard protocol HTTP response that is sent when a communication link is sought.

5.2.2.3 Persistent Channels

Queries may be made persistent by including a Subscription element that defines the persistent channel-receiving end (see also Figure 5.1). The responding controller should initially send a Response to the subscribing controller. Then the responding controller should send Signal messages whenever the condition specified by one of the attributes in the following table is true. This is referred to as a persistent channel. The refID attribute of the Signal is defined by the ID attribute of the Query. In other words, the refID of the signal identifies the persistent channel. Any Query may be set up as a persistent channel, although in some cases this may not make sense.

Table 5‑12 Contents of the Subscription element

	Name
	Data Type
	Description

	RepeatStep ?
	integer
	Requests an update signal whenever the Amount associated with the query is an integer multiple of RepeatStep.
Default = 0, which means no repeat. Then it is up to the sending controller to generate Signals.

	RepeatTime ?
	number
	Requests an update signal every RepeatTime seconds. If defined, the Signal is generated periodically independent of any other trigger conditions. Default = no repeat

	URL
	URL
	URL of the persistent channel receiving end.

	ObservationTarget *
	element
	Requests an updating Signal message whenever the value of one of the attributes specified in ObservationTarget changes.

Table 5‑13 Contents of the ObservationTarget element

	Name
	Data Type
	Description

	ElementType ?
	NMTOKEN
	Name of the element that contains attributes that may change. Defaults to the abstract ResponseTypeObj of the message.

	Attributes ?
	NMTOKENS
	Requests an update signal whenever the value of one of the attributes specified by Attributes is modified. A value of “*” denotes a message request for any attribute change which is the default.

	ElementIDs ?
	NMTOKENS
	IDs of the elements that contain attributes that may change. Used only in conjunction with a query of the state change of a certain resource or node which cannot uniquely be addressed by the other attributes of this element. Default = none.

If a persistent signal channel has been set up and the device knows that this is the last time that the condition for signaling will be true, it should set the LastRepeat flag of the corresponding Signal message to true. In general, this will happen for a Status query, as when the job that has been tracked is completed. It may also happen when a device is shut down and will, therefore, not send any further updates. If a controller that does not support persistent channels is queried to set up a persistent channel, it must answer the query with a Response, set Subscribed to “false”, and set the ReturnCode to “111”.

Multiple attributes of a Subscription element are combined as a boolean OR operation of these attributes. For instance, if RepeatStep and ObservationTarget are both specified, messages fulfilling either of the requirements are requested. If the subscription element contains only a URL, it is up to the emitting controller to define when to emit messages.

Creating Persistent Channels in a JDF Node

The NodeInfo element of a JDF node may contain JMF elements that contains a set of queries (not commands) that define persistent channels. Parsing a JDF that contains a JMF with a Subscription element is equivalent to receiving the messages that are specified in the JMF node. If the parsing controller cannot handle the request, it may generate a Response with ReturnCode = “111” and Subscribed = “false”, accompanied by a Notification element describing the rejection. It is not required to emit the Response, e.g., if the agent parses a Resource request but has no access to the device information.

Deleting Persistent Channels

A persistent channel may be deleted by sending a StopPersistentChannel command, as described in Section 5.5.1.7 StopPersistentChannel.
5.3 JMF Messaging Levels

[image: image149.jpg]*x

Pitch Center (y)

Front

Extent (x)%} O O O O O

Direction of travel
——— e e e B

Center (x)

Center (x)

A JDF-conforming controller may opt to support one of the following messaging compliance levels offered by JMF:
· No messaging (Level 0) Controllers have the option of supporting no messaging at all. For this level, JDF includes Audit records for each process that allow the results of the process to be recorded.
· Notification (Level 1) Most controllers will choose to support some level of messaging capability. Notification is the most basic level of support. Devices that support notification provide unidirectional messaging by sending Signal messages. Notification messages inform the controller when they begin and complete execution of some process within a job. They may also provide notice of some error conditions. Setup of the notification channel can be defined in a JDF node or hard-wired. In order to set up notification messages via a NodeInfo element, the controller must be able to read JMF query elements from a JDF document.

· Query support (Level 2) The next level of communication supports queries. Controllers that support queries respond to requests from other controllers by communicating their status using such tools as current JobID attributes, queued JobID attributes, or current job progress. Queries require bi-directional communication capabilities.

· Command support (Level 3) This level of support provides controllers with the ability to process commands. The controller can receive commands, for instance, to interrupt the current job, to restart a job, or to change the status of jobs in a queue.

· Submission support (Level 4) Finally, controllers may accept JDF jobs via an HTTP post request to the messaging channel. In this case, the messaging channel must support MIME/Multipart/Related documents. For more details on submission, see Section 5.6.3.8 SubmissionMethods.
Each messaging level encompasses all of the lower messaging levels.

5.4 Error and Event Messages

If a command or a query message is not successfully handled, a processor must reply with a standardized response that may contain a Notification element. Notification elements, described in detail in Section 3.10.1.2 Notification, convey a textual description. The information contained in the Notification element may be used by a user interface to visualize errors.

The response messages Response and Acknowledge contain a ReturnCode attribute. ReturnCode defaults to 0, which indicates that the response is successful. In case of success and in responses to commands an informational Notification element (Class = “Information”) may be provided. In case of a warning, error or fatal error, the ReturnCode is greater than 0 and indicates the kind of error committed. In this case, a Notification element should be provided. Error codes are defined in Appendix I. The following example uses a Notification element to describe an error:

<JMF … >

 <Response ID="M109" Type="ResumeQueueEntry" refID="M009" ReturnCode="5">

 <Notification Class="Error" Type=”Error”>

 <Comment>StartJob unsuccessful – Device does not handle commands</Comment>

 <Error ErrorID=”1234”/>

 </Notification>

 …

 </Response>

</JMF>

5.4.1 Pure Event Messages

Notification elements are also used to signal usual events due to any activities of a device, operator, etc., e.g., scanning a bar code. Such pure events can be subscribed by the Events message described in Section 5.5.1.1 Events. These Signals always have a Type=”Notification”:

<JMF … >

 <Signal ID="S1" Type="Notification" ReturnCode="0">

 <Notification Class="Event" Type=”Barcode”>

 <Comment>Palette completed</Comment>

 <Barcode Code=”99923AAA123”/>

 </Notification>

 </Signal>

</JMF>
5.5 Standard Messages

The previous sections in this chapter provide a description of the overall structure of JMF messages. This section contains a list of the standard messages that are defined within the JDF framework. It is not required that every JDF-compliant application support every one of the signals and queries described in this list. It is, however, possible to discover which messages are supported in a workflow. A controller responds to the KnownMessages query by publishing a list of all the messages it supports (see Section 5.5.1.3 KnownDevices, below).

At the beginning of each section there is a table that lists all of the message types in that category. These tables contain three columns. The first is entitled “Message Type,” and it lists the names of each message type. The second column is entitled “Family.” The values in this column describe the kind of message that is applicable in the circumstance being illustrated. The following abbreviations are used to describe the values:

Q:
Query

C:
Command

R:
Response

S:
Signal

More than one of these values may be valid simultaneously. If that is the case, then all applicable letters are included in the column. Additionally, there are a few special circumstances indicated by particular combinations of these letters. The letters “QR” or “CR” indicate that all Query and Command messages cause a Response message to be returned. If the message may occur as a Signal, either from a subscription or independently, the “Family” field in the table also contains the letter “S”. Finally, the third column provides a description of each element.

At the beginning of each section describing the contents and function of the message types listed in the tables described above is a table containing the instantiation (i.e., the type) of all of the abstract subelements applicable to the message being described. Each table contains an entry that describes the details of the query or command as well as an additional entry that describes the details of the corresponding response. The tables resemble the following template:

Table 5‑14 Messaging table template

	Object Type
	Element name
	Description

	Abstract subelement of the query or command:
	Name and type of the subelement that defines specifics of the query or command, followed by a cardinality symbol.
	Short description of the subelement(s), if applicable.

	Abstract subelement of the response to a query or command:
	Name and type of subelement that contains specific information about the response to the query or command followed by cardinality symbol.
	Short description of the subelement(s), if applicable.

The name of the abstract subelement of a Query element is QueryTypeObj, the name of the abstract subelement of a Command element is CommandTypeObj, and the name of the abstract subelement of a Response as well as an Acknowledge element is ResponseTypeObj.

5.5.1 Controller Registration and Communication Messages

The message types of the following table are defined in order to exchange metadata about controller or device abilities and for general communication.

Table 5‑15 Process registration and communication messages

	Message type
	Family
	Description

	Events
	QRS
	Used to subscribe pure events occurring randomly like scanning of a bar code, activation of function keys at a console, error messages, etc.

	KnownControllers
	QRS
	Returns a list of JMF-capable controllers.

	KnownDevices
	QRS
	Returns information about the devices that are controlled by a controller.

	KnownJDFServices
	QRS
	Returns a list of services (JDF Node Types) that are defined in the JDF specification.

	KnownMessages
	QRS
	Returns a list of all messages that are supported by the controller.

	RepeatMessages
	QR
	Returns a set of previously sent messages that have been stored by the controller.

	StopPersistentChannel
	CR
	Closes a persistent channel.

5.5.1.1 Events

Table 5‑16 Contents of the Events message

	Object Type
	Element name
	Description

	QueryTypeObj
	NotificationFilter ?
	Refines the list of events queried.

	ResponseTypeObj
	NotificationDef *
	List of Notification types that match NotificationFilter.

The Events message type is intended to be used to query for supported event messages and to subscribe for randomly occurring events of a device or controller. These events are described in Section 4.6.1 Classification of Notifications and can only be transmitted via Signal messages. If the query contains a Subscription element, a NotificationFilter element is combined by a logical AND operation with the Subscription element for selective subscriptions. An empty Events message (without a Subscription and NotificationFilter element) can be used to query for all events, which are supported by a device or controller.

The controller that subscribes for Events messages receives Signal messages that convey only Notification elements containing information about the event. The event type and values of these messages may then be provided by specifying a Type attribute and an abstract NotificationDetails element in the Notification element, as described in Section 3.10.1.2 Notification. Possible NotificationDetails elements are defined in Appendix J NotificationDetails. Example of a subscription of Events and the response:

<JMF … >

 <Query Type="Events" ID="M170">

 <Subscription URL="http://www.anycompany.com/MIS/JMF/JobTracker"/>

 <NotificationFilter Classes ="Event Warning Error Fatal"/>

 </Query>

</JMF>

<JMF … >

 <Response ID="M1001" refID="M170" Type="Events">

 <NotificationDef Classes=”Warning Error Fatal” Type=”Error”/>

 <NotificationDef Classes="Event" Type=”FCNKey”/>

 <NotificationDef Classes="Event Error" Type=”Barcode”/>

 <NotificationDef Classes="Event" Type=”SystemTimeSet”/>

 <NotificationDef Classes="Event" Type=”anycompany:PrivateEvent_1”/>

 <NotificationDef Classes="Event" Type=”anycompany:PrivateEvent_2”/>

 <Response/>

</JMF>
Structure of the NotificationFilter Element

Table 5‑17 Contents of the NotificationFilter element

	Name
	Data Type
	Description

	DeviceID ?
	string
	ID of the device whose messages are queried/subscribed. May be specified for device selection if the controller controls more than one device.

	JobID ?
	string
	JobID of the job whose messages are queried/subscribed.

	JobPartID ?
	string
	JobPartID of the job whose messages are queried/subscribed.

	Types ?
	NMTOKENS
	Possible notification type names are defined in Appendix J NotificationDetails. Matching notification types are returned/subscribed. Defaults to all supported notification types.

	Classes ?
	enumerations
	Defines the set of notification classes to be queried/subscribed for. Possible values are:
Event

Information
Warning
Error
Fatal

Default = all.

If both Classes and Types are a list, the NotificationFilter defines an OR of all permutations.

Structure of the NotificationDef Element

Table 5‑18 Contents of the NotificationDef element

	Name
	Data Type
	Description

	Classes
	enumerations
	Possible values are:
Event

Information
Warning
Error
Fatal

For details, see Section 4.6.1 Classification of Notifications.

	Type
	NMTOKEN
	Notification type, that is the name of the element derived from the abstract NotificationDetails element. For a list of predefined names see Appendix J NotificationDetails.

5.5.1.2 KnownControllers

Table 5‑19 Contents of the KnownControllers message

	Object Type
	Element name
	Description

	QueryTypeObj
	-
	-

	ResponseTypeObj
	JDFController *
	Known controllers.

The KnownControllers query requests information about the controllers and devices that are known to the controller and may be directly accessed by JMF messaging. KnownControllers is designed to define a registration server. A processor that needs information about its system environment can query a registration server for a list of known controllers. This list can subsequently be iterated using the other process registration queries in this section. The URL of the master registration server must be defined using a method outside of JDF.

JDFController

Table 5‑20 Contents of the JDFController element

	Name
	Data Type
	Description

	URL
	URL
	URL of the controller.

The following is an example of a response to a KnownControllers query:

<Response ID="M1" refID="Q1" Type="KnownControllers">

 <JDFController URL=“http://www.anycompany.com/controller" DescriptiveName="Printer Controller"/>

 …

</Response>
5.5.1.3 KnownDevices

Table 5‑21 Contents of the KnownDevices message

	Object Type
	Element name
	Description

	QueryTypeObj
	DeviceFilter ?
	Refines the list of devices queried. Only devices that match the DeviceFilter are listed. The default is to return a list of all known devices.

	ResponseTypeObj

Modified in JDF 1.1A
	DeviceList ?
	The list of known devices.

The KnownDevices query requests information about the devices that are controlled by a controller. If a high level controller controls lower level controllers, it should also list the devices that are controlled by these. The response is a list of Device resources (see Section 7.2.46 Device) controlled by the controller that receives the query, as demonstrated in the following example:

<Response ID="M1" refID="Q1" Type="KnownDevices">

 <DeviceList>

 <DeviceInfo DeviceStatus=”Unknown”>

 <Device DeviceID="Joe SpeedMaster" DeviceType="Heidelberg SM102/6 rev. 47" />

 </DeviceInfo>

 </DeviceList>

 …

</Response>
Structure of the DeviceFilter Element

The DeviceFilter element refines the list of devices that should be returned. Only devices that match all parameters of one of the Device resources specified in the DeviceFilter element are included.

Table 5‑22 Contents of the DeviceFilter element

	Name
	Data Type
	Description

	DeviceDetails ?

New in JDF 1.1
	enumeration
	Refines the level of provided information about the device. Possible values are:

None – Default value.

Brief – Provide all available device information except for Device elements.

Modules – ModuleStatus elements should be provided without module specific status details and without module specific employee information.

Details – Provide maximum available device information excluding device capability descriptions. Includes Device elements which represent details of the device.

Capability – Provide Device elements with DeviceCap subelements which represent details of the capabilities of the device.

Full – Provide maximum available device information including device capability descriptions. Includes Device elements which represent details of the device.

	Device *
	element
	Only devices that match the attribute values specified in one of these Device resources are included. Devices match the criteria if the attribute values specified here in the Device resource match the equivalent attribute values of the known devices. Unspecified attributes always match. If Device is not specified, all known Devices are returned.

Structure of the DeviceList Element

The DeviceList element contains a list of information about devices that are returned.

New in JDF 1.1 a
Table 5‑23 Contents of the DeviceList element

	Name
	Data Type
	Description

	DeviceInfo *
	element
	List of information about known devices as requested by the DeviceFilter element. For details of the DeviceInfo element, see Table 5‑44 Contents of the DeviceInfo element in the message description 5.5.2.3 Status.

5.5.1.4 KnownJDFServices

Table 5‑24 Contents of the KnownJDFServices message

	Object Type
	Element name
	Description

	QueryTypeObj
	-
	-

	ResponseTypeObj
	JDFService *
	Processes that the controller or device can execute.

The KnownJDFServices query returns a list of services that are defined in the JDF specification, such as ConventionalPrinting, RIPping, or EndSheetGluing. It allows a controller to publish the services that the devices it controls are capable of providing. The response is a list of JDFService elements, one for each supported process type.

JDFService

JDFService elements define the node types that can be processed by the controller. A JDF processor should be capable of processing Combined nodes of any of the individual JDFService elements that are specified. It is therefore not necessary to define every permutation of allowed combinations. It need not be able to process individual nodes with a type defined in the Types attribute of a Combined JDFService element.

Table 5‑25 Contents of the JDFService element

	Name
	Data Type
	Description

	CombinedMethod ?

New in JDF 1.1
	enumeration
	Specifies how the processes specified in Types may be specified. One of:

Combined – The list of processes in Types must be specified as a Combined process.

ProcessGroup – The list of processes in Types must be specified as a ProcessGroup of individual processes.

CombinedProcessGroup – The list of processes in Types may be specified either as a Combined process or as a ProcessGroup of individual processes.

None – No support for Combined or ProcessGroup. Only the individual process type defined in Types is supported. The default.

	Type
	NMTOKEN
	JDF Type attribute of the supported process. Extension types may be specified by stating the namespace in the value.

	TypeOrder ?

New in JDF 1.1
	enumeration
	Ordering restriction for combined nodes.

Fixed – The order of process types specified in the Types attribute is ordered and each type can be specified only once, e.g. ,Cutting, Folding; order does matter. The default.
Unordered – The order of process types specified in the Types attribute is unordered and each type can be specified only once, e.g., DigitalPrinting, Screening, Trapping; order does not matter.

Unrestricted – The order of process types specified in the Types attribute is unordered and each type can be specified multiply, e.g., Cutting, Folding, where the device can do both processes, in any order and multiple times.

	Types ?
	NMTOKENS
	If Type = Combined, or Type = ProcessGroup this attribute represents the list of combined processes. If any of the Services are in a namespace other than JDF, the namespace prefix should be included in this list. For details, see Section 3.2.3

The following is an example of a response to a KnownJDFServices query:

<Response ID="M1" refID="Q1" Type="KnownJDFServices">

 <JDFService Type="Rendering" />

 <JDFService Type="Folding" />

 <JDFService Type="Combined" Types="Gathering Stitching"/>

 <JDFService Type="AnyCompaniesNamespace:MyFolding" />

 …

</Response>

5.5.1.5 KnownMessages

Table 5‑26 Contents of the KnownMessages message

	Object Type
	Element name
	Description

	QueryTypeObj
	KnownMsgQuParams ?
	Refines the query for known messages. If not specified, list all supported message types.

	ResponseTypeObj
	MessageService *
	Specifies the supported messages.

The KnownMessages query returns a list of all message types that are supported by the controller.

KnownMsgQuParams

The flags of the KnownMsgQuParams element filter out the types of messages that should be included in the response list. Multiple flags are allowed.

Table 5‑27 Contents of the KnownMsgQuParams element

	Name
	Data Type
	Description

	Exact ?

New in JDF 1.1
	boolean
	Requests an exact description of the known messages. If true, the response should also return the requested DevCaps of the messages.

Default = false

	ListCommands ?
	boolean
	Lists all supported command types.

Default = true

	ListQueries ?
	boolean
	Lists all supported query types.

Default = true

	ListSignals ?
	boolean
	Lists all supported signal types.

Default = true

	Persistent ?
	boolean
	If true, only lists messages that may use persistent channels. If false, ignores the ability to use persistent channels.

Default = false

MessageService

The response is a list of MessageService elements, one for each supported message type. The flags of the MessageService response element are set in each MessageService entry. They define the supported usage of the message by the controller. Note that no Response attribute is included in the list, since the capability to process one of the other message families implies the capability to generate an appropriate Response. Multiple flags are allowed.

Table 5‑28 Contents of the MessageService element

	Name
	Data Type
	Description

	Acknowledge ?

New in JDF 1.1
	boolean
	If true the device supports asynchronous Acknowledge answers to this message.
Default = false

	Command ?
	boolean
	If true the message is supported as a command.
Default = false

	Persistent ?
	boolean
	If true the message is supported as a persistent channel.

Default = false

	Query ?
	boolean
	If true the message is supported as a query.

Default = false

	Signal ?
	boolean
	If true the message is supported as a signal.

Default = false

	Type
	NMTOKEN
	Type of the supported message. Extension types may be specified by stating the namespace in the value.

	DevCaps *

New in JDF 1.1
	element
	Specifies the restrictions of the parameter space of the supported messages. For details on using DevCaps, see 7.3.3 Structure of the DevCaps Subelement.

The following is an example of a response to a KnownMessages query:

<Response ID="M1" refID="Q1" Type="KnownMessages">

 <MessageService Type="KnownMessages" Query="true"/>

 <MessageService Type="Status" Query="true" Signal="true" Persistent="true">

 …

</Response>
5.5.1.6 RepeatMessages

Table 5‑29 Contents of the RepeatMessages message

	Object Type
	Element name
	Description

	QueryTypeObj
	MsgFilter ?
	A filter for the messages to be repeated. For details, see Section 5.5.1.1 Events.

	ResponseTypeObj
	Message *
	The recent messages queried.

The RepeatMessages query returns a list of messages that have been previously sent by the controller. The optional MsgFilter element allows the list to be filtered. The list of JMF messages that fulfill the filter criteria may be sorted by time, with the most recent listed first. This specification places no requirements on the size of the message buffer of a controller that supports RepeatMessages.

Structure of the MsgFilter Element

Table 5‑30 Contents of the MsgFilter element

	Name
	Data Type
	Description

	After ?
	dateTime
	Messages sent only after a certain time.

	Before ?
	dateTime
	Messages sent only before a certain time.

	Count ?
	integer
	Maximum number of messages, most recent first.

	DeviceID ?
	string
	ID of the device whose messages are required.

	Family ?
	enumeration
	Message family. Possible values are:

Acknowledge

Response

Signal

All – Default value. Response, Signal, and Acknowledge messages are queried.

	MessageRefID ?
	NMTOKEN
	The refID attribute must match the value of MessageRefID.

	MessageID ?
	NMTOKEN
	The ID attribute must match the value of MessageID.

	MessageType ?
	NMTOKEN
	Type attribute of the requested messages.

	ReceiverURL ?
	URL
	URL for which the messages are intended.

If the returned list is incomplete because the parameters supplied in the MsgFilter element cannot be fulfilled by the application, the ReturnCode may be 108 (empty list) or 109 (incomplete list) and should be flagged as a warning.

The following is an example of a response to a RepeatMessages query. Note the nesting of Response messages, where the first layer is the response to the RepeatMessages query and its contents are the repeated messages.

<JMF TimeStamp="2000-06-14T12:11+02:00" … >

 <Response … >

 <Response Time="2000-06-14T11:00+02:00" … />

 <Response Time="2000-06-14T10:50+02:00" … />

 <Signal Time="2000-06-14T08:20+02:00" … />

 <Signal Time="2000-06-14T03:01+02:00" … />

 …

 </Response>

</JMF>

5.5.1.7 StopPersistentChannel

Table 5‑31 Contents of the StopPersistentChannel message

	Object Type
	Element name
	Description

	CommandTypeObj
	StopPersChParams
	Specifies the persistent channel and the message types to be unsubscribed.

	ResponseTypeObj
	-
	-

The StopPersistentChannel command unregisters a listening controller from a persistent channel. No more messages are sent to the controller once the command has been issued. A certain subset of signals may be addressed for unsubscription by specifying a StopPersChParams element.

Structure of the StopPersChParams Element

If the optional attributes are not specified, those attributes default to match anything. Therefore it may be possible to cancel the persistent channel for messages belonging to a certain type of message or to a certain job.

Table 5‑32 Contents of the StopPersChParams element

	Name
	Data Type
	Description

	ChannelID ?
	NMTOKEN
	ChannelID of the persistent channel to be deleted. If the channel has been created with a Query message, the ChannelID specifies the ID of the Query message (identical to the refID of the Response message).

	MessageType ?
	NMTOKEN
	Only messages with a matching message type are suppressed. Message types are specified in the Type attribute of each Message element. Defaults to all message types.

	DeviceID ?
	string
	Only messages from devices or controllers with a matching DeviceID attribute are suppressed.

	JobID ?
	string
	Only messages with a matching JobID attribute are suppressed.

	JobPartID ?
	string
	Only messages with a matching JobPartID attribute are suppressed.

	URL
	URL
	URL of the receiving controller. This must be identical to the URL that was used to create the persistent channel. If no ChannelID is specified, all persistent channels to this URL are deleted.

5.5.2 Device/Operator Status and Job Progress Messages

JDF Messaging provides methods to trace the status of individual devices and resources and additional job-dependent job-tracking data.. The status of a job is described by the Status elements of that job.

Devices are uniquely identified by a name—that is, by the attribute DeviceID of the Device resource (see Section7.2.46 Device)—while controllers are uniquely identified by their URL. In other words, controllers are implicitly identified as a result of the fact that they are responding to a message. One controller may control multiple devices. The following queries and commands are defined for status and progress tracking:

Table 5‑33 Status and progress messages

	Message type
	Family
	Description

	Occupation
	QRS
	Queries the occupation of an employee.

	Resource
	QRSC
	Queries and/or modifies JDF resources that are used by a device, such as device settings, or by a job. This message can also be used to query the level of consumables in a device.

	Status
	QRS
	Queries the general status of a device, controller or job.

	Track
	QRS
	Queries the location of a given job or job part.

5.5.2.1 Occupation

Table 5‑34 Contents of the Occupation message

	Object Type
	Element name
	Description

	QueryTypeObj
	EmployeeDef *
	Defines the employees queried.

	ResponseTypeObj
	Occupation *
	The occupation status of the employees.

Occupation queries the occupation status of an employee. No job context is required to issue an Occupation message.

Structure of the EmployeeDef Element

The Occupation query may be focused to certain employees specifying a EmployeeDef element. If no EmployeeDef element is specified, a list of all known employees is returned.

Table 5‑35 Contents of the EmployeeDef element

	Name
	Data Type
	Description

	PersonalID ?
	string
	PersonalID of the employee being tracked.

Structure of the Occupation Element

The response returns a list of Occupation elements for the queried employees. These elements consist of one entry for every job that is currently being executed. The list format accommodates both employees that service multiple jobs or job parts in parallel and multiple employees working on one job.

Table 5‑36 Contents of the Occupation element

	Name
	Data Type
	Description

	Busy ?
	number
	Busy state of the employee in percentage. A value of 100, the default, means that the employee is fully occupied with this task. The sum of all Busy values should not exceed 100.

	Device *
	element
	Devices that the employee is currently assigned to.

	JobID ?
	string
	JobID of the JDF node that the employee is assigned to. If no JobID is specified but devices are, the employee is performing tasks not related to a job.

	JobPartID ?
	string
	Job part ID of the JDF node that is currently being executed.

	Employee
	element
	Description of the employee being tracked.

The following is an example of response to an Occupation query:

<Response ID="M1" refID="Q1" Type="Occupation">

 <!—Two jobs on one device with one operator-->

 <Occupation JobID="J1" Busy="30">

 <Employee PersonalID="P1234"/>

 <Device Name="Joe"/>

 </Occupation>

 <Occupation JobID="J2" Busy="70">

 <Employee PersonalID="P1234"/>

 <Device Name="Joe"/>

 </Occupation>

 <!—Another operator on job j2 -->

 <Occupation JobID="J2" Busy="50">

 <Employee PersonalID="P4321"/>

 <Device Name="Joe"/>

 </Occupation>

 <!—No Job context -->

 <Occupation Busy="0">

 <Device Name="John"/>

 <Employee PersonalID="P5678"/>

 </Occupation>

</Response>
5.5.2.2 Resource

The Resource message can be used as a command or a query to modify or to query JDF resources. In both cases (query and command), it is possible to address either global device resources, such as device settings, or job-specific resources. The query simply retrieves information about the resources without modifying them, while the command modifies those settings within the resource that are specified. Settings that are not specified remain unchanged.

Structure of the Resource Query Message

Table 5‑37 Contents of the Resource query message

	Object Type
	Element Name
	Description

	QueryTypeObj
	ResourceQuParams ?
	Specifies the resources queried.

	ResponseTypeObj
	ResourceInfo *
	Contains the amount data of resources and, if requested, the resources itself.

The Resource query may be made selective by specifying a ResourceQuParams element. The presence of the JobID attribute determines whether global device resources or job-related resources are returned. If no ResourceQuParams element is specified, only the global device resources are returned.

The query response returns a list of ResourceInfo elements that contains the queried information concerning the resources. If the list is empty because the selective query parameters of the ResourceQuParams lead to a null selection of the known device/job resources, then the ReturnCode may be 103 (JobID unknown), 104 (JobPartID unknown) or 108 (empty list) and should be flagged as a warning.

Structure of the ResourceQuParams Element

Table 5‑38 Contents of the ResourceQuParams element

	Name
	Data Type
	Description

	Classes ?
	enumerations
	List of the resource classes to be queried. For example, in order to query the actual level of consumables in a device outside of any job context, specify Classes = Consumable in the query without a JobID attribute. For possible resource class names, see the Class attribute in Table 3‑11. Default = any class.

	Exact ?
	boolean
	Requests an exact description of the JDF resource. If true, the response should also return the requested JDF resource. Default = false

	JobID ?
	string
	Job ID of the JDF node that is being queried. If no JobID is specified, global device settings are queried.

	JobPartID ?
	string
	Job part ID of the JDF node that is being queried.

	Location ?
	string
	Identifies the location of a resource, such as paper tray, ink container, or thread holder. The name is the same name used in the Partition-key Location of distributed resources (see also Section 3.9.2.2 Locations of Physical Resources). Default = all locations

	ProcessUsage ?
	string
	Selects a resource in which the value of the ProcessUsage attribute of the resource link (see Table 3‑17) matches the token specified here in this attribute.

Only necessary if a resource name is used more than once by one node. For example, the Component output resources of a ConventionalPrinting process can be distinguished by specifying ProcessUsage = Good and ProcessUsage = Waste, respectively.

The ResourceName, Usage and ProcessUsage attributes are combined by a logical AND conjunction to select the resource to be queried.

	ResourceName ?
	NMTOKEN
	Name of the resource being queried. For possible resource names, see titles in Chapter 7 Resources.

	Usage ?
	enumeration
	Input – The resource is an input.

Output – The resource is an output.

Selects a resource in which the value of the Usage attribute of the resource link (see Table 3‑17) matches the token specified here in this attribute. Only necessary if a resource name is used both as input and output by one node.

Structure of the Resource Command Message
Table 5‑39 Contents of the Resource command message

	Object Type
	Element name
	Description

	CommandTypeObj
	ResourceCmdParams
	Specifies the resources to be modified.

	ResponseTypeObj
	ResourceInfo *
	Contains information about the resources and the resources after modification.

The Resource command may be used to modify either global device settings or a running job. It may be made selective by specifying the optional attributes in the ResourceCmdParams element. The presence of the JobID attribute determines whether global device resources or job-related resources are modified.

The response contains a list of ResourceInfo elements with all resources and private extensions of the device after the changes have been applied. The type of the resource that is given as a response depends on the type of the resource given in the command.

If the resource command was successful, the value of the ReturnCode attribute is 0. If it is not successful, the value of ReturnCode may be one of those that have been described above in the section about the Resource query message, 200 (invalid resource parameters), or 201 (insufficient resource parameters). Partial application of the resource should also be flagged as a warning. If the value of ReturnCode is larger than 0, the controller that issued the command can evaluate the returned resource in order to find the setting that could not be applied.

Structure of the ResourceCmdParams Element

Table 5‑40 Contents of the ResourceCmdParams element

	Name
	Data Type
	Description

	Activation ?

New in JDF 1.1
	enumeration
	Describes the activation status of the uploaded resource. Allows for a range of activity, including deactivation and testrunning. Possible values, in order of involvement from least to most active, are:

Held – Used for uploading a resource that requires operator intervention before being applied.

TestRun – Used for a test run check by the controller or a device. This does not imply that the update should be automatically applied when the check is completed.

TestRunAndGo – Similar to TestRun, but requests a subsequent automatic update of the resource if the testrun has been completed successfully.

Active – Default value. The update must be applied immediately.

Note that the Inactive value defined in JDF::Activation is not a valid value in this list.

	Exact ?
	boolean
	Requests an exact description of the JDF resource. If true, the response should also return the requested JDF-resource. Default = false

	JobID ?
	string
	Job ID of the JDF node that is being modified. If no JobID is specified, global device settings are modified.

	JobPartID ?
	string
	Job part ID of the JDF node that is being modified.

	ResourceName ?
	NMTOKEN
	Name of the resource whose production amount will be modified. For possible resource names see titles in Chapter 7 Resources.

Default = any name

	ProcessUsage ?
	NMTOKEN
	Selects a resource in which the value of the ProcessUsage attribute of the resource link (see Table 3‑17) matches the token specified here in this attribute.

Only necessary if a resource name is used more than once by one node. For example, the Component output resources of a ConventionalPrinting process can be distinguished by specifying ProcessUsage = Good and ProcessUsage = Waste, respectively.

The ResourceName and ProcessUsage attributes are combined by a logical AND conjunction to select the resource to be queried.

	ProductionAmount ?
	number
	New amount of resource production. This value replaces the Amount in the output resource link of the resource specified by the ResourceName attribute.

	UpdateIDs ?

New in JDF 1.1
	NMTOKENS
	The UpdateID attributes of one or more ResourceUpdate that are defined in resources known to the recipient. The data type is NMTOKENS and not IDREFS because no matching IDs exist within this message. The order of tokens in defines the order in which the updates are applied.

	Resource *
	element
	Resources to be uploaded to the controller. They completely replace the original resources with the same ID.

The resources to be modified are identified by their ID values, which means that the ID attributes must be known to the controller that issued the Resource command.

Structure of the ResourceInfo Element

Table 5‑41 Contents of the ResourceInfo element

	Name
	Data Type
	Description

	Amount ?
	number
	Intended amount for consumption or production of a resource in a job context. This corresponds to the value of the Amount attribute in the corresponding resource link of the resource.

	AvailableAmount ?
	number
	Device-specific amount of the Consumable resource that is available in the device.

	Level ?
	enumeration
	This attribute is device dependent. A device may specify the level status that describes a low or empty consumable level. Possible values are:

Empty – Specification is left to the device manufacturer.
Low – Specification is left to the device manufacturer.
OK – Default value.

	Location ?
	string
	Device-specific string to identify the location of a given consumable, such as paper tray, ink container, or thread holder. The name is the same name used in the Partition-key Location of distributed resources (see also Section 3.9.2.2 Locations of Physical Resources).

Default = all locations

	ResourceName ?
	NMTOKEN
	Name of the resource if Exact = false in the query. Only one of Resource or ResourceName must be specified.

	ProcessUsage ?
	NMTOKEN
	Selects a resource in which the value of the ProcessUsage attribute of the resource link (see Table 3‑17) matches the token specified here in this attribute.

Only necessary if a resource name is used more than once by one node. For example, the Component output resources of a ConventionalPrinting process can be distinguished by specifying ProcessUsage = Good and ProcessUsage = Waste, respectively.

The ResourceName and ProcessUsage attributes are combined by a logical AND conjunction to select the resource to be queried.

	Unit ?
	string
	Unit of the amount attributes.

In a job-context it is strongly discouraged to specify a unit other than the unit defined in the respective JDF resource, although this may be necessary due to technical considerations, such as when ink is specified in weight (g) and ink measurement is specified in volume (liter).

	CostCenter ?
	element
	Cost center to which the resource consumption is allocated.

	Resource ?
	element
	JDF description of the resource.

The following is an example for retrieving settings:

<Query ID="Q1" Type="Resource">

 <ResourceQuParams Classes="Consumable" Exact="true"/>

</Query>

The following is a possible response to the query above:

<Response ID="M1" refID="Q1" Type="Resource">

 <ResourceInfo Location="Paper Tray 1" AvailableAmount="2120" >

 <Media>

 ... <!-- Media resource defined in JDF -->

 </Media>

 </ResourceInfo>

 <ResourceInfo Location="Ink1" AvailableAmount="0" Unit="l" Level="Empty">

 <Ink>

 ... <!-- Ink description resource defined in JDF -->

 </Ink>

 </ResourceInfo>

</Response>
The following is an example for modifying the production amount of a specific job to produce brochures:

<Command ID="C1" Type="Resource">

 <ResourceCmdParams JobID="MakeBrochure 012" ResourceName="Component" ProductionAmount="7500"/>

</Command>

The following is a possible response to the resource command above:

<Response ID="M2" refID="C1" Type="Resource">

 <ResourceInfo Amount="7500" ResourceName="Component"/>

</Response>

5.5.2.3 Status

Table 5‑42 Contents of the Status message

	Object Type
	Element name
	Description

	QueryTypeObj
	StatusQuParams
	Refines the query to include various aspects of the device and job states.

	ResponseTypeObj
	DeviceInfo
	Describes the actual device status.

	
	Queue ?
	Provides information about the queue and all its entries. This element will only be provided if the device has queue capabilities. The Queue element is described in Section 5.6.4 Queue-Handling Elements.

The Status message queries the general status of a device or a controller and the status of jobs associated with this device or controller. No job context is required to issue a Status message. The response contains one DeviceInfo element, which contains the device specific information and which may contain other JobPhase elements that in turn contain the job specific information. The response also provides a Queue element when commanded to do so.

Structure of the StatusQuParams Element

The various aspects of the device, queue, and job states may be refined by the StatusQuParams element. This element contains three groups of parameters. The first group serves to refine the device-specific status information queried. The parameters EmployeeInfo and ModuleDetails belong to this group. The second group serves to refine the job specific status information. These are JobDetails, JobID, and JobPartID. And the third determines simply whether a queue element should be appended. This is specified by the attribute QueueInfo.

In order to focus on the status of a certain job, the job must be uniquely identified using the JobID attribute. It may be necessary to define a process or a part of a job as the query target under certain circumstances, such as when a job is processed in parallel. This is accomplished using the JobPartID attribute of the StatusQuParams element. A value of JobDetails = Full requests a complete JDF description of a snapshot of the specified job or job part.

If the specified job or job part is unknown, the value of the ReturnCode attribute is 103 or 104 (for error codes, see Appendix I).

Table 5‑43 Contents of the StatusQuParams element

	Name
	Data Type
	Description

	DeviceDetails ?
	enumeration
	Refines the provided status information about the device. Possible values are:

None – Default value.

Brief – Provide all available device information except for Device elements.
Modules – ModuleStatus elements should be provided without module specific status details and without module specific employee information.

Details – Provide maximum available device information excluding device capability descriptions. Includes Device elements which represent details of the device.

Capability – Provide Device elements with DeviceCap subelements which represent details of the capabilities of the device.

Full – Provide maximum available device information including device capability descriptions.. Includes Device elements which represent details of the device.

	EmployeeInfo ?
	boolean
	If true, Employee elements may be provided in the response. Those elements describe the employees which are associated to the device independent on any job. Default = false.

	JobDetails ?
	enumeration
	Refines the provided status information about the jobs associated with the device. Each higher entry includes the values specified in the lower entries. Possible values are:

None – Default value. Specify only JobID, JobPartID and Amount and/or PercentCompleted.

MIS – Provide business with the relevant information contained in the CostCenter element and the DeadLine, DeviceStatus, Status, StatusDetails, and the various Counter attributes.

Brief – Provide all available status information except for JDF.
Full – Provide maximum available status information. Includes an actual JDF which represents a snapshot of the current job state.

	JobID ?
	string
	Job ID of the JDF node whose status is being queried. Defaults to list all known jobs.

	JobPartID ?
	string
	JobPart ID of the JDF node whose status is being queried.

	QueueInfo ?
	boolean
	If true, a Queue element may be provided. This is analogous to a QueueStatus query (see Section 5.6.3.6 QueueStatus). Default = false.

Structure of the DeviceInfo Element

The response returns a DeviceInfo element for the queried device.

Table 5‑44 Contents of the DeviceInfo element

	Name
	Data Type
	Description

	CounterUnit ?
	string
	The unit of the ProductionCounter, the TotalProductionCounter and nominator unit of Speed.

The default unit is the default unit defined by JDF for the output resource of the node executed by the device. For example, in case of a sheet printer, it is the number of sheets; in case of a web printer, it is the length of printed web in meters.

	DeviceStatus
	enumeration
	The status of a device. Possible values are:

Unknown – No device is known or the device cannot provide a DeviceStatus.

Idle – No job is being processed and the device is accepting new jobs.

Down – No job is being processed and the device currently cannot execute a job. The device may be broken, switched off, etc.

Setup – The device is currently being set up. This state is allowed to occur also during the execution of a job.

Running – The device is currently executing a job.

Cleanup – The device is currently being cleaned. This state is allowed to occur also during the execution of a job.

Stopped – The device has been stopped, but running may be resumed later. This status may indicate any kind of break, including a pause, maintenance, or a breakdown, as long as execution has not been aborted.

	HourCounter ?
	duration
	The total integrated time (life time) of device operation in hours. Default = unknown.

	PowerOnTime ?
	dateTime
	Date and time when the device was switched on.

Defaults = unknown.

	ProductionCounter ?
	number
	The current machine production counter. This counter can be reset. Typically, it starts counting at power-on time. The reset of this counter may be signaled by an Events message of Type = CounterReset (see Appendix J NotificationDetails). Default = unknown.

	Speed ?
	number
	The current machine speed. Speed is defined in the same units as ProductionCounter / hour. Default = unknown.

	StatusDetails ?
	string
	String that defines the device state more specifically. For a list of supported values, see Appendix G.

	TotalProductionCounter ?
	number
	The current total machine production counter. Default = unknown.

	Device ?
	element
	A Device resource that describes details of the device.

	Employee *
	element
	Employee resources that describe which employees are currently working at the device.

	JobPhase *
	element
	Describes the actual status of jobs in the device. For details on using JobPhase elements, see Table 5‑45.

	ModuleStatus *
	element
	Status of individual modules. For details on using ModuleStatus elements, see Table 5‑46.

Structure of the JobPhase Element
A Status response may provide JobPhase elements. The JobPhase element represents the actual state of a job. The JobPhase element is an analogue to the PhaseTime audit element described in Section 3.10.1.3 PhaseTime. The main difference between a JobPhase element and a PhaseTime audit element is that a Phase message reflects a snapshot of the current job status whereas the PhaseTime audit reflects a time span bordered by two (sub-)status transitions.

For exact information about the job phase a JobPhase element may embed a copy of the current state of the job described as JDF. If an actual JDF is not supported by the controller, the same rules apply for the Status response as those which apply for the Consumable response.

Table 5‑45 Contents of the JobPhase element

	Name
	Data Type
	Description

	Activation ?

New in JDF 1.1
	enumeration
	The activation of the JDF node. Possible values are the same as the possible values of a JDF node’s Activation attribute:

For details, see Table 3‑3 Contents of a JDF node.

	Amount ?
	number
	Produced amount. If Waste is also specified, the value is without waste. The unit is specified in the CounterUnit attribute of the parent element DeviceInfo.

	DeadLine ?
	enumeration
	Scheduling state of the job. Possible values are:

InTime – The job or job part will probably not miss the deadline.
Warning – The job or job part could miss the deadline.
Late – The job or job part will miss the deadline.
Default = InTime

For more details on scheduling, see Section 3.5 Node Information.

	JobID ?
	string
	Job ID of the JDF node the JobPhase belongs to.

	JobPartID ?
	string
	Job part ID of the JDF node the JobPhase belongs to.

	PercentCompleted ?
	number
	Node processing progress in % completed.

	QueueEntryID ?
	string
	If the job was submitted to a Queue, and the QueueEntryID is known, this attribute should be provided.

	RestTime ?

New in JDF 1.1
	duration
	Estimated duration required for finishing of this job.

	Speed ?
	number
	The current job speed. Speed is defined in the same units as ProductionCounter / hour. Defaults to the speed specified in the DeviceInfo element.

	StartTime ?

New in JDF 1.1
	dateTime
	Time when the job has been started.

	Status
	enumeration
	The status of the JDF node. Possible values are the same as the possible values of a JDF node’s Status attribute:

For details, see Table 3‑3 Contents of a JDF node.

	StatusDetails ?
	string
	String that defines the job state more specifically. For a list of supported values, see Appendix G.

	TotalAmount ?

New in JDF 1.1
	number
	Amount that will be produced when this job phase is 100% completed. The unit is specified in the CounterUnit attribute of the parent element DeviceInfo.

	Waste ?

New in JDF 1.1
	number
	Produced amount of waste. The unit is specified in the CounterUnit attribute of the parent element DeviceInfo.

	CostCenter ?
	element
	The cost center that the job is currently being charged to. Defaults to the cost center specified in the DeviceInfo element.

	JDF ?
	element
	Complete JDF node that represents a snapshot of the job that is currently being processed.

	Part *

Modified in JDF 1.1
	element
	Describes which parts of a job are currently being processed.

Structure of the ModuleStatus Element

The ModuleStatus element is identical to the ModulePhase element of the PhaseTime audit element (see Table 3‑34), except that the attributes Start and End are missing. These attributes specify the time interval in the audit pendant ModulePhase and the DeviceID attribute, which is unnecessary here. The ModuleStatus element is described in the following table.

Table 5‑46 Contents of the ModuleStatus element

	Name
	Data Type
	Description

	DeviceStatus
	enumeration
	Status of the module. Possible values are:

Unknown – The module status is unknown.

Idle – The module is not used. An example is a color print module that is inactive during a black-and-white print.

Down – The module cannot be used. It may be broken, switched off etc.

Setup – The module is currently being set up.

Running – The module is currently executing.

Cleanup – The module is currently being cleaned.

Stopped – The module has been stopped, but running may be resumed later. This status may indicate any kind of break, including a pause, maintenance, or a breakdown, as long as running can be easily resumed.

	ModuleIndex
	IntegerRange​List
	0-based indices of the module or modules. If multiple module types are available on one machine, indices must also be unique.

	ModuleType
	NMTOKEN
	Module description. The allowed values depend on the type of device that is described. The predefined values are listed in Appendix H.

	StatusDetails ?
	string
	Description of the module status phase that provides details beyond the enumerative values given by the DeviceStatus attribute. For a list of supported values, see Appendix G.

	Employee *
	element
	Links to Employee resources that are working at this module (the module is specified by the attributes ModuleIndex and ModuleType).

The following is an example of a response to a Status query. The device in this example holds one job and executes another job that is currently printed duplex each side on four-color modules for the front and three-color modules for the back, with one idle:

<Response ID="M1" refID="Q1" Type="Status">

 <DeviceInfo JobID="678" JobPartID="01" DeviceStatus="Running" StatusDetails="Waste">

 <JobPhase Amount="2560" DeadLine="InTime" JobID="678" JobPartID="01" PercentCompleted="52" QueueEntryID="Job-05" Status="InProgress" StatusDetails="Waste"/>

 <JobPhase Amount="0" DeadLine="Warning" JobID="679" JobPartID="01" PercentCompleted="0" QueueEntryID="Job-06" Status="Ready"/>

 <ModuleStatus ModuleIndex="0~3 6~8" ModuleType="PrintModule" DeviceStatus="Running"/>

 <ModuleStatus ModuleIndex="4" ModuleType="PrintModule" DeviceStatus="Idle"/>

 <ModuleStatus ModuleIndex="5" ModuleType="PerfectingModule" DeviceStatus="Running"/>

 </DeviceInfo>

</Response>
5.5.2.4 Track

Table 5‑47 Contents of the Track message

	Object Type
	Element name
	Description

	QueryTypeObj
	TrackFilter ?
	Refines the Track query.

	ResponseTypeObj
	TrackResult *
	Details of the tracked jobs

The Track query requests information about the location of Jobs that are known by a controller. If a high level controller controls lower level controllers, it should also list the jobs that are controlled by these. The response is a list of TrackResult elements.

Structure of the TrackFilter Element

The TrackFilter element refines the list of TrackResults that should be returned. Only jobs that match all parameters specified are included.

Table 5‑48 Contents of the TrackFilter element

	Name
	Data Type
	Description

	JobID ?
	string
	Job ID of the JDF node that is being tracked. Defaults to list JobPhase elements of all known nodes.

	JobPartID ?
	string
	JobPart ID of the JDF node that is being tracked.

	Status ?
	enumerations
	The status of the jobs being tracked. Possible values are a combination of any of the possible values of a JDF node’s Status attribute. Default = all. Possible values are:

Waiting

Ready

FailedTestRun
Setup

InProgress

Cleanup

Spawned

Stopped

Completed
Aborted
For details, see Table 3‑3 Contents of a JDF node.

Structure of the TrackResult Element

One TrackResult is returned for each known job or spawned job part. TrackResult elements contain information about the location of distributed jobs.

Table 5‑49 Contents of the TrackResult element

	Name
	Data Type
	Description

	JobID
	string
	Job ID of the JDF node that is being tracked.

	JobPartID ?
	string
	JobPart ID of the highest level node of the JDF node that is being tracked.

	URL
	URL
	URL of the controller that owns this job.

	IsDevice
	boolean
	If true, the controller that emitted this message is the device that has access to the job and may be queried for details of the job.

The following is an example of a response on a Track message:

<Response ID="M1" refID="Q1" Type="Track">

 <TrackResult URL=“http://www.anycompany.com/controller" JobID=”1” JobPartID=”42” IsDevice=”true”/>

 …

</Response>
5.5.3 Pipe Control

JDF Messaging provides methods to control dynamic pipes. Dynamic pipes are described in detail in Section 4.3.2 Overlapping Processing Using Pipes.

Table 5‑50 Dynamic pipe messages

	Message type
	Family
	Description

	PipeClose
	CR
	Closes a pipe because no further resources are required. This is typically used to terminate the producing process.

	PipePull
	CR
	Requests a new resource from a pipe.

	PipePush
	CR
	Notifies that a new resource is available in a pipe.

	PipePause
	CR
	Pauses a process if no further resources can be consumed or produced.

5.5.3.1 PipeClose

Table 5‑51 Contents of the PipeClose message

	Object Type
	Element name
	Description

	CommandTypeObj
	PipeParams
	Describes the pipe resource. The PipeParams element is described in Section 5.5.3.2 PipePull.

	ResponseTypeObj
	JobPhase
	The status of the responding process. The JobPhase element is defined in Table 5‑45.

The PipeClose message notifies the process at the other end of a dynamic pipe that the sender of this message needs no further resources or will produce no further resources through the pipe. The PipeClose command response is equivalent to the PipePull and PipePush command responses described below.

5.5.3.2 PipePull

Table 5‑52 Contents of the PipePull message

	Object Type
	Element name
	Description

	CommandTypeObj
	PipeParams
	Describes the requested pipe resource.

	ResponseTypeObj
	JobPhase
	The status of the responding process. The JobPhase element is defined in Table 5‑45.

The PipePull message requests resources that are described in a JDF dynamic pipe (see Sections 3.7.3 Pipe Resources and 4.3.2 Overlapping Processing Using Pipes). PipePull messages are the JMF equivalent of a dynamic input resource link. Figure 5.4, below, depicts the mode of operation of a PipePull message.

The PipePull command response returns a ReturnCode of 0 if the command has been accepted by the receiving controller. If not successful the ReturnCode may be one of the codes presented in Appendix I. The response may contain a Notification element. The JobPhase element (see Section 5.5.2.3 Status) returned should provide only the Status attribute that describes the job status of the responding process after receiving the command.

[image: image59.jpg]Immediate: JMF - PipePull command response
Delayed: JMF - Pipe acknowledge

PipeURL?

JMF - PipePull command messag

Figure 5.4 Mechanism of a PipePull message

Structure of the PipeParams Element

The PipeParams element is also used by the messages PipeClose, PipePush, and PipePause.

The URL where an optional Acknowledge should be sent when the pipe command has been executed may be defined in the initiating command message by the attribute AcknowledgeURL. The Acknowledge is sent for the following commands:

· for PipeClose: when the process has been finished,

· for PipePull: when the resource is available,

· for PipePush: when the resource has been accepted, and

· for PipePause: when the process has been stopped.

Table 5‑53 Contents of the PipeParams element

	Name
	Data Type
	Description

	PipeID
	string
	PipeID of the JDF resource that defines the dynamic pipe.

	Status ?
	enumeration
	Process status after the request. Possible values are defined in Table 3‑3.

Default = InProgress

	Resource *
	element
	Updated input resources to be used by the process that receives the pipe command: PipePull (the receiver creates the pipe resource), PipePush (the receiver consumes the pipe resource), and PipePause (the receiver only updates the inputs).

The resource to be updated is identified by the ID, that means the ID attribute must be known to the controller that issued the pipe command. Possible commands are: PipePull, PipePush, or PipePause. In case of the PipeClose command, the resources are ignored.

	ResourceLink ?
	element
	Updated resource link to the pipe resource: PipePull (it is an output link), PipePush (it is an input link), and PipePause (depends on the pipe end). This resource link may be used by the process that links to the pipe resource.

The attributes rRef and Usage of a resource link must not be updated. For details see Section 3.7.4 ResourceUpdate Elements. In the context of dynamic pipes these two attributes have no meaning.

In case of the PipeClose command, the resource link is ignored.

	UpdatedStatus ?
	enumeration
	This value represents the actual status of the pipe resource and may be used by the receiving process for process termination control. For details see Section Formal Iterative Processing.

For possible values of the resource Status attribute see Table 3‑11.

5.5.3.3 PipePush

J. 2 Contents of the PipePush message

	Object Type
	Element name
	Description

	CommandTypeObj
	PipeParams
	Describes the produced pipe resource. The PipeParams element is described in Section 5.5.3.2 PipePull.

	ResponseTypeObj
	JobPhase
	The status of the responding process. The JobPhase element is defined in Table 5‑45.

The PipePush message notifies the availability of pipe resources that are described in a JDF dynamic pipe (see Sections 3.7.3 Pipe Resources and 4.3.2 Overlapping Processing Using Pipes). PipePush messages are the JMF equivalent of a dynamic output resource link. Figure 5.5 depicts the mode of operation of a PipePush message. The PipePush command response is equivalent to the PipePull command response described above.

[image: image60.jpg]JMF - PipePush command message

PipeURL?

Immediate: JMF - PipePush command response
Delayed: JMF - Pipe acknowledge

Figure 5.5 Mechanism of a PipePush message

5.5.3.4 PipePause

Table 5‑54 Contents of the PipePause message

	Object Type
	Element name
	Description

	CommandTypeObj
	PipeParams
	Describes the pipe resource. The PipeParams element is described in Section 5.5.3.2 PipePull.

	ResponseTypeObj
	JobPhase
	The status of the responding process. The JobPhase element is defined in Table 5‑45.

The PipePause message pauses execution of a process that is at the other end of a dynamic pipe. The PipePause command response is equivalent to the PipePull command response described above.

5.6 Queue Support

In JMF, a device is assumed to have one input queue that accepts submitted jobs. If a real device supports multiple queues, it is represented by multiple logical devices in JDF. The simple case of a device with no queue can be mapped to a queue with two Status states: Waiting and Full. JMF supports simple handling of priority queues. The following assumptions are made:

· Queues support priority. Priority may only be changed for waiting jobs. A queue may round priorities to the number of supported priorities, which may be one, indicating no priority handling.

· Priority is described by an integer from 0 to 100. Priority 100 defines a job that should pause a job that is in progress and commence immediately. If a device does not support the pausing of running jobs, it should queue a priority-100 job before the last pending priority-100 job.

· A controller may control multiple devices/queues.

· Queue entries can be unambiguously identified by a QueueEntryID.

Some conventions used in the following sections have already been introduced in Section 5.5 Standard Messages. This affects the message families and the descriptive tables at the beginning of each message section that describe the type objects related to the corresponding message. The type objects are QueryTypeObj, CommandTypeObj, and ResponseTypeObj (see also Figure 5.1).

5.6.1 Queue Entry ID Generation

Queue entries are accessed using a QueueEntryID attribute, which is generated by the controller of the queue when the job is submitted. This attribute must uniquely identify an entry within the scope of one queue. An implementation is free to choose the algorithm that generates QueueEntryIDs.
5.6.2 Queue Entry Handling Commands

Queue-entry handling is provided so that the state of individual jobs within a queue can be changed. Job submission, queue-entry grouping, priorities, and hold/resume of entries are all supported. The individual commands are defined in the table and explained in greater detail in the sections that follow.

Table 5‑55 QueueEntry handling messages

	Message type
	Family
	Description

	AbortQueueEntry
	CR
	If a job is already running, it is aborted and removed. If it is not already running, it is removed from the queue. AbortQueueEntry is the only Queue manipulation message that has an effect on running queue entries.

	HoldQueueEntry
	CR
	The entry remains in queue but is never executed.

	RemoveQueueEntry
	CR
	A job is removed from the queue.

	ResubmitQueueEntry
	CR
	Replaces a queue entry without affecting the entry’s parameters. The command is used, for example, for late changes to a submitted JDF.

	ResumeQueueEntry
	CR
	A held job is resumed. The job is requeued at the position defined by its current priority. Submission time is set to the current time stamp.

	SetQueueEntryPosition
	CR
	Queues a job behind a given position n, where n represents a numerical value. 0 = pole position. Priority is set to the priority of the job at position n.

	SetQueueEntryPriority
	CR
	Sets the priority of a queued job to a new value. This does not apply to jobs that are already running.

	SubmitQueueEntry
	CR
	A job is submitted to a queue in order to be executed.

5.6.2.1 AbortQueueEntry

Table 5‑56 Contents of the AbortQueueEntry message

	Object Type
	Element name
	Description

	CommandTypeObj
	QueueEntryDef
	Defines the queue entry.

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the elements listed above, see Section 5.6.4.

Once this command is issued, the entry specified by QueueEntryDef is removed from the queue. If the device on which the entry is running has already commenced processing, the entry is aborted. In this case the Audits and Status of the JDF that is being processed should be appropriately filled and the JDF should be delivered to the URL as specified by NodeInfo:TargetRoute.

5.6.2.2 HoldQueueEntry

Table 5‑57 Contents of the HoldQueueEntry message

	Object Type
	Element name
	Description

	CommandTypeObj
	QueueEntryDef
	Defines the queue entry.

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the elements listed above, see Section 5.6.4.

The entry specified by QueueEntryDef remains in the queue but is never executed. The HoldQueueEntry command has no effect on running jobs.

5.6.2.3 RemoveQueueEntry

Table 5‑58 Contents of the RemoveQueueEntry message

	Object Type
	Element name
	Description

	CommandTypeObj
	QueueEntryDef
	Defines the queue entry.

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the elements listed above see, Section 5.6.4.

This command causes the entry specified by QueueEntryDef to be removed from the queue. It does not affect running jobs.

5.6.2.4 ResubmitQueueEntry

Table 5‑59 Contents of the ResubmitQueueEntry message

	Object Type
	Element name
	Description

	CommandTypeObj
	ResubmissionParams
	Defines the job resubmission.

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

A job is resubmitted to a queue using the ResubmitQueueEntry message. This allows late changes to be made to a job without affecting queue parameters and without exporting the internal structure of a queue. Resubmission overwrites the job specified in the URL attribute of the ResubmissionParams element. The job must not run. Job resubmission does not affect other queue parameters as specified, for example, resubmission does not affect queue ordering.

Structure of the ResubmissionParams Element
Table 5‑60 Contents of the ResubmissionParams element

	Name
	Data Type
	Description

	QueueEntryID
	string
	ID of the queue entry to be replaced.

	URL
	URL
	Location of the JDF to be submitted. May be either a URL or, in the case of MIME/Multipart/Related, a CID.

5.6.2.5 ResumeQueueEntry

Table 5‑61 Contents of the ResumeQueueEntry message

	Object Type
	Element name
	Description

	CommandTypeObj
	QueueEntryDef
	Defines the queue entry.

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the elements listed above, see Section 5.6.4.

The hold status of the queue entry specified by QueueEntryDef is removed.

5.6.2.6 SetQueueEntryPosition

Table 5‑62 Contents of the SetQueueEntry message

	Object Type
	Element name
	Description

	CommandTypeObj
	QueueEntryPosParams
	Defines the queue entry.

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

The position of the queue entry is modified. The QueueEntryPosParams element provides the required parameters.

Structure of the QueueEntryPosParams Element

QueueEntryID specifies the queue entry to be moved. Jobs may either be set to a specific position within the queue or positioned next to an existing queue entry. The priority of the entry matches the priority of the entry that precedes it, after it has been repositioned. Only one of NextQueueEntryID, PrevQueueEntryID or Position may be specified.

Table 5‑63 Contents of the QueueEntryPosParams element

	Name
	Data Type
	Description

	NextQueueEntryID ?
	string
	ID of the queue entry that should be ordered directly behind the entry.

	QueueEntryID
	string
	ID of a queue entry. The ID is generated by the queue owner.

	PrevQueueEntryID ?
	string
	ID of the queue entry that should be ordered directly in front of the entry.

	Position ?
	integer
	Position in the queue. 0 = pole position. Note that the position is based on the queue before modification. Thus if a queue entry is moved back in the queue, its final position is one lower than specified in Position.

5.6.2.7 SetQueueEntryPriority

Table 5‑64 Contents of the SetQueueEntryPriority element

	Object Type
	Element name
	Description

	CommandTypeObj
	QueueEntryPriParams
	Defines the queue entry.

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

The priority of the queue entry is modified. The QueueEntryPriParams element provides the required parameters.

Structure of the QueueEntryPriParams Element
QueueEntryID, described in the table below, specifies the queue entry that has its priority modified.

Table 5‑65 Contents of the QueueEntryPriParams element

	Name
	Data Type
	Description

	Priority
	integer
	Number from 0 to 100, where 0 = lowest priority and 100 = maximum priority.

	QueueEntryID
	string
	ID of a queue entry. The ID is generated by the queue owner.

5.6.2.8 SubmitQueueEntry

Table 5‑66 Contents of the SubmitQueueEntry message

	Object Type
	Element name
	Description

	CommandTypeObj
	QueueSubmissionParams
	Defines the job submission.

	ResponseTypeObj
	QueueEntry
	Provides the queue entry of the submitted job.

	
	Queue
	Describes the state of the queue after the command has been executed.

	Definition of the QueueEntry and Queue elements, see Section 5.6.4.

The SubmitQueueEntry message submits a job to a queue. The QueueSubmissionParams element provides the required parameters.

Structure of the QueueSubmissionParams Element
The job submission may contain queue-ordering attributes equivalent to those used by the SetQueueEntryPriority and SetQueueEntryPosition messages. The URL attribute specifies the location where the JDF file to be submitted can be retrieved by the queue controller. The location type in the URL attribute (such as File, http or CID) defines the submission method. The optional ReturnURL attribute specifies the location where the modified JDF should be sent after the job is completed or aborted.

Table 5‑67 Contents of the QueueSubmissionParams element

	Name
	Data Type
	Description

	Hold ?
	boolean
	If true, the entry is submitted as held. Default = false

	NextQueueEntryID ?
	string
	ID of the queue entry that should be ordered directly behind the entry.

	PrevQueueEntryID ?
	string
	ID of the queue entry that should be ordered directly in front of the entry.

	Priority ?
	integer
	Number from 0 to 100, where 0 = lowest priority and 100 = maximum priority. Default = 1

	ReturnURL ?
	URL
	URL where the JDF file should be sent when the job is completed or aborted. If not specified, the JDF should be placed in the default output hot folder of the queue controller.

	URL
	URL
	Location of the JDF to be submitted. In the case of MIME/Multipart/Related, the location may be either a URL or a CID.

	WatchURL ?
	URL
	URL of the controller that should be notified when the status of the QueueEntry changes. Specifying this URL is the equivalent of sending a QueueEntryStatus query with a persistent channel and ChangeAttribute = “*” to this URL.

File Submission

If the URL defines a file, the controller may retrieve the file at the location specified in the URL attribute.

The following example declares a file on the network:

<Command Type="SubmitQueueEntry" >

 <QueueSubmissionParams URL="File:///c:/AnyDirectory/job1.jdf"/>

</Command>
HTTP External JDF Submission

The following example declares an intranet or Internet location. In this example, the queue controller can retrieve the file with a standard HTTP get command. Note that the job itself may be a MIME/Multipart entity. It may also be dynamically generated by a CGI script or another such tool.

<Command Type="SubmitQueueEntry" >

 <QueueSubmissionParams URL="http://JobServer.JDF.COM?job1"/>

</Command>
HTTP MIME/Multipart/Related Submission

If a message controller is capable of decoding mime, it is legal to submit a MIME/Multipart/Related message. The first section of the multipart mime document must be the JMF submission command. Internal links are defined using the Content-ID (CID) label in MIME. The second section must be the JDF job. Subsequent sections are the linked entities, such as the preview images shown in the following example:

MIME-Version: 1.0

Content-Type: multipart/Related; boundary=unique-boundary

--unique-boundary

Content-type: text/xml

…

<JMF TimeStamp="2000-06-12T08:56+02:00" SenderID="JobCreator P_01">

<Command ID="Cmd-0234" Type="SubmitQueueEntry"">

<QueueSubmissionParams URL="CID:JDF1/>

</Command>

</JMF>

…

--unique-boundary

Content-type: text/xml

Content-ID: JDF1

<JDF … >

--unique-boundary

Content-type: image/png

Content-ID: Yellow-PNG-Page1

png image of a separation may be here

--unique-boundary--
5.6.3 Global Queue Handling

Whereas the commands in the preceding section change the state of an individual queue entry, the commands in this section modify the state of an entire queue. Note that entries that are executing in a device are not affected by the global queue-handling commands and must be accessed individually. An individual queue can be selected by specifying the target device/queue in the DeviceID attribute of the JMF root. If no DeviceID is specified, the commands or queries are applied to all devices/queues that are controlled by the controller that received the message. The following individual messages are defined:

Table 5‑68 Global queue-handling commands

	Message type
	Family
	Description

	CloseQueue
	CR
	The queue is closed. No jobs may be accepted by the queue.

	FlushQueue
	CR
	All entries in the queue are removed.

	HoldQueue
	CR
	The queue is held. No jobs within the queue may be executed.

	OpenQueue
	CR
	The queue is opened. Jobs may be accepted.

	QueueEntryStatus
	QRS
	Returns a QueueEntry element.

	QueueStatus
	QRS
	Returns the Queue elements that describe a queue or set of queues.

	ResumeQueue
	CR
	The queue is activated and queue entries may be executed.

	SubmissionMethods
	QR
	Queries a list of supported submission methods to the queue.

5.6.3.1 CloseQueue

Table 5‑69 Contents of the CloseQueue message

	Object Type
	Element name
	Description

	CommandTypeObj
	-
	

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

The queue is closed. No further queue entries are accepted by the queue. The status of entries that are already in the queue remains unchanged and prior entries may be executed.

5.6.3.2 FlushQueue

Table 5‑70 Contents of the FlushQueue message

	Object Type
	Element name
	Description

	CommandTypeObj
	-
	

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

All queue entries in the queue are removed. Only pending queue entries may be removed.

5.6.3.3 HoldQueue

Table 5‑71 Contents of the HoldQueue message

	Object Type
	Element name
	Description

	CommandTypeObj
	-
	

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

The queue is held. No entries may be executed. Note that the status of a held entry prior to HoldQueue is retained so that held jobs should remain held after a ResumeQueue. New entries may, however, still be submitted to a held queue.

5.6.3.4 OpenQueue

Table 5‑72 Contents of the OpenQueue message

	Object Type
	Element name
	Description

	CommandTypeObj
	-
	

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

The queue is opened and new queue entries may be accepted by the queue. A held queue remains held. The OpenQueue command is the opposite of a CloseQueue command.

5.6.3.5 QueueEntryStatus

Table 5‑73 Contents of the QueueEntryStatus message

	Object Type
	Element name
	Description

	QueryTypeObj

Modified in JDF 1.1A
	QueueEntryDefList
	Defines the addressed queue entries. Note that this element was QueueEntryDef * prior to JDF1.1A.

	ResponseTypeObj
	QueueEntry *
	Describes the status of the queried queue entries.

	For the definition of the elements above see Section 5.6.4.

The QueueEntryStatus message returns queue entry descriptions. The QueueEntryDef elements specify the queue entries to be queried. If no QueueEntryDef element is specified, the query returns a list of QueueEntry elements, one for each entry in the queue. If no QueueEntryDef is specified and the query defines a persistent channel, a Signal is emitted for any entry whose status changes. This includes changes as a result of modifications of the queue status, such as hold or resume.

Structure of the QueueEntryDefList Element

New in JDF 1.1A
The QueryTypeObj of QueueEntryStatus has been modified from QueueEntryDef* to QueueEntryDefList because of a type collision in the XML Schema. QueueEntryDef had been used both as a QueryTypeObj and as a. CommandTypeObj.
Table 5‑74 Contents of the QueueEntryDefList element

	Name
	Data Type
	Description

	QueueEntryDef *
	element
	Defines the addressed queue entries.

5.6.3.6 QueueStatus

Table 5‑75 Contents of the QueueStatus message

	Object Type
	Element name
	Description

	QueryTypeObj
	-
	

	ResponseTypeObj
	Queue
	Describes the status of the queue.

	For the definition of the Queue element, see Section 5.6.4.

Returns a queue description.

5.6.3.7 ResumeQueue

Table 5‑76 Contents of the ResumeQueue message

	Object Type
	Element name
	Description

	CommandTypeObj
	-
	

	ResponseTypeObj
	Queue
	Describes the state of the queue after the command has been executed.

	For the definition of the Queue element, see Section 5.6.4.

The queue is activated and queue entries may be executed. The ResumeQueue command is the opposite of a HoldQueue command.

5.6.3.8 SubmissionMethods

Table 5‑77 Contents of the SubmissionMethods message

	Object Type
	Element name
	Description

	QueryTypeObj
	-
	

	ResponseTypeObj
	SubmissionMethods ?
	Describes the submission methods supported by the queue.

The SubmissionMethods message returns the submission methods that are supported by a queue controller.

Structure of the SubmissionMethods Element
The response element may contain multiple attributes, as defined below. If an attribute is not specified, the corresponding submission method is not supported.

Table 5‑78 Contents of the SubmissionMethods element

	Name
	Data Type
	Description

	File ?
	boolean
	Can retrieve a JDF from a File specified in the URL Default = false

	HotFolder ?
	URL
	URL specification of a hot folder location. Default = no hot folder

	HttpGet ?
	boolean
	Can retrieve a JDF via HTTP get commands. Default = false

	MIME ?
	boolean
	Accepts MIME/Multipart/Related submission messages via a message post.

Default = false

The following is an example of a response to a SubmissionMethods query:

<Response ID="M1" refID="Q1" Type="SubmissionMethods"/>

 <SubmissionMethods File="true"

 HotFolder="File://MyDevice/HotFolder" HttpGet="true" MIME="false"/>

</Response>

5.6.4 Queue-Handling Elements

In this section elements used by queue-handling commands are defined. The following table shows the resulting status of a queue in dependence on global queue commands CloseQueue/OpenQueue and HoldQueue/ResumeQueue as well as the load of queue and its processor. The first command pair determines the logical state of the first column "Closed" and the second of the column "Held". The queue is held if the queue manager doesn't send existing entries to the queue's processor.

Table 5‑79 Definition of the Queue Status Attribute values

	Closed
	Held
	Queue Full
	Processor Full
	Status

	Yes
	Yes
	Any
	Any
	Blocked

	Yes
	No
	Any
	Any
	Closed

	No
	Yes
	Any
	Any
	Held

	No
	No
	Any
	No
	Waiting

	No
	No
	No
	Yes
	Running

	No
	No
	Yes
	Yes
	Full

[image: image61.jpg]"queue internal
communication”
"queue internal
communication"

snenpetunsal

closeQueue
openQueue

BNeNoPIOY

"queue internal
communication”
"queue internal
communication"

Figure 5.6 Effects of the global queue messages on the queue Status

Structure of the Queue Element
The attributes in the following table are defined for Queue message elements. Queue elements represent the queue of a device including QueueEntry elements that represent both pending and running queue entries.

Table 5‑80 Contents of the Queue element

	Name
	Data Type
	Description

	Status
	Enumeration
	Status of the queue. Possible values are:
Blocked – Queue is completely inactive. No entries may be added and no entries are executed. The queue is closed and held. The queue requires an interaction like OpenQueue or ResumeQueue to reactivate it.
Closed – Queue entries that are in the queue are executed, but no new entries may be submitted. The lock must be removed explicitly by the OpenQueue command.
Full – Queue entries that are in the queue are executed but no new entries may be submitted. The lock is removed by the queue controller as soon as it is able to do so.
Running – A process is executing. Entries may be submitted and will be executed when they reach their turn in the queue.
Waiting – Queue accepts new entries and has free resources to immediately commence processing.
Held – Entries may be submitted but will not be executed until the queue is resumed by the ResumeQueue command.

	DeviceID
	String
	Identifies the queue/device.

	Device *
	Element
	The devices that execute entries in this queue.

	QueueEntry *
	element
	Queue entry elements (see Table 5‑81 , below). The entries are ordered in the sequence they will be executed, beginning with the running entries.

Example of a Queue message element:

<Queue Status="Running" DeviceID="Q12345">

 <QueueEntry QueueEntryId="111-1" Priority="1" Status="Running" JobId="111" JobPartId="1"/>

 <QueueEntry QueueEntryId="111-2" Priority="1" Status="Waiting" JobId="111" JobPartId="2"/>

 <QueueEntry QueueEntryId="112-1" Priority="55" Status="Held" JobId="112" JobPartId="1"/>

</Queue>
Structure of the QueueEntry Element
Table 5‑81 Contents of the QueueEntry element

	Name
	Data Type
	Description

	JobID ?

Modified in JDF 1.1
	string
	The Job ID of the JDF process.

	JobPartID ?
	string
	The JobPartID of the JDF process.

	Priority ?
	integer
	Priority of the QueueEntry. Values are 0-100. 0 = lowest priority, while 100 = highest priority. Default = 1

	QueueEntryID
	string
	ID of a QueueEntry. This ID is generated by the queue owner.

	StartTime ?

New in JDF 1.1
	dateTime
	Time when the job has been started.

	Status

Modified in JDF 1.1A
	enumeration
	Status of the individual entry. Possible values are:

Running – The queue entry is running.

Waiting – The queue entry is waiting and will be executed when resources are available.

Held – The queue entry is held and will not execute until resumed.

Removed – The queue entry has been removed. This status can only be sent when a persistent channel watches a queue and the queue entry is removed.

	SubmissionTime ?
	dateTime
	Time when the entry was submitted to the queue.

Structure of the QueueEntryDef Element
The element specifies a queue entry and is used to refer to a certain queue entry.

Table 5‑82 Contents of the QueueEntryDef element

	Name
	Data Type
	Description

	QueueEntryID
	string
	ID of the queue entry. The ID is generated by the queue owner.

5.7 Extending Messages

This specification defines a set of predefined messages for general usage. Extensions to existing messages and additional message types may be defined using the standard extension rules described in JDF Extensibility. Note, the generic content of Section 3.1.1 Generic Contents of JDF Elements is also valid for JMF elements. It is not allowed to define message extensions which duplicate the functionality of messaging types, messaging elements, or message attributes that are already defined in this specification.

For example the content of the Type attribute may be specified with a prefix that identifies the organization that defined the extension. The prefix and name should be separated by a single colon (‘:’). Any additional attributes and elements are allowed, and internal elements may be declared with explicit namespaces. The official namespace of JMF elements is xmlns="http://www.CIP4.org/JDFSchema_1_1". This namespace is identical to that defined for JDF in JDF Extensibility. An example is provided:

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:Circus="Circus Schema URI">

 <Query Type="Circus:IsClownHappy" ID="Q1">

 <Circus:ClownParams Gender="male"/>

 </Query>

</JMF>

The response will also have the “Circus:” namespace identifier. All Circus elements are explicitly declared.

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:Circus="Circus Schema URI">

 <Response ID="M1" refID="Q1" Type="Circus:IsClownHappy">

 <Circus:Clown name="Joe" happy="true">

 <Circus:Clown name="John" happy="false">

 </Response>

</JMF>
5.7.1 IfraTrack Support

[image: image150.wmf]

amount

Levels

input PipeResume

output PipeResume

output PipePause

0

R2

R1

Unavailable

Available

Time

R3

Unavailable

Available

P1

Waiting .or.

Ready

InProgress

Completed

P2

Waiting .or.

Ready

InProgress

Completed

End

Start

Stopped

R2

Unavailable

InUse

The extending mechanism can be used to implement compatibility with other XML-based messaging standards, for example version 3.0 of IfraTrack. The Type attribute is set to the appropriate namespace, and the foreign message is included, as demonstrated in the following example:

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:IFRA="IfraTrack URI">

 <Query ID="Q1" Type="IFRA:IMF">

 <IMF xmlns="IfraTrack URI">

 Whatever you want (may be multiple top level elements)

 </IMF>

 </Query>

</JMF>

The legal response would be:

<JMF … xmlns="http://www.CIP4.org/JDFSchema_1_1" xmlns:IFRA="IfraTrack URI">

 <Response ID="M1" refID="Q1" Type="IFRA:IMF">

 <IMF xmlns="IfraTrack URI">

 The appropriate IFRA response(s)

 </IMF>

 </Response>

</JMF>

Note that the application is free to select the appropriate response types in order to fulfill its local (IfraTrack) protocol requirements if it uses its own namespace. In the examples above the default namespace associated with the IMF query and response elements has been overwritten by the Ifra-namespace. Additional information on using IfraTrack and JDF is in Appendix E Modeling IfraTrack in JDF.

Chapter 6 Processes

The following chapter describes the processes that are defined in detail for JDF.

6.1 [image: image151.jpg](0]
[e]

o
[¢]

@)

[e]
(o)
[e]

[e]

o

@)

@)

O} Row4

G—F Row 3
O+ Row 2

G— Row 1

Process Template

Processes are defined by their input and output resources, therefore, all relevant resource information is provided in tables for each process. Furthermore, although they are not listed for each process, additional, optional input resources as defined in the following table as well as any implementation resources are implied for all processes defined in this chapter.

Input Resources
	Name
	Description

	Resource
	Represents any input resource. If an optional resource is not specified in a JDF instance, the JDF Consumer may make its own assumption regarding attributes and subelements of the resource. Specification defined attribute defaults cannot be guaranteed.

	Res1 (usage1)
	A resource of type Res1 with the ProcessUsage attribute usage1

	Res1 (usage2)
	A resource of type Res1 with the ProcessUsage attribute usage2

	ApprovalSuccess *
	Any number of ApprovalSuccess resources may be appended to processes in order to model proofing and verification requirements. This is implied and not specified explicitly in the tables in the following section. For more information on the Approval process, see Section 6.2.1.

	Implementation *
	Abstract resource that is a placeholder for any implementation resource (examples are Employee, Device or Tool) that is associated with processing this node.

	Preview *

Added in JDF1.1A
	Any number of previews may be associated with a process and used for display purposes.

Output Resources

	Name
	Description

	Resource
	Represents any output resource.

6.2 General Processes

6.2.1 Approval

The Approval process can take place at various steps in a workflow. For example, a resource, such as a printed sheet or a finished book, is used as the input to be approved, and an ApprovalSuccess (given, for example, by a customer or foreman) is produced. Combining the Approval process with any other process can be used to represent a request for a receipt.

Input Resources
	Name
	Description

	ApprovalParams
	Details of the approval process.

	Resource *
	The resources to be proofed. The input will most often be a resource of class Handling or Quantity.

Output Resources

	Name
	Description

	ApprovalSuccess
	Result of any proofing process given, for example, by a customer or foreman. Note that ApprovalSuccess resources are only available on success.

	Resource * (Accepted)
	Represents the input resources that have been accepted for further processing by the approval process as output resources. This is typically used to transfer the resource Status of Draft to Available (see also Formal Iterative Processing).

	Resource * (Rejected)
	Represents the input resources that have been rejected for further processing by the approval process as output resources. This may be used to define additional processing for rejected resources.

6.2.2 Buffer

Modified in JDF1.2
New in JDF 1.1

The Buffer process is used to buffer a resource for a certain time period. This can be buffering of a complete resource or of a partial resource, e.g., in a pipe. The quantity of the input and output of resources should be equal. Waiting for printed material to dry before finishing is an example of the Buffer process.

Input Resources
	Name
	Description

	BufferParams ?
Modified in JDF1.2
	The parameters, e.g. times and locations of the Buffer process.

	Resource
	The physical resources to be buffered. These may be any resource whose class is Consumable, Handling or Quantity.

Output Resources

	Name
	Description

	Resource
	The same resource after buffering. The resource must have a class of Consumable, Handling, or Quantity.

6.2.3 Combine

The Combine process is used to combine multiple physical resources or logical resources, e.g., RunLists of the same content to form one resource. The quantity of the input and output of resources should be equal. The ordering of the input ResourceLinks must be honored.

Input Resources
	Name
	Description

	Resource +
	The resources to be combined.

Output Resources

	Name
	Description

	Resource
	Result of combining. The resource formed as a result of the Combine process.

6.2.4 Delivery

This process can be used to describe the delivery of a physical resource to or from a location. This delivery may be internal—meaning within the company—or to an external company or customer. The CustomerInfo element of the JDF node can also be used if the delivery to is to be made to only one customer. Note that a delivery receipt can be requested by combining the Delivery process with an Approval process.

Input Resources
	Name
	Description

	DeliveryParams
	Necessary information about the item or items to be delivered is stored here.

	Resource
	Any resource delivered to a location. This can be a physical resource or a Parameter resource that is delivered electronically.

Output Resources
	Name
	Description

	Resource
	Any resource picked up from a location. This can be a physical resource or a Parameter resource that is delivered electronically.

6.2.5 ManualLabor

New in JDF 1.1
This process can be used to describe any process where resources are handled manually. The ManualLabor process is designed to monitor any type of non-automated labor from an MIS system.
Input Resources
	Name
	Description

	Resource *
	Resources that are required to create the output Resource.

	ManualLaborParams
	Details on the ManualLabor process.

Output Resources

	Name
	Description

	Resource
	The resource that was created by manual work. In general these will be components, but handling resources may also be created manually.

6.2.6 Ordering

This process can be used to describe the Ordering (requisition) of a Resource element. Orders can be placed internally, i.e., within the company, or externally.

Input Resources
	Name
	Description

	OrderingParams
	Necessary information about the items to be ordered, such as the supplier address, item quantity, or unit type.

Output Resources

	Name
	Description

	Resource +

Modified in JDF 1.1
	All kinds of physical resources can be ordered.

6.2.7 Packing

Deprecated in JDF 1.1

This process can be used to describe the Packing of a PhysicalResource element for transport purposes. The Packing process has been deprecated in version 1.1 and beyond. It is replaced by the individual processes defined in Section 6.5.45.5 Packaging Processes.

Input Resources
	Name
	Description

	PackingParams
	Necessary information about the packing process.

	PhysicalResource
	All kinds of physical resources can be packed.

Output Resources

	Name
	Description

	PhysicalResource
	The packaged physical resources. Note that Amount attributes referring to this resource still refer to individual products and not to boxes, cartons or pallets.

6.2.8 ResourceDefinition

This process can be used to describe the interactive or automated process of defining resources such as set-up information. This process creates output resources or modifies input resources of the same type as the output resources. The ResourceDefinition process is designed to monitor interactive work such as creating imposition templates. It can also be used to model a hot folder process that accepts resources from outside of a JDF based workflow.

Input Resources
	Name
	Description

	Resource *

Modified in JDF 1.1
	Any type of resource. Generally these will be templates.

	Resource​Definition​Params ?
	Details on how to handle defaults.

Output Resources

	Name
	Description

	Resource +

Modified in JDF 1.1
	The same type of resource as the input.

6.2.9 Split

This process is used for splitting one physical or logical resource into multiple physical or logical resources containing the same content as the original. The quantity of the input and output of resources should be equal.

Input Resources
	Name
	Description

	Resource
	The resource to be split.

Output Resources

	Name
	Description

	Resource +
	The resources formed as a result of splitting.

6.2.10 Verification

Modified in JDF1.2
The Verification process is used to confirm that a process has been completely executed. In the case of variable data printing, in which every document is unique and must be validated individually, database access is required. Verification in this situation may involve scanning the physical sheet and interpreting a bar code or alphanumeric characters. The decoded data may then be either recorded in a database to be later cross referenced with a verification list, or cross referenced and validated immediately in real time.

Input Resources

	Name
	Description

	DBSchema ?
	Schema description of the cross-reference database.

	DBSelection ?
	Database link that defines the database that contains cross-reference data.

	IdentificationField *
	Identifies the position and type of data for an automated, OCR-based verification process.

	VerificationParams ?
Modified in JDF1.2
	Controls the verification requirements.

Output Resources

	Name
	Description

	ApprovalSuccess ?
	Signature file that defines verification success.

	DBSelection ?
	Database link where the verification data should be recorded.

6.3 Prepress Processes

6.3.1 ColorCorrection

Modified in JDF1.2
ColorCorrection is the process of modifying the specification of colors in documents to achieve some desired visual result. The process may be performed to ensure consistent colors across multiple files of a job or to achieve a specific design intent, e.g., “Brighten the image up a little”.

ColorCorrection is distinct from ColorSpaceConversion, which is the process of changing how the colors specified in the job will be produced on paper. Rather, ColorCorrection is the process of modifying the desired result, whatever the specified colorspace might be.

Input Resources

	Name
	Description

	ColorantControl ?

Modified in JDF1.1A
	Identifies the assumed color model for the job.

	ColorCorrectionParams ?
New in JDF 1.1
	Parameters of the ColorCorrection process

	RunList
	List of content elements that are to be operated on.

Output Resources

	Name
	Description

	RunList
	List of color-corrected pages.

6.3.2 ColorSpaceConversion

Modified in JDF1.2
ColorSpaceConversion, as the name implies, is the process of converting all colors used in the job to a known colorspace. There are two ways in which a controller can use this process to accomplish the color conversion. It can simply order the colors to be converted by the device assigned to the task, or it can request that the process simply tag the input data for eventual conversion. Additionally, the process may remove all tags from the content.

The parameters of this resource provide the ability to selectively control the conversion or tagging of graphical objects based on object class and/or incoming color space.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC profiles. While the assumed characterization of input data can take many forms, each can internally be represented as an ICC profile. In order to perform the transformations, input profiles must be paired with the identified final target device profile to create the transformation.

In order to avoid the loss of black color fidelity resulting from the transformation from a four-component CMYK to a three-component interchange space, the agent may select a DeviceLink
 profile as the assumed color space characterization. In these instances, the final target profile is ignored. Since there is no algorithmic way to determine that the output characterization in a device link profile is equivalent to another profile, some of the responsibility to select a sensible combination falls on the agent or end user.

Input Resources

	Name
	Description

	ColorantControl ?

Modified in JDF1.1A
	Identifies the assumed color model for the job.

	ColorSpaceConversionParams ?
Modified in JDF1.2
	Parameters that define how colorspaces will be converted in the file.

	RunList
	List of pages on which to perform the selected operation.

Output Resources

	Name
	Description

	ColorantControl ?
	Identifies the assumed color model for the job. The ColorantControl resource may be modified by a ColorSpaceConversion Process.

	RunList
	List of pages on which the selected operation has been performed.

6.3.3 ContactCopying

New in JDF 1.1
ContactCopying is the process of making an analog copy of a film onto a another film or plate. It includes FilmToPlateCopying as defined in JDF 1.1.
Input Resources

	Name
	Description

	ContactCopyParams
	The settings of the exposure task.

	DevelopingParams ?
	Controls the physical and chemical specifics of the media development process.

	ExposedMedia +
	The film or films to be copied onto the plate.

	Media
	The unexposed plate.

	TransferCurvePool?
	Area coverage correction and coordinate transformations of the device.

Output Resources

	Name
	Description

	ExposedMedia
	The resulting exposed contact copy.

6.3.4 ContoneCalibration

This process specifies the process of contone calibration. It consumes contone raster data, such as that output from an interpreting and rendering process. It produces contone raster data which has been calibrated to a press using a well defined screening process.

Input Resources

	Name
	Description

	RunList
	Ordered list of rasterized ByteMaps representing pages or surfaces.

	ScreeningParams ?

Modified in JDF 1.1
	Parameters specifying which halftoning mechanism is to be applied and with what specific controls.

	TransferFunctionControl ?

Modified in JDF 1.1
	Specifies which calibration to apply.

Output Resources

	Name
	Description

	RunList
	Ordered list of rasterized ByteMaps representing pages or surfaces.

6.3.5 DBDocTemplateLayout

This process specifies the creation of a master document template that is used as an input resource for the DBTemplateMerging process. It is similar to the LayoutElementProduction process except that the output is a set of document templates. Document template are represented in JDF as LayoutElement resources with Template = true.

Input Resources

	Name
	Description

	LayoutElement *
	Page elements without links to a database.

	DBRules
	Description of the rules that should be applied to database records in order to generate graphic output.

	DBSchema
	Database schema that describe the structure of data in the database.

Output Resources

	Name
	Description

	LayoutElement *
	The document template is a LayoutElement with links to a database. These links are proprietary to the linking application and are not described in JDF. The Template attribute must be true.

6.3.6 DBTemplateMerging

Modified in JDF1.2
This process specifies the creation of personalized PDL instance documents by combining a document template and instance data records from a database. The resulting instance documents will generally be consumed by an Imposition, a RIP’ing, and ultimately by a DigitalPrinting process.

Input Resources

	Name
	Description

	DBMergeParams ?
Modified in JDF1.2
	Parameters of the merge process.

	DBSelection
	Instance database records to be merged into the document.

	LayoutElement *
	Document template page element with internal links to a database.

Output Resources

	Name
	Description

	RunList
	Page element without links to a database. This element usually contains a printable LayoutElement resource such as PPML, PDF or even plain ASCII.

6.3.7 FilmToPlateCopying

Deprecated in JDF 1.1

FilmToPlateCopying has been replaced by the more generic ContactCopying.
FilmToPlateCopying is the process of making an analog copy of a film onto a printing plate.

Input Resources

	Name
	Description

	DevelopingParams ?
	Controls the physical and chemical specifics of the media development process.

	ExposedMedia
	The film or films to be copied onto the plate.

	Media
	The unexposed plate.

	PlateCopyParams
	The settings of the exposure task.

Output Resources

	Name
	Description

	ExposedMedia
	The resulting exposed plate.

6.3.8 FormatConversion

Modified in JDF1.2
New in JDF 1.1

The FormatConversion process controls the conversion from one document type to another, for instance TIFF to BMP.

Input Resources

	Name
	Description

	FormatConversionParams ?
Modified in JDF1.2
	Set of parameters required to control the FormatConversion process.

	RunList
	List of documents and/or pages to be converted.

Output Resources

	Name
	Description

	RunList
	List of documents and pages that have been converted.

6.3.9 ImageReplacement

This process provides a mechanism for manipulating documents that contain referenced image data. It allows for the “fattening” of files that simply contain a reference to external data or contain a low resolution proxy. Additionally, the Image​Replacement​Params resource can be specified so that this process generates proxy images from referenced data. ImageReplacement is intentionally neutral of the conventions used to identify the externally referenced image data.

Input Resources

	Name
	Description

	Image​Compression​Params ?

New in JDF 1.1
	This resource provides a set of controls that determines how images will be compressed in the resulting “fat” PDF pages.

	Image​Replacement​Params
	Describes the controls selected for the manipulation of images.

	RunList
	List of page contents on which to perform the selected operation.

Output Resources

	Name
	Description

	RunList
	List of page contents with images that have been manipulated as indicated by the ImageReplacementParams resource.

6.3.10 ImageSetting

Modified in JDF 1.2
[ISSUE: Is this Description of proofing with ImageSettting OK?]
The image recording process is executed by an imagesetter or platesetter that images a bitmap onto the film or plate media.
The ImageSetting process may be used for hard or soft proofing. See section 4.3.5 Proofing and Verification).
Input Resources

	Name
	Description

	DevelopingParams ?

New in JDF 1.1
	Controls the physical and chemical specifics of the media development process.

	ImageSetterParams ?

Modified in JDF 1.1
	Controls the device specific features of the imagesetter.

	Media ?
Modified in JDF1.2
	The unexposed media.

	RunList
	Identifies the set of bitmaps to image. May contain bytemaps or images.

	TransferCurvePool ?

New in JDF 1.1
	Area coverage correction and coordinate transformations of the device.

Output Resources

	Name
	Description

	ExposedMedia
	The exposed media resource.

6.3.11 Imposition

Modified in JDF1.2
The Imposition process is responsible for combining several pages of input graphical content on to a single surface whose dimensions are reflective of the physical output media. Printer’s marks can be added to the surface in order to facilitate various aspects of the production process. Among other things, these marks are used for press alignment, color calibration, job identification, and as guides for cutting and folding.

Note that the Imposition process specifies the task of combining pages and marks on sheets. The task of setting up the parameters needed for Imposition, e.g., Layout, is defined either by LayoutPreparation or by the generic ResourceDefinition process.

There are two mechanisms provided for controlling the flow of page images onto Media. The default mechanism, which provides the functionality of Layout in PJTF, explicitly identifies all page content for each Sheet imaged and references these pages by means of the Documents and/or MarkDocuments array. Setting the Automated attribute of the Layout resource to true activates a template approach to printing and relies upon the full Documents hierarchy to specify the page content to image. Automated impositioning is equivalent to the PrintLayout functionality in PJTF.

In JDF, there is a single Layout resource definition. Its structure is broad enough to encompass the needs of both fully specified and template-driven imposition. When described fully, the Layout resources include an array of Signatures. Each Signature in turn specifies an array of Sheets, and each Sheet can have up to two Surfaces (Front and Back), on which the page images and any marks are to be placed using PlacedObjects. A Sheet that specifies no Surface content will be blank. Pages that are to be printed must be placed onto Surfaces using ContentObject subelements which explicitly identify the page (via the Ord attribute which specifies an index into the document RunList). Thus, the Layout hierarchy specifies explicitly which pages will be imaged.

When describing automated imposition, Layout resources specify a single Signature of Sheet(s) where page contents are imaged. The (virtual) sequence of pages which is to be imaged via automated layout is defined by the Document RunList. Pages are drawn in order from this sequence to satisfy the ContentObjects in the Surfaces for the Signature in the Layout, and the Signature is repeated until all pages of the sequence are consumed. Each time the Signature is repeated, pages are consumed in “chunks” whose size are determined by the value of MaxOrd + 1 (if present in the Layout), or by the largest Ord value or calculated OrdExpression value for any ContentObject in the Signature (if MaxOrd is absent).

Attributes of the Media are given for each Sheet used in printing. Because the same Signature is repeated until all pages are consumed, the Layout hierarchy can provide hints or preferences about special needs for sets of page content via InsertSheet elements. Inserting media is a way to separate sections of the document content. Thus alternate content is printed only as necessary to fill areas which would normally have page content because new media has been added or to designate where a document section will begin as specified by the odd or even position of the Signature.

In a JDF model, impositioning is defined separately from other processes, which may precede or follow it. A Combined node may combine Imposition with other processes (such as Separation or Interpreting) to describe a device that happens to perform both in a single execution module.

Input Resources

	Name
	Description

	Layout ?
Modified in JDF1.2
	A Layout resource that indicates how the content pages from the Document RunList and marks from the Marks RunList (see below) are combined onto imposed surfaces.

	RunList (Document)
	Structured list of incoming page contents which is transformed to produce the imposed surface images.

	RunList ? (Marks)
	Structured list of incoming marks. These are typically printer’s marks such as fold marks, cut marks, punch marks, or color bars.

Output Resources

	Name
	Description

	RunList
	Structured list of imposed surfaces. The Type of the LayoutElements must all be Surface. Typically the output RunList will be partitioned by PartIDKeys = “SheetName Side Separation”. If the Imposition process is executed before RIPping, this RunList will generally be consumed by an Interpreting process. In the case of post-RIP Imposition it will be consumed by DigitalPrinting or ImageSetting.

6.3.12 InkZoneCalculation

The InkZoneCalculation process takes place in order to preset the ink zones before printing. The Preview data are used to calculate a coverage profile that represents the ink distribution along and perpendicular to the ink zones within the printable area of the preview. The InkZoneProfile can be combined with additional, vendor-specific data in order to preset the ink zones and the oscillating rollers of an offset printing press.

Input Resources
	Name
	Description

	InkZoneCalculationParams
	Specific information about the printing press geometry(such as the number of zones) to calculate the InkZoneProfile.

	Layout ?

New in JDF 1.1
	Specific information about the Media (including type and color) and about the Sheet (placement coordinates on the printing cylinder).

	Preview
	A low resolution bitmap file representing the content to be printed.

	Sheet ?

Deprecated in JDF 1.1
	Specific information about the Media (including type and color) and about the Sheet (placement coordinates on the printing cylinder). Replaced by Layout in JDF 1.1.

	TransferCurvePool ?
	Function to apply ContactCopying, DigitalPrinting, and ConventionalPrinting process characteristics such as press, climate, and substrate under certain standardized circumstances. This function can be used to generate an accurate InkZoneProfile.

Output Resources

	Name
	Description

	InkZoneProfile
	Contains information about ink coverage along and perpendicular to the ink zones for a specific press geometry.

6.3.13 Interpreting

Modified in JDF1.2
The interpreting device consumes page descriptions and instructions for controlling the printing device. The parsing of graphical content in the page descriptions produces a canonical display list of the elements to be drawn on each page.

The interpreter may encounter, and must act upon, device control instructions that affect the physical functioning of the printing device, such as media selection and page delivery. Media selection determines which type of medium is used for printing and where that medium can be obtained. Page delivery controls the location, orientation, and quantity of physical output.

The interpreter is also responsible for resolving all system resource references. This includes handling font substitutions and dealing with resource aliases. However, the interpreter specifically does not get involved with any functions of the device that could be considered finishing features, such as stapling, duplexing, and collating.

Input Resources

	Name
	Description

	ColorantControl ?

Modified in JDF 1.1
	Identifies the color model used by the job.

	FontPolicy ?
	Describes the behavior of the font machinery in absence of requested fonts.

	InterpretingParams ?
Modified in JDF1.2
	Provides the parameters needed to interpret the PDL pages specified in the RunList resource.

	PDLResourceAlias *
	These resources allow a JDF to reference resources which are defined in a Page Description Language (PDL). For example, a PDLResourceAlias resource could refer to a font embedded in a PostScript file.

	RunList
	This resource identifies a set of PDL pages or surfaces which will be interpreted.

Output Resources

	Name
	Description

	InterpretedPDLData
	Pipe of streamed data which represents the results of Interpreting the pages in the RunList. The format and detail of these data is implementation specific. In particular, it is assumed that the Interpreting and Rendering processes are tightly coupled and that there is no value in attempting to develop a general specification for the format of this data.

6.3.14 LayoutElementProduction

This process describes the creation of page elements. It also explains how to create a layout that can put together all of the necessary page elements, including text, bitmap images, vector graphics, PDL, or application files such as Adobe InDesign®, Adobe PageMaker®, and Quark XPress®. The elements might be produced using any of a number of various software tools. This process is often performed several times in a row before the final LayoutElement, representing a final layout file, is produced.

Input Resources
	Name
	Description

	LayoutElement *
	URL of the PDL or application file, bitmap image file, text file, vector graphics file, etc. Additional information (e.g., the page number or X, Y-coordinates) might be stored in the Comment element of the LayoutElement resource. Customer information such as the file templates, manuscripts, and sketches are handled via URL.

Output Resources

	Name
	Description

	LayoutElement ?
	A URL of the PDL or application file is produced by this process if no RunList is produced. Additional information, e.g., page number or X, Y-coordinates, might be stored in the Comment of the LayoutElement.

	RunList ?
	A RunList of LayoutElement resources of ElementType Page or Document is produced if this LayoutElementProduction task is the last process of type LayoutElementProduction.

6.3.15 LayoutPreparation

Modified in JDF1.2
New in JDF 1.1
The LayoutPreparation process specifies the process of defining the Layout resource for the Imposition process. Note that it is possible to create a Combined process that includes both LayoutPreparation and Imposition. In this case, the Layout and RunList (Marks) resource would not be explicitly defined, since they are exchange resources between the two processes.

Input Resources

	Name
	Description

	LayoutPreparation​Params ?
Modified in JDF1.2
	Set of parameters required to control the LayoutPreparation process.

	RunList (Document)
	List of documents and/or pages that will be input into the layout. Note that this Runlist is for information only and not modified by the LayoutPreparation process.

	RunList ? (Marks)
	List of marks that will be input into the layout. These are typically printer’s marks such as fold marks, cut marks, punch marks, or color bars.

Output Resources

	Name
	Description

	Layout
	The layout of the document to be imposed.

	RunList (Marks) ?
	List of marks that may be used as input of the following Imposition process.

	TransferCurvePool ?
	Definition of the transfer curves and coordinate systems of the devices.

6.3.16 PDFToPSConversion

Modified in JDF1.2
The PDFToPSConversion process controls the generation of PostScript from a single PDF document. This process may be used at any time in a host-based PDF workflow to exit to PostScript for use of tools that consume such data. Additionally, it may be used to actively control the physical printing of data to a device that consumes PostScript data. The JDF model of this may include a PDFToPSConversion process in a Combined node with a PSToPDFConversion process.
Input Resources

	Name
	Description

	PDFToPSConversion​Params ?
Modified in JDF 1.2
	Set of parameters required to control the generation of PostScript.

	RunList
	List of documents and pages to be converted to PostScript.

Output Resources

	Name
	Description

	RunList
	Stream or streams of resulting PostScript code. This PostScript code may end up physically stored in a file or be piped to another process. The GeneratePageStreams attribute of the PDFToPSConversionParams resource determines whether there is a single stream generated for all pages in the RunList or whether each page is generated in to a separate consecutive stream.

6.3.17 Preflight

Preflighting is the process of examining the components of a print job to ensure that the job will print successfully and with the expected results. Preflight checks may be performed on each PDL document identified within the associated RunList resource.

Preflighting a file is generally a three-step process. First, the pages are inventoried against a preflight profile, detailing the expected or hoped-for results. The resulting inventory identifies the significant characteristics of all the pages in the job. Next, the characteristics are tested against a set of criteria specified by a series of preflight constraint resources. Finally, results and discrepancies are reported in a PreflightAnalysis hierarchy log as analysis.

Agents record the instructions for, and devices record the results of, preflight operations in JDF jobs, using hierarchies headed by three types of resources: Inventory, Profile, and Results. The Inventory hierarchy may be used to record all the information gathered in the first step, although devices need not record this information. The Profile hierarchy is used to record the criteria used to test the file in the second step. And the Results hierarchy is used to record the results of the tests. In all three hierarchies, information is grouped into categories. There are six predefined categories in JDF—Colors, Document, Fonts, FileType, Images and Pages, but applications may define other categories if needed.

In a profile hierarchy, each category is populated with PreflightConstraint elements. Each PreflightConstraint element specifies a test that the application will perform when analyzing the file. In the Inventory and Results hierarchies, each category is populated with two kinds of subelements that record information about specific characteristics of the file: PreflightInstance and PreflightDetail. Such information is recorded in the following two ways:

1. Information that is specific to one instance of some file object is recorded via PreflightInstance subelements that occur in each of the results pools such as FontResultsPool and ImageResultsPool). Within each PreflightInstance element, PreflightInstanceDetail subelements provide detailed information about that instance. For example, to record information about each font used in the file, the FontResultsPool contains one PreflightInstance subelement, which groups a set of PreflightInstanceDetail subelements. Each of these subelements records one specific characteristic of the font.

2. Information that applies to the file as a whole is recorded via PreflightDetail subelements, which occur in the various results pools. For example, to record all the page sizes used in the file, the PagesResultsPool would contain several PreflightDetail subelements, one for each page size used in the file.

An Inventory hierarchy may be used to record all information about a file. Preflight tools are not required to create an Inventory hierarchy as part of the preflight information they record. However, tools may find it useful to record this information, allowing them to avoid reparsing the entire file in order to perform a new Analysis.

Profile hierarchies specify the constraints against which the file is tested. Each Analysis hierarchy reflects the results of evaluating the file characteristics, which may be recorded in an Inventory hierarchy, against a set of tests recorded in a Profile hierarchy.

PreflightConstraint elements record the specific details for the constraints specified in the PreflightProfile resource. PreflightDetail and PreflightInstanceDetail elements record results, while PreflightInstance elements group PreflightInstanceDetail subelements for instances of file objects. The details recorded are PDL-specific.

Applications can define constraints within any of the defined constraint categories for any file type. In addition, applications may add to the set of defined constraints and constraint categories, defining both the new category and the constraint within the category.

Whether constraints are specified for predefined or new constraint categories, the eventual values for those constraints are always expressed as PreflightConstraint elements which are part of a PreflightProfile. Furthermore, the results are always expressed as either PreflightDetail elements or PreflightInstance elements, which group PreflightInstanceDetail subelements for Analysis results.

Note that the resources for Preflight are under development and subject to major changes in a future release of this specification.

Input Resources

	Name
	Description

	PreflightInventory ?
	Provides an exhaustive list of all items already resolved in a previous preflight.

	PreflightProfile
	A specified list of constraints against which pages may be tested.

	RunList
	The list of pages to be preflighted.

Output Resources

	Name
	Description

	PreflightAnalysis ?
	Describes the results of a preflight operation. Provides analytical information for the constraints against which the file was tested.

	PreflightInventory ?
	Provides an exhaustive list of all items considered in preflight.

	RunList ?
	A list of pages that may or may not have been modified as a result of a fix-up operation.

6.3.18 PreviewGeneration

The PreviewGeneration process produces a low resolution Preview of each separation that will be printed. The Preview can be used in later processes such as InkZoneCalculation. The PreviewGeneration process typically takes place after Imposition or RIPping.

The PreviewGeneration can be performed in one of the following two ways: 1.) the imaged printing plate is scanned by a conventional plate scanner or 2.) medium to high resolution digital data are used to generate the Preview for the separation(s). The extent of the PDL coordinate system (as specified by the MediaBox attribute, the resolution of the preview image, and width and height of the image) must fulfill the following requirements:

MediaBox length / 72 * x-resolution = width (1
MediaBox height / 72 * y-resolution = height (1

A gray value of 0 represents full ink, while a value of 255 represents no ink (see the DeviceGray color model in chapter 4.8.2. of the PostScript Language Reference Manual).

Rules for the Generation of the Preview Image

To be useful for the ink consumption calculation, the preview data must be generated with an appropriate resolution. This means not only spatial resolution, but also color or tonal resolution. Spatial resolution is important for thin lines, while tonal resolution becomes important with large areas filled with a certain tonal value. The maximum error caused by limited spatial and tonal resolution should be less than 1 %.

Spatial Resolution

Since some pixel of the preview image might fall on the border between two zones, their tonal values must be split up. In a worst case scenario, the pixels fall just in the middle between a totally white and a totally black zone. In this case, the tonal value is 50%, but only 25% contributes to the black zone. With the resolution of the preview image and the zone width as variables, the maximum error can be calculated using the following equation:

[image: image62.wmf]]

[

_

*

]

/

[

*

4

100

mm

width

zone

mm

L

resolution

[%]=

error

For zone width broader than 25 mm, a resolution of 2 lines per mm will always result in an error less than 0.5 %. Therefore, a resolution of 2 lines per mm (equal to 50.8 dpi) is suggested.

[image: image63.wmf]Zone 2

Zone 1

Border between zones

Overlapping pixel

Figure 6.1 Worst case scenario for area coverage calculation

Tonal Resolution

The kind of error caused by color quantization depends on the number of shades available. If the real tonal value is rounded to the closest (lower or higher) available shade, the error can be calculated using the following equation:

[image: image64.wmf]shades

of

number

[%]=

error

_

_

*

2

100

Therefore, at least 64 shades should be used.

Line Art Resolution

When rasterizing line art elements, the minimal line width is 1 pixel, which means 1/resolution. Therefore, the relationship between the printing resolution and the (spatial) resolution of the preview image is important for these kind of elements. In addition, a specific characteristic of PostScript RIPs adds another error: within PostScript, each pixel that is touched by a line is set. Tests with different PostScript jobs have shown that a line art resolution of more than 300 dpi is normally sufficient for ink-consumption calculation.

Conclusion

There are quite a few different ways to meet the requirements listed above. The following list includes several examples:

· The job can be Ripped with 406.4 dpi monochrome.

· With anti-aliasing, the image data can be filtered down by a factor of 8 in both directions. This results in an image of 50.8 dpi with 65 color shades.

· High resolution data can also be filtered using anti-aliasing. First, the Ripped data, at 2540 dpi monochrome, is taken and filtered down by a factor of 50 in both directions. This produces an image of 50.8 dpi with 2501 color shades. Finally those shades are mapped to 256 shades, without affecting the spatial resolution.

Rasterizing a job with 50.8 dpi and 256 shades of gray is not sufficient. The problem in this case is the rendering of thin lines (see Line Art Resolution).

Recommendations for Implementation

The following three guidelines are strongly recommended:

· The resolution of RIPped line art must be at least 300 dpi.

· The spatial resolution of the preview image must be approximately 20 pixel/cm (= 50.8 dpi).

· The tonal resolution of the preview image must be at least 64 shades.

Input Resources
	Name
	Description

	ColorantControl ?

New in JDF 1.1
	The ColorantControl resources that define the ordering and usage of inks in print modules. Needed for generating thumbnails.

	ExposedMedia ?
	The PreviewGeneration process can use an exposed printing plate to produce a Preview resource. This task is performed using an analog plate-scanner. Only one of ExposedMedia, Preview, or RunList may be specified in any PreviewGeneration process.

	Preview ?

New in JDF 1.1
	Medium or low resolution bitmap file that can be used for calculation of overviews and thumbnails. Only one of ExposedMedia, Preview, or RunList may be specified in any PreviewGeneration process.

	PreviewGeneration​Params
	Parameters specifying the size and the type of the preview.

	RunList ?
	High resolution bitmap data is consumed by the PreviewGeneration process. These data represent the content of a separation that is recorded on a printing plate or other such item. Only one of ExposedMedia, Preview, or RunList may be specified in any PreviewGeneration process.

	TransferCurvePool?

New in JDF 1.1
	Area coverage correction and coordinate transformations of the device.

Output Resources

	Name
	Description

	Preview
	The Preview data are comprised of low resolution bitmap files representing, for example, the content of a separation that is recorded on a printing plate or other such item.

6.3.19 Proofing

Deprecated in JDF 1.2

[Deprecated in JDF 1.2, ISSUE: Is this description of hard proofing OK?]
The Proofing process results in the creation of a physical proof, represented by an ExposedMedia resource. Proofs can be used to check an imposition or the expected colors for a job. The inputs of this process are a RunList, which identifies the pages to proof; the ProofingParams resource, which describes the type of proof to be created; and a Media resource to describe the physical media that will be used.
The Proofing process is DEPRECATED in JDF/1.2. Instead, use a combined process to produces the hard proof, e.g., one that includes the ImageSetting, ConventionalPrinting, or DigitalPrinting process. Then input the hard proof to a separate Approval process.
Input Resources

	Name
	Description

	ColorantControl ?

Modified in JDF1.1A
	Identifies the color model used by the job.

	ColorSpaceConversionParams ?
	This resource provides information needed to convert colorspaces in the pages for proofing. Generally present if a color proof is desired, unless the pages in the RunList have already been operated on by a previous colorspace conversion process.

	Layout ?
	Required if an imposition proof is desired.

	Media
	This resource characterizes the output media for the proof.

	ProofingParams
	This resource provides the parameters needed to produce the desired proof.

	RunList (Document)
	Identifies the pages to be proofed. When the Layout resource is present in the ProofingParams resource, Ord values from ContentObject subelements refer to pages in this RunList.

	RunList ? (Marks)
	Structured list of incoming marks. These are typically printers marks, e.g., fold, cut or punch marks, or color bars.

When the Layout resource is present in the ProofingParams resource, Ord values from MarkObject subelements refer to pages in this RunList.

Output Resources

	Name
	Description

	ExposedMedia
	The resulting physical proof.

6.3.20 PSToPDFConversion

This section defines the controls required to invoke a device that accepts a PostScript stream and produces a set of PDF pages as output.

Input Resources

	Name
	Description

	FontParams ?
	These parameters determine how the conversion process will handle font errors encountered in the PostScript stream.

	Image​Compression​Params ?
	This resource provides a set of controls that determines how images will be compressed in the resulting PDF pages.

	PSToPDFConversionParams ?
	These parameters control the operation of the process that interprets the PostScript stream and produces the resulting PDF pages.

	RunList
	This resource specifies where the PostScript stream is to be found.

Output Resources

	Name
	Description

	RunList
	This resource identifies the location of the resulting PDF pages.

6.3.21 Rendering

Modified in JDF1.2
The Rendering process consumes the display list of graphical elements generated by an interpreter. It color manages and scans/converts the graphical elements according to the geometric and graphic state information contained within the display list. The controls governing the external rendering processes provide overrides and additional parameters for controlling the behavior of the process.

Input Resources

	Name
	Description

	Media
Deprecated in JDF 1.1
	This resource provides a description of the physical media which will be marked. The physical characteristics of the media may affect decisions made during Rendering.

	InterpretedPDLData ?
Modified in JDF1.2
	Pipe of streamed data that represents the results of Interpreting the pages in the RunList. The format and detail of these data is implementation specific. In particular, it is assumed that the Interpreting and Rendering processes are tightly coupled and that there is no value in attempting to develop a general specification for the format of this data.

	RenderingParams ?
	This resource describes the format of the ByteMaps to be created and other specifics of the Rendering process.

Output Resources

	Name
	Description

	RunList
	Ordered list of rasterized ByteMaps representing pages

6.3.22 RIP’ing

RIP’ing is, in the context of a workflow, a Combined process that is an amalgamation of at least two processes. Most often it includes Interpreting and Rendering, but it may also include SoftProofing, Trapping, Separation, Imposition, and Screening. Thus a typical RIP node is of Type Combined, as shown in the following example:

<JDF Type="Combined" Types="Interpreting Rendering Screening" … />

The RIPping process consumes page descriptions and instructions for producing the graphical output. It parses the graphical contents in the page descriptions, renders the contents, and produces a rasterized image of the page. This raster may contain contone data and be represented upon output as a ByteMap. Alternatively, the RIPping process may also perform halftone screening, in which case the output is in the form of a bitmap. It is also responsible for resolving all system resource references that include font handling and resource aliasing.

Instructions read by the RIP include information about the media, halftoning, color transformations, colorant controls and other items that affect that rasterized output. They do not, however, represent any specific controls for the physical output device, nor do they deal with any instructions intended for the finishing device.

When a RIPping process is comprised of only the Interpreting and Rendering processes, various intermediary steps are required before the output can be run through a ConventionalPrinting process. In theory, however, a workflow could include no intermediary steps between a RIPping process and a DigitalPrinting process. The following workflow scenarios represent possible process chains in each circumstance:

· RIP(Screening(ImageSetting(ContactCopying(ConventionalPrinting

· RIP((Screening)(DigitalPrinting

Since RIP’ing never stands alone as a process, see the processes that contribute to the RIP for input and output resources.

6.3.23 Scanning

The Scanning process creates bitmaps from analog images using a scanner.

Input Resources

	Name
	Description

	ExposedMedia
	Description of the media to be scanned. The ExposedMedia should be partitioned by RunIndex, in order to provide unique mapping from ExposedMedia to the output RunList.

	ScanParams
	High level scanner settings. These settings are specifically not intended as a replacement for low-level device interfaces such as TWAIN.

Output Resources

	Name
	Description

	RunList
	List of ByteMap resources or LayoutElement resources of Type = Image.

6.3.24 Screening

Modified in JDF 1.2

This process specifies the process of halftone screening. It consumes contone raster data, e.g., the output from an interpreting and rendering process. It produces monochrome which has been filtered through a halftone screen to identify which pixels are required to approximate the original shades of color in the document.

This process definition includes capabilities for post-RIP halftoning according to the PostScript definitions. Alternatively it allows for the selection of FM screening/error diffusion techniques. However, in these circumstances no specific parameter sets are defined. In general, an actual screening process will be a Combined process of Calibration and Screening.

Input Resources

	Name
	Description

	RunList
	Ordered list of rasterized ByteMaps representing pages or surfaces.

	ScreeningParams ?
Modified in JDF 1.2
	Parameters specifying which halftone mechanism is to be applied and with what specific controls.

Output Resources

	Name
	Description

	RunList
	Ordered list of rasterized and screened output pages. Assumes that the resolution remains the same and that resulting data is one bit per component. Furthermore, the organization of planes within the data does not change.

6.3.25 Separation

Modified in JDF1.2
The Separation process specifies the controls associated with the generation of color-separated data. It is designed to be flexible enough to allow a variety of possible methods for accomplishing this task. First of all, it sponsors host-based PDF separating operations, in which a RunList of preseparated PDF data is generated. It can also be combined with a RIP to allow control of In-RIP separations. In this scenario a RunList containing ByteMaps is generated as the output. Yet another anticipated combination is with the ColorCorrection process to deal with incoming device-dependent data. And finally, it may be combined with an ImageReplacement process in order to do image substitution for omitted or proxy images.

Input Resources

	Name
	Description

	ColorantControl ?

Modified in JDF1.1A
	Identifies which colorants in the job are to be output.

	RunList
	List of pages that are to be operated on.

	SeparationControlParams ?
Modified in JDF1.2
	Controls for the separation process.

Output Resources

	Name
	Description

	RunList
	List of separated pages or separated raster bytemaps.

6.3.26 SoftProofing

Deprecated in JDF 1.2
[Deprecated in JDF 1.2, ISSUE: Is this description of softproofing OK?]
SoftProofing is the process of reviewing final-form output on a monitor rather than in paper form. The inputs are a RunList, which identifies the pages to proof; the ProofingParams resource, which describes the type of proof to be created.

Within the ProofingParams resource, the proof device parameter specifies the characterization the monitor on which the proof will be viewed. This processor must create and perform a transformation from the final target device to the proof device colors before displaying the document contents.

The soft proofing parameters allow sufficient control to determine whether any images are displayed in the proof. If so, the ability to select low resolution proxies or full resolution images is provided. The mechanism for approving proofs requires the generation of a PDF file containing the proofing parameters and a digital signature noting the acceptance of them. The approval PDF file need not contain any graphical data.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of ICC profiles. While the assumed characterization of input data can take many forms, each can internally be represented as an ICC Profile. In order to perform the transformations, input profiles must be paired with the identified final target device profile to create the transformation.
The SoftProofing process is DEPRECATED in JDF/1.2. Instead, use a combined process to produce the soft proof in which the last process is the Approval process that approves the soft proof.
Input Resources

	Name
	Description

	ColorantControl ?

Modified in JDF1.1A
	Identifies the color model used by the job.

	ColorSpaceConversionParams ?
	This resource provides information needed to convert colorspaces in the pages for proofing. Generally present if a color proof is desired, unless the pages in the RunList have already been operated on by a previous colorspace conversion process.

	Layout ?
	Required if an imposition proof is desired.

	ProofingParams
	Provides the parameters needed to produce the desired proof.

	RunList (Document)
	Identifies the pages to be proofed. When the Layout resource is present in the ProofingParams resource, Ord values from ContentObject subelements refer to pages in this RunList.

	RunList ? (Marks)
	Structured list of incoming marks. These are typically printer’s marks, e.g., fold marks, cut marks, punch marks, or color bars.

When the Layout resource is present in the ProofingParams resource, Ord values from MarkObject subelements refer to pages in this RunList.

Output Resources

None. The SoftProofing process is always combined with an Approval process.

6.3.27 Tiling

The Tiling process allows the contents of Surfaces to be imaged onto separate pieces of media. Note that many different workflows are possible. Tiling must always follow Imposition, but it can operate on imposed PDL page contents or on contone or halftone data. Tiling will generally be combined with other processes. For example, Tiling might be combined with ImageSetting. In that case, the input would be a RunList that contains ByteMaps for each Surface.

Input Resources

	Name
	Description

	RunList (Surface)
	Structured list of imposed page contents or ByteMaps that are to be decomposed to produce the images for each tile. The Type value of LayoutElement resources must all be Surface.

	RunList ? (Marks)
	Structured list of incoming marks. These are typically printer’s marks that provide the information needed to combine the tiles.

	Tile
	A partitioned Tile resource that describes how the Surface contents are to be decomposed.

Output Resources

	Name
	Description

	RunList
	Structured list of portions of the decomposed surfaces. The value of the Type attribute of the LayoutElement resources must be Tile.

6.3.28 Trapping

Modified in JDF1.2
Trapping is a prepress process that modifies PDL files to compensate for a type of error that occurs on presses. Specifically, when more than one colorant is applied to a piece of media using more than one inking station, the media may not stay in perfect alignment when moving between inking stations. Any misalignment will result in an error called misregistration. The visual effect of this error is either that inks are erroneously layered on top of one another, or, more seriously, that gaps occur between inks that should abut. In this second case, the color of the media is revealed in the gap and is frequently quite noticeable. Trapping, in short, is the process of modifying PDL files so that abutting colorant edges intentionally overlap slightly, in order to reduce the risk of gaps.

The Trapping process specifies that a set of document pages should be modified to reduce or (ideally) eliminate visible misregistration errors in the final printed output. The process may be combined with RIPping or specified as a stand-alone process.

Input Resources

	Name
	Description

	ColorantControl ?

Modified in JDF1.1A
	Identifies color model used by the job.

	FontPolicy ?

New in JDF 1.1
	Describes the behavior of the font machinery in absence of requested fonts.

	RunList
	Structured list of incoming page contents that are to be trapped.

	TrappingDetails ?
Modified in JDF1.2
	Describes the general setting needed to perform trapping.

Output Resources

	Name
	Description

	RunList
	Structured list of the modified page contents after Trapping has been executed.

6.4 Press Processes

Press processes are various technological procedures involving the transfer of ink to a substrate. From a technical standpoint they are often classified in impact and non-impact printing technologies. The impact printing class can be further subdivided into relief, intaglio, planograph, or screen technologies, which in turn can be divided in further subparts. Because of the way a workflow is constructed in JDF, however, a different approach to classification was used. All of the various printing technologies are gathered into three categories: 1.) ConventionalPrinting, which involves printing from a physical master, 2.) DigitalPrinting, which involves generic commercial printing from a digital master. A third process, 3.) IDPrinting, which stands for integrated digital printing and involves simple digital printing as specified in the IPP protocol was defined in JDF 1.0 but is deprecated in JDF 1.1. A Combined process including DigitalPrinting should be implemented instead.

The most prominent physical, planographic printing technologies are offset lithography and electrophotography. They are also the printing processes with the highest adoption in today’s graphic arts industry. Consequently, the ConventionalPrinting process in JDF takes them as models. That does not mean, however, that other printing techniques can not make use of the ConventionalPrinting process and its resources. The extensibility features of JDF may be used to fill other requirements related to printing technology.

6.4.1 ConventionalPrinting

Clarified in JDF1.2
[Clarified that Proof Component may be from a DigitalPrinting process. ISSUE: Is this description of proofing with ConventionalPrinting OK?]
This process covers several conventional printing tasks, including sheetfed printing, web printing, web/ribbon coating, converting, and varnishing. Typically, each takes place after prepress and before postpress processes. Press machinery often includes postpress processes, e.g., Folding, Numbering, and Cutting, as in-line finishing operations. The ConventionalPrinting process itself does not cover these postpress tasks. Using a conventional printing press for producing a pressproof can be performed in the following two ways:

· A proof of type Component is produced with a ConventionalPrinting process. The result of this process is then sent to the Approval process, which in turn produces an ApprovalSuccess resource. That resource is then passed on to a second ConventionalPrinting process, which requires that the press be set up a second time.

· The DirectProof attribute of the ConventionalPrintingParams can be used to specify the proof if it is produced during the ConventionalPrinting process. In this case, the press need only be set up once.

The ConventionalPrinting process may be used for hard or soft proofing. See section 4.3.5 Proofing and Verification).
Note, the definition and ordering of separations is specified by the DeviceColorantOrder attribute of the appropriate ColorantControl resource.

Input Resources

	Name
	Description

	ColorantControl ?
	The ColorantControl resources that define the ordering and usage of inks in print modules.

	Component ? (Input)
	Various components in the form of preprints can be used in ConventionalPrinting in lieu of Media. Examples include waste or a set of preprinted sheets.

	Component ? (Proof)
Clarified in JDF1.2
	A Proof component is used if a proof was produced during an earlier ConventionalPrinting process or DigitalPrinting process (see description in Section 6.4.2).

	Conventional​Printing​Params
	Specific parameters to set up the press.

	ExposedMedia ? (Proof)
	A Proof is used to compare color and content during ConventionalPrinting. This Proof is produced by a prepress proofing device.

	ExposedMedia (Plate)
	The printing plate and information about it (such as Thickness and RegisterPunch) is used to set up the press.

	Ink ?

Modified in JDF 1.1
	Information (brand, type, clone) about the ink is useful to set up the press.

	InkZoneProfile ?
	The InkZoneProfile contains information about how much ink is needed along the printing cylinder of a specific printing press. It is only useful for Offset Lithography presses with ink key adjustment functions.

	Layout ?

New in JDF 1.1
	Sheet and Surface elements from the Layout tree such as CIELABMeasuringField, DensityMeasuringField, or ColorControlStrip can be used for quality control at the press. The quality control field value and position can be of interest for automatic quality control systems. RegisterMark can be used to line up the printing plates for the press run, and its position can in turn be used to position items such as a camera.

	Media ?
	The physical substrate, e.g., paper or foil, and information about the Media, e.g., such as thickness, type, and size, are useful in setting up paper travel in the press. This resource must be present if no preprinted Component (Input) resource is used.

	Sheet ?

Deprecated in JDF 1.1
	Specific information about the Media (including type and color) and about the Sheet (placement coordinates on the printing cylinder). Replaced by Layout in JDF 1.1.

	TransferCurvePool?

New in JDF 1.1
	Area coverage correction and coordinate transformations of the device.

Output Resources

	Name
	Description

	Component (Good)
	Describes the printed sheets or ribbons which may be used by another printing process or postpress processes. Note that the Amount attribute of the ResourceLink to this resource indicates the number of copies of the entire job which will be produced.

	Component ? (Waste)
	Produced waste of printed sheets or ribbons.

6.4.2 DigitalPrinting

Modified in JDF 1.2
[added 4 more example processes that may be combined with DigitalPrinting: Approval, ColorCorrection, ColorSpaceConversion, and ImageReplacement, Clarified that Proof Component may be from a ConventionalPrinting process. 1 ISSUE, ISSUE: Is this description of proofing with DigitalPrinting OK?]
DigitalPrinting is a direct printing process that, like ConventionalPrinting, occurs after prepress processes but before postpress processes. In DigitalPrinting, the data to be printed are not stored on an extra medium (such as a printing plate or a printing foil), but instead are stored digitally. The printed image is generated for every output using the digital data. Electrophotography, inkjet, and other technologies are used for transferring ink (both liquid ink and dry toner) onto the substrate. Furthermore, both sheet and web presses can be used as machinery for DigitalPrinting.

DigitalPrinting is often used to image a small area on preprinted Components to perform actions such as addressing or numbering another Component. This kind of process can be executed by imaging with an inkjet printer during press, postpress, or packaging operations. Therefore, DigitalPrinting is not only a press or prepress operation but sometimes also a postpress process.

Digital printing devices which provide some degree of finishing capabilities, such as collating and stapling, as well as some automated layout capabilities, such as N-up and duplex printing may be modeled as a combined process which includes DigitalPrinting. Such a combined process may also include other processes, e.g., Approval, ColorCorrection, ColorSpaceConversion, ContoneCalibration, Cutting, Folding, HoleMaking, ImageReplacement, Imposition, Interpreting, LayoutPreparation, Perforating, Rendering, Screening, Stacking, Stitching, Trapping, or Trimming.
The DigitalPrinting process may be used for hard or soft proofing. See section 4.3.5 Proofing and Verification).
Controls for DigitalPrinting are provided in the DigitalPrintingParams resource. The set of input resources of a combined process which includes DigitalPrinting may be used to represent an Internet Printing Protocol (IPP) job or a PPML job. See Application Notes for IPP and Variable Data printing.

Note: Putting a label on a product or DropItem is not DigitalPrinting but Inserting.

Input Resources
	Name
	Description

	ColorantControl ?
	The ColorantControl resources that define the ordering and usage of inks in print modules.

	Component * (Input)
	Various components can be used in DigitalPrinting instead of Media. Examples include preprinted covers, waste, precut Media, or a set of preprinted sheets or webs. If multiple Component * (Input) resources are linked to one process, the mapping of media to content is defined in the partitions of DigitalPrintingParams.

	Component ? (Proof)
Clarified in JDF1.2
	A Proof component is used if a proof was produced during an earlier ConventionalPrinting process (see description in Section 6.4.1) or DigitalPrinting process.

	DigitalPrintingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	ExposedMedia ?
	A Proof is useful for comparisons (completeness, color accuracy) with the print out of the DigitalPrinting process.

	Ink ?
	Ink or toner and information that is needed for DigitalPrinting.

	Layout ?

New in JDF 1.1
	Sheet and Surface elements from a Layout such as the CIELABMeasuringField, DensityMeasuringField, or ColorControlStrip can be used for quality control at the press. The value and position of the quality can be of interest for automatic quality control systems. RegisterMarks can be used to line up the printing registration during press run, and its position can in turn be used to position an item such as a camera.

	Media *
	The physical Media and information about the Media, such as thickness, type, and size, is used to set up paper travel in the press. This has to be present if no preprinted Component (input) resource is present. Unprinted Media used for covers are also defined as Media.

Note: Printing a job on more than one web or sheet at the same time is parallel processing.

	RunList
	Rendered data in ByteMaps that will be printed on the digital press is needed for DigitalPrinting. The RunList contains only ByteMaps.

	Sheet ?

Deprecated in JDF 1.1
	Specific information about the Media (including type and color) and about the Sheet (placement coordinates on the printing cylinder). Replaced by Layout in JDF 1.1.

	TransferCurvePool?

New in JDF 1.1
	Area coverage correction and coordinate transformations of the device.

Output Resources

	Name
	Description

	Component (Good)
	Components are produced for other printing processes or postpress processes. Note that the Amount attribute of the ResourceLink to this resource indicates the number of copies of the entire job which will be produced.

	Component ? (Waste)
	Produced waste, may be used by other processes.

6.4.3 IDPrinting

Deprecated in JDF 1.1

[Deprecated in JDF 1.1, ACTION (Jim)]
IDPrinting, which stands for Integrated Digital Printing, is a specific form of digital printing. It combines functionality that might be represented by the Interpreting, Rendering, Screening, and DigitalPrinting processes in a single process. In addition, devices which support IDPrinting frequently provide some degree of finishing capabilities, such as collating and stapling, as well as some automated layout capabilities, such as N-up and duplex printing.

Controls for IDPrinting are provided in the IDPrintingParams resource. These controls are intended to be somewhat limited in their scope. If greater control over various aspects of the printing process is required, IDPrinting should not be used. Ultimately, the controls specified for IDPrinting can be used to generate an Internet Printing Protocol (IPP) job. See JDF/1.0 Appendix F for a mapping between JDF IDPrinting and IPP. IDPrinting may be combined with other processes, such as Trapping or ColorSpaceConversion.
The IDPrinting process was DEPRECATED in JDF/1.1. Instead, implementations should use the DigitalPrinting process combined with other processes, thus improving interoperability by reducing one of the combinations of processes. Also the IDPrinting process defined a number of resources and subelements which are DEPRECATED since they duplicate other resources. ACTION (Jim): Move Deprecated processes and resources into an Appendix in this document (but indicate that they are still conforming to use).
Input Resources
	Name
	Description

	ColorantControl ?
	The ColorantControl resources that define the ordering and usage of inks in print modules.

	Component ? (Cover)
	A finished cover may be combined with the pages that will be output by this process.

	Component ? (Input)
	Various components can be used in IDPrinting instead of Media. Examples include waste, precut Media, or a set of preprinted sheets or webs.

	Component ? (Proof)
	A Proof component is used if a proof was produced during an earlier ConventionalPrinting process.

	ExposedMedia ?
	A Proof is useful for comparisons (completeness, color accuracy) with the print out of the IDPrinting process.

	FontPolicy ?
	Describes the behavior of the font machinery in absence of requested fonts.

	Ink ?
	Ink or toner and information about it is needed for IDPrinting.

	InterpretingParams *
	A set of resources that specify how the device should interpret the PDL files which are referenced by the RunList for the process. Note that InterpretingParams is an abstract resource. Instances are PDL-specific.

	IDPrintingParams ?
	Specific parameters to set up the machinery.

	Media ?
	The physical Media and information about the Media, such as thickness, type, and size, are used to set up paper travel in the press. This has to be present if no preprinted Component (input) resource is present.

Note: Printing a job on more than one web or sheet at the same time is parallel processing.

	RenderingParams ?
	This resource describes the format of the ByteMaps to be created.

	RunList
	The set of pages to be printed.

	ScreeningParams ?
	Parameters specifying which halftone mechanism is to be applied and with what specific controls.

	TransferFunctionControl ?
	Controls whether the device performs transfer functions and what values are used when doing so.

Output Resources

	Name
	Description

	Component (Good)
	Components are produced for other printing processes or postpress processes. Note that the Amount attribute of the ResourceLink to this resource indicates the number of copies which will be produced.

	Component ? (Waste)
	Produced waste, may be used by other processes.

6.5 Postpress Processes

In this specification, the postpress processes are presented in two parts: an alphabetical list of processes that is then followed by a Postpress Processes Structure section that divides these processes into subchapters for structuring purposes. This structuring is useful to find specific processes. Please note that processes, in some cases can be used to describe operations that go beyond the scope of a specific chapter. Therefore, it is a good idea not only to look at certain processes within a subchapter but also to find out what functionality other processes offer if a specific task needs to be addressed.

6.5.1 AdhesiveBinding

Deprecated in JDF 1.1

The AdhesiveBinding has been split into the following individual processes:

· CoverApplication,

· Gluing

· SpinePreparation,

· SpineTaping.

Note that the parameters of the GlueApplication ABOperations have been moved into CoverApplicationParams and SpineTapingParams as GlueApplication refelements. The generic GlueApplication ABOperation is now described by the Gluing process.

6.5.2 BlockPreparation

New in JDF 1.1

Modified in JDF1.2
As there are many options for a hardcover book, the block preparation is more complex than what has already been described for other types of binding above. Those options are the ribbon band (numbers of bands, materials and colors), gauze (material and glue), headband (material and colors), kraft paper (material and glue), and tightbacking (different geometry and measurements).

Input Resources
	Name
	Description

	Component
	The BlockPreparation process consumes one Component and creates a book block.

	Block​Preparation​Params ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the prepared book block. Its ProductType = “BookBlock”

6.5.3 BoxPacking

New in JDF 1.1
Modified in JDF1.2
A pile, stack or bundle of products can be packed into a box or cartoon.

Input Resources
	Name
	Description

	Component
	The BoxPacking process puts a set of Components into the box Component.

	BoxPackingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	Component (Box) ?
	Details of the box or carton.

Output Resources

	Name
	Description

	Component
	One Component is produced: the boxed Component.

6.5.4 CaseMaking

New in JDF 1.1
Modified in JDF1.2
Case making is the process where a hard case is produced. As there are many different kinds of hardcover cases, they will be described in a later version of the JDF specification.
Input Resources
	Name
	Description

	Component (CoverMaterial) ?
	The cover material which may be either a preprinted and processed sheet of paper. If no Component is specified, a Media (CoverMaterial) must be specified.

	Case​Making​Params
	Specific parameters to set up the machinery.

	Media (CoverMaterial)?
	The CaseMaking process may also consume unprocessed Media as cover material. Only one of Media (CoverMaterial) or Component (CoverMaterial) must be specified.

	Media (CoverBoard) ?
Modified in JDF1.2
Modified in JDF 1.1A
	The cardboard Media used for the cover board.

	Media (SpineBoard)?
	The cardboard Media used for the spine board. If not specified, the same media as used for Media (CoverBoard) is used.

Output Resources

	Name
	Description

	Component
	One Component is produced: the produced book case. Its ProductType = “BookCase”

6.5.5 CasingIn

New in JDF 1.1
The hard cover book case and the book block are joined in the CasingIn process.

Input Resources
	Name
	Description

	Component
	The prepared book block.

	Component (Case)
	The hard cover book case.

	CasingInParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the hard cover book.

	Component
	One Component is produced: the thread-sewn components forming an item such as a raw book.

6.5.6 ChannelBinding

Modified in JDF1.2
Various sizes of metal clamps can be used in ChannelBinding. The process can be executed in two ways. In the first, a pile of single sheets—sometimes together with a front and back cover—is inserted into a U-shaped clamp and crimped in special machinery. In the second, a preassembled cover that includes the open U-shaped clamp is used instead of the U-shaped clamp alone. The thickness of the pile of sheets determines in both cases the width of the U-shaped clamp to be used for forming the fixed document, which is not meant to be reopened later.

Input Resources
	Name
	Description

	Component (BookBlock)
	The operation requires one component: the block of sheets to be bound.

	Component ? (Cover)
	The empty cover with the U-shaped clamp that might, for example, have been printed before it is used during the ChannelBinding process.

	ChannelBindingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the channel-bound component forming an item such as a brochure.

6.5.7 CoilBinding

Modified in JDF1.2
CoilBinding is a technique that creates bindings not meant to be reopened later. Another name for CoilBinding is spiral binding. Metal wire, wire with plastic, or pure plastic is used to fasten prepunched sheets of paper, cardboard, or other such materials. First, automated machinery forms a spiral of proper diameter and length. The ends of the spiral are then “tucked-in”. Finally, the content is permanently fixed. Note that every time a coil-bound book is opened, a vertical shift occurs as a result of the coil action. This is a characteristic of the process.

Input Resources
	Name
	Description

	Component
	The operation requires one component: the pile of prepunched sheets often including a top and button cover.

	CoilBindingParams

	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the coil-bound component forming an item such as a calendar.

6.5.8 [image: image152.jpg]JS I |

any JDF/JMF element .—Comment*

BestEffortExceptions?
. CommentURL?
* DescriptiveName?
e MustHonorExceptions?
* OperatorIntervention—
Exceptions?

Attribute?
L Box?
. Language?
. Name?
* Path?

Collecting

This process collects folded sheets or partial products, some of which may have been cut. The first Component to enter the workflow lies at the bottom of the pile collected on a saddle, and the sequence of the input components that follows depends upon the produced component. The figure to the right shows a typical collected pile.

The operation coordinate system is defined as follows: The y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to the registered edge. The x-axis is aligned with the registered edge. It increases from the binding edge to the edge opposite to the binding edge, i.e., the product front edge.

Input Resources
	Name
	Description

	CollectingParams ?
	Specific parameters to set up the machinery.

	Component +
	Variable amount of sheets to be collected.

	DBRules *
	Database input that describes which sheets should be collected for a particular instance component. In this version the schema is only human readable text. One rule is applied for each individual component.

	DBSelection ?
	Database input that describes which sheets should be collected for a particular instance component.

	IdentificationField ?
	Information about identification marks on the component.

Output Resources

	Name
	Description

	Component
	A block of collected sheets is produced. This Component can be joined in further postpress processes.

6.5.9 CoverApplication

New in JDF 1.1
Modified in JDF1.2
CoverApplication describes the process of applying a soft cover to a book block.

Input Resources
	Name
	Description

	CoverApplicationParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	Component
	The book block on which the cover is applied

	Component (Cover)
	The soft cover that is applied.

Output Resources

	Name
	Description

	Component
	The book block with the applied soft cover.

6.5.10 Creasing

New in JDF 1.1
Sheets are creased or grooved to enable folding or to create even, finished page delimiters.

Input Resources
	Name
	Description

	Component ?
	This process consumes one Component: the printed sheets.

	CreasingParams
	Details of the Creasing process.

Output Resources

	Name
	Description

	Component
	One creased Component is produced.

6.5.11 Cutting

Modified in JDF1.2
Sheets are cut using a guillotine Cutting machine. Before Cutting, the sheets might be jogged and buffered. CutBlocks and or CutMarks can be used for positioning the knife. After the Cutting process is performed, the blocks are often again buffered on a pallet.

Since Cutting is described here in a way that is machine independent as much as possible, the CutBlock elements specified do not directly imply a certain cutting sequence. Therefore, a sequence must be determined by a specialized agent.
Input Resources
	Name
	Description

	Component ?
	This process consumes one Component: the printed sheets.

	CutBlock *

Deprecated in JDF 1.1
	One or several CutBlocks can be used to find the Cutting sequence. Only one of CutBlock or Cut may be specified.

	CutMark *

Deprecated in JDF 1.1
	CutMark resources can be used to adapt the theoretical cut positions to the real positions of the corresponding blocks on the Component to be cut.

	CuttingParams ?
Modified in JDF1.2
New in JDF 1.1
	Details of the Cutting process.

	Media ?
	Cutting can be performed to unprinted Media in order to adjust size or shape.

Output Resources

	Name
	Description

	Component +
	One or several blocks of cut components are produced. When Media are cut, the output Components can be input resources for processes such as ConventionalPrinting.

6.5.12 Dividing

Deprecated in JDF 1.1.

Dividing has been replaced by Cutting. In-line finishing of web presses often includes equipment for cutting the ribbon(s) in cross direction. This operation can be described with the Dividing process. Dividing in cross direction is likely to happen after former folding, which is a LongitudinalRibbonOperations process. It may affect one or more ribbons at the same time that are all part of one Component.

Input Resources
	Name
	Description

	Component
	The Dividing process consumes one Component: the web(s) or ribbon(s) entering the crosscutting machinery. The substrate might have been treated with LongitudinalRibbonOperations and may be folded with a former fold.

	DividingParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: either the divided web or ribbon.

6.5.13 Embossing

New in JDF 1.1
The Embossing process is performed after printing to stamp a raised or depressed image (artwork or typography) into the surface of paper, using engraved metal embossing dies, extreme pressure, and heat. Embossing styles include blind, deboss, and foil-embossed.

Input Resources
	Name
	Description

	Component
	This process consumes one Component:

	Embossing​Params
	Parameters to setup the machinery.

	Media ?
	If foil stamping or foil embossing, the stamping foil material is required.

	Tool ?
	The embossing stamp or calendar.

Output Resources

	Name
	Description

	Component
	One Component is created.

6.5.14 EndSheetGluing

EndSheetGluing finalizes the folded Sheet or book block in preparation for case binding. It requires three Components—the back-end sheet, the book block, and the front-end sheet—and information about how they are merged together. Back-end sheets and front-end sheets are in most cases sheets folded once before EndSheetGluing takes place. The end sheets serve as connections between the book block and the cover boards.

Input Resources
	Name
	Description

	Component (BackEndSheet)
	A back-end sheet to be mounted on the book block.

	Component (BookBlock)
	A back-end sheet and a front-end sheet are glued onto the book block.

	Component (FrontEndSheet)
	A front-end sheet to be mounted on the book block.

	EndSheetGluingParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	A book block is produced that includes the end sheets.

6.5.15 Folding

Buckle folders or knife folders are used for Folding sheets. One or more sheets can be folded at the same time. Web presses often provide in-line Folding equipment. Longitudinal Folding is often performed using a former, a plow folder, or a belt, while jaw folding, chopper folding, or drum folding equipment is used for folding the sheets that have been divided.

The JDF Folding process covers both operations done in stand-alone Folding machinery—typically found for processing sheet fed printed materials—and in-line equipment of web printing presses. Creasing and/or slot perforating are sometimes necessary parts of the Folding operation that guarantee exact process execution. They depend on the folder used, the Media, and the folding layout. These operations are specified in the Creasing and Perforating processes respectively.

Input Resources

	Name
	Description

	Component
	Components, including a printed sheet or a pile of sheets, are used in the Folding process.

	FoldingParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component

Modified in JDF 1.1
	The process produces a Component, which in most cases is a folded Sheet.

6.5.16 [image: image153.jpg]ResourceLinkPool?

|
l

Resourcelink*

G CombinedProcessIndex?

© DraftOK?

* PipePartIDKeys?
e PipeProtocol?

* PipeURL?

- ProcessUsage?

= rRef
i rSubRef?
. Usage

PhysicalLink

e S A

* Amount?
* Orientation?

* PipePause?

* PipeResume?

* RemotePipeEndPause?

* Transformation?

* RemotePipeEndResume?

{Quanti tyLink

=R Y

AmountPool? '— PartAmount*

e DraftOK?
¢ PipeProtocol?
¢ PipeURL?

[

ImplementationLink |

0

.

.

.

Duration?
Recommendati
Start?
StartOffset?

on?

Part

Gathering

Modified in JDF1.2
[image: image154.jpg]AuditPool? |——Audit* |

* rRefs? * Author?
* SpawnID?
* TimeStamp

Created* Spawned * —| Part*
e ref * Independent?
¢ jRef
(; I B * jRefDestination?
MOdIfled * NewSpawnID
* JRef ¢ rRefsROCopied?
* rRefsRWCopied?
8 Status?
. URL?
Merged* —|Part*
. Independent?
0 JjRef
o JjRefSource?
o MergelD
o rRefsOverwritten?
= URL?
Comment*
CostCenter?
T
Notification Employee*
= €Class P W \
e Type? ! i fi i ils?
1 WotificationDetails?]
Part*
———
Device*
. e —
PhaseTime* 1 ErtGea)
5 Employee
e Start - -
O Gtae ModulPhase —|Employee
e StatusDetails? * DeviceID?
. DeviceStatus
+ End
e ModulIndex
e ModulType
e start
* StatusDetails?
L {ResourceLink* 3
ResourceAudit® F————————
— F ResourceLink |
e ContentsModified? aliiith et e o
e Reason? [eon anmios S
' ResourceLink? JI
* Duration?
. End
o EndStatus
) Start
Attributes:
ref = reference via ID to a resource or a JDF-node
jRef = reference via ID to a JDF-node
Notification:

Class = Event | Information | Warning | Error | Fatal

In the Gathering process, ribbons, sheets, or other Components are accumulated on a pile that will eventually be stitched or glued in some way to create an individual Component. The input Components may be output resources of a web-printing machine used in Collecting or of any machine that executes a ConventionalPrinting or DigitalPrinting process. In sheet applications, a moving gathering channel is used to transport the pile. But no matter what the inception of the Gathering process, the sequence of the input components dictates the produced component. The figure on the right shows typical gathered piles.

Input Resources

	Name
	Description

	Component +
	Variable amount of components including single sheets or folded sheets are used in the Gathering process.

	GatheringParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	DBRules *
	Database input that describes which sheets should be gathered for a particular instance component. The schema are only in the form of human-readable text. One rule is applied for each individual component.

	DBSelection ?
	Database input that describes which sheets should be gathered for a particular instance component.

	IdentificationField ?
	Information about identification marks on the component.

Output Resources

	Name
	Description

	Component
	Components gathered together, such as a pile of folded sheets.

6.5.17 Gluing

New in JDF 1.1
Modified in JDF1.2
Gluing describes arbitrary methods of applying glue to a Component.

Input Resources
	Name
	Description

	Component
	This process consumes one Component: the printed sheets.

	GluingParams ?
Modified in JDF1.2
	Details of the Gluing process.

Output Resources

	Name
	Description

	Component
	One Component is produced.

6.5.18 HeadBandApplication

New in JDF 1.1
Modified in JDF1.2
Head bands are applied to the hard cover book block.

Input Resources
	Name
	Description

	Component
	The prepared book block.

	HeadBand​Application​Params ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the hard cover block with head bands.

6.5.19 HoleMaking

Modified in JDF1.2
A variety of machines, such as those responsible for stamping and drilling, can perform the HoleMaking process. This postpress process is needed for different binding techniques, such as spiral binding. One or several holes with different shapes can be made that are later on used for binding the book block together.

Input Resources

	Name
	Description

	Component
	One Component, such as a printed sheet or a pile of sheets, are modified in the HoleMaking process.

	HoleMakingParams ?
Modified in JDF1.2
	Specific parameters, including hole diameter, and positions, used to set up the machinery.

Output Resources

	Name
	Description

	Component
	A Component with holes, such as a book block or a single sheet, is produced for further postpress processes.

6.5.20 Inserting

This process can be performed at several stages in postpress. The process can be used to describe the labeling of products, of packages, or the gluing-in of a Component (such as a card, sheet, or CD-ROM). Two Components are required for the Inserting process: the “mother” Component and the “child ” Component. Inserting can be a selective process by means of inserting different “child” Components. Information about the placement is needed to perform the process.

Input Resources
	Name
	Description

	Component (Mother)
	Designates where to insert the child Component.

	Component (Child)
	The Component to be inserted in the mother Component.

	InsertingParams
	Specific parameters, such as placement, to set up the machinery.

	DBRules ?
	Database input that describes whether the child should be inserted for a particular instance Component. In this version the schema is only human readable text.

	DBSelection ?
	Database input that describes whether the child should be inserted for a particular instance Component.

	IdentificationField ?
	Information about identification marks on the Component.

Output Resources

	Name
	Description

	Component
	A mother Component is produced containing the inserted child Component.

6.5.21 Jacketing

New in JDF 1.1
The jacketing is the process where the book is wrapped by a jacket that needs to be folded twice. As long as the book is specified and the jacket dimensions are known, there are just a few important details. If the jacketing device also creases the jacket, this can be described with a Combined process of Jacketing and Creasing.

Input Resources
	Name
	Description

	JacketingParams
	Specific parameters to set up the machinery.

	Component (Book)
	The book that the jacket is wrapped around.

	Component (Jacket)
	The description of the jacket.

Output Resources

	Name
	Description

	Component
	The jacketed book.

6.5.22 Labeling

New in JDF 1.1
Modified in JDF1.2
A label can be attached to a bundle. The label can contain information on the addressee, the product, the product quantities, etc., which can be different for each bundle.

Input Resources
	Name
	Description

	Component
	The Labeling process labels one Component with a set of labels.

	Component(Label) ?
	The label to be attached to the Component.

	LabelingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the labeled Component.

6.5.23 Laminating

Modified in JDF1.2
In the Laminating process, a plastic film is bonded to one or both sides of a Component's media, and adhered (under pressure) with either a thermal setting or pressure sensitive adhesive.
Input Resources

	Name
	Description

	Component
	A Component is required for Laminating.

	LaminatingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	Media ?
	The laminating foil material.

Output Resources

	Name
	Description

	Component
	One Component is produced: the laminated component.

6.5.24 Longitudinal​Ribbon​Operations

Deprecated in JDF 1.1.

In-line finishing within web printing presses can include folding, perforating, or applying a line of glue on the ribbon while it is traveling in longitudinal direction. In version 1.1.of JDF and beyond, in-line finishing is described using the “standard” finishing processes, e.g., Creasing, Cutting, or Folding in a combined node with ConventionalPrinting.
Input Resources

	Name
	Description

	Component
	The Component can consist of more than one web or ribbon that has been combined with the Gathering process.

	Longitudinal​Ribbon​Operation​Params
	Specific parameters to set up the machinery tools for the LongitudinalRibbonOperations process.

Output Resources

	Name
	Description

	Component +
	A ribbon is produced that is used in other postpress processes. If the LongitudinalRibbonOperations process was slitting, more than one Component is produced.

6.5.25 Numbering

Numbering is the process of stamping or applying variable marks in order to produce unique components, for items such as lottery notes or currency. No database access is required, and the counters automatically increase incrementally. Numbering is also used for alphanumeric, automatic, and unique marking.

Input Resources

	Name
	Description

	Component
	One Component, such as a printed sheet or a pile of sheets, are modified in the Numbering process.

	NumberingParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the numbered sheet.

6.5.26 Palletizing

New in JDF 1.1
Modified in JDF1.2
Bundles, stacks, piles or boxes can be loaded onto a palette.

Input Resources
	Name
	Description

	Component
	The Palletizing process describes placing the bundle that is represented by the Component onto a palette.

	PalletizingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	Pallet
	The palette.

Output Resources

	Name
	Description

	Component
	One Component is produced: the loaded palette.

6.5.27 Perforating

New in JDF 1.1
Perforating describes any process where a Component is perforated.

Input Resources
	Name
	Description

	Component
	This process consumes one Component: the printed sheets.

	PerforatingParams
	Details of the Perforating process.

Output Resources

	Name
	Description

	Component
	One Component is produced.

6.5.28 PlasticCombBinding

Modified in JDF1.2
In the PlasticCombBinding process, a plastic insert wraps through prepunched holes in the substrate. Most often, these holes are rectangular and elongated. After the plastic comb is opened with a special tool, the prepunched block of sheets—often together with a top and button cover—is inserted onto the “teeth” of the plastic comb. When released from the machine, the teeth return to their original cylindrical positions with the points tucked into the backside of the spine area. Special machinery can be used to reopen the plastic comb binding.

Input Resources
	Name
	Description

	Component
	The operation requires one component: the pile of sheets often including a top and button cover.

	PlasticCombBindingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the plastic-comb-bound component forming an item such as a calendar.

6.5.29 RingBinding

Modified in JDF1.2
In this process, prepunched sheets are placed in a ring binder. Ring binders have different numbers of rings that are fixed to a metal backbone. In most cases, two, three, or four metal rings hold the sheets together as long as the binding is closed. Depending on the amount of sheets to be bound together, ring binders of different thickness must be used.

Input Resources
	Name
	Description

	Component (BookBlock)
	The operation requires one component: the pile of prepunched sheets to be inserted into the ring binder.

	Component ? (RingBinder)
	The empty ring binder that might have been printed, for example, before it is used during the RingBinding process.

	RingBindingParams ?
Modified in JDF1.2
	Specific parameters to set up the process/machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the ring-bound component forming an item such as a calendar.

6.5.30 SaddleStitching

Deprecated in JDF 1.1

In SaddleStitching, signatures are collected so that all sections have a common spine, and then stitched with staples through the spine. SaddleStitching has been replaced by Stitching in JDF 1.1.
Input Resources
	Name
	Description

	Component
	The only required Component is the collected pile.

	SaddleStitchingParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	The stitched-together components.

6.5.31 ShapeCutting

New in JDF 1.1

The ShapeCutting process can be performed using tools such as hollow form punching, perforating, or die-cutting equipment.

Input Resources
	Name
	Description

	Component
	This process consumes one Component: the printed sheets.

	ShapeCuttingParams
	Details of the ShapeCutting process.

	Tool ?
	The cut die

Output Resources

	Name
	Description

	Component
	One Component is produced.

6.5.32 Shrinking

New in JDF 1.1
Modified in JDF1.2
Shrink-wrap must be treated in order to shrink.

Input Resources
	Name
	Description

	Component
	The Wrapping process wraps a bundle that is represented by a Component.

	ShrinkingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the loaded palette.

6.5.33 SideSewing

Deprecated in JDF 1.1 Replaced by ThreadSewing.
This is a binding technique resulting in robust products that have a significant loss of inner margin space and poor handling characteristics. For these reasons, other binding techniques are used more often. In SideSewing, the first step is to create the holes in the book block and inject the glue (see Section 6.5.45.2 HoleMaking). Then the entire book is sewn at once with a ThreadMaterial such as Cotton or Polyester. If the book block is rather thick, a Stitching process using wire might be performed before SideSewing.

Input Resources
	Name
	Description

	Component
	The only required Component is the gathered sheets.

	SideSewingParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	The Component is produced.

6.5.34 SpinePreparation

New in JDF 1.1
Modified in JDF1.2
The SpinePreparation process describes the preparation of the spine of book blocks for hard and soft cover book production, e.g., milling and notching.
Input Resources
	Name
	Description

	SpinePreparationParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	Component
	The raw book block.

Output Resources

	Name
	Description

	Component
	The book block with a processed spine.

6.5.35 SpineTaping

Modified in JDF1.2
New in JDF 1.1
SpineTaping describes the process of applying a tape strip to the spine of a book block. It also describes the process of applying kraft paper to a hard cover book block.

Input Resources
	Name
	Description

	SpineTapingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

	Component
	The book block that the spine is taped to.

Output Resources

	Name
	Description

	Component
	The book block with the spine.

6.5.36 Stacking

New in JDF 1.1
The stacking process collects physical resources (products) and produces a pile, stack or bundle for delivery. In a standard production each bundle consists of the same amount of identical products, possibly followed by one or more odd-count bundles. In a production with variable data (e.g., newspaper dispatch, demographic production or individual addressed products), each bundle has a variable amount of products, and, in the worst case, each product can be different from the others. The input components are single products; the output components are stacks of this product.

 Input Resources
	Name
	Description

	Component
	The Stacking process consumes one Component and stacks it onto a stack.

	StackingParams
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the stack of input Components.

6.5.37 Stitching

Modified in JDF1.2
Gathered or collected sheets or signatures are stitched together with a cover.

Input Resources
	Name
	Description

	Component
	The only required Component is the pile of gathered sheets, including the cover.

	Stitching​Params ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the gathered or collected sheets including the cover stitched together.

6.5.38 Strapping

New in JDF 1.1
A bundle can be strapped. There are different kinds of strapping, e.g., single (one strap around the bundle), double (two parallel straps), and cross (two crossed straps).

Input Resources
	Name
	Description

	Component
	The Strapping process puts straps around a bundle that is represented by a Component.

	StrappingParams
	Specific parameters to set up the machinery.

	Strap ?
	The straps used.

Output Resources

	Name
	Description

	Component
	One Component is produced: the strapped Component.

6.5.39 StripBinding

Modified in JDF1.2
New in JDF 1.1
Hard plastic strips are held together by plastic pins, which in turn are bound to the strips with heat. The sheets to be bound must be prepunched so that the top strip with multiple pins fits through the assembled material. It is then connected to the bottom strip with matching holes for the pins. The binding edge is often compressed in a special machine before the excess pin length is cut off. The backstrip is permanently fixed with plastic clamping bars and cannot be removed without a special tool.

Input Resources
	Name
	Description

	Component
	The operation requires one component: the block of sheets to be bound.

	StripBindingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the Velobound component forming an item such as a book.

6.5.40 ThreadSealing

Modified in JDF1.2
New in JDF 1.1
Similar to Smythe sewing, ThreadSealing involves sewing the signatures at the spine of the book. After the signatures are sewn they are gathered and run through the perfect binder. The perfect binder however does not grind the spine. Instead the binding adhesive (which attaches the cover) envelops the thread that holds the book together. This special thread holds to the glue to create a sewn book with most of the same properties as Smythe sewing.

Input Resources
	Name
	Description

	Component
	This process consumes one Component: the printed sheets.

	ThreadSealingParams ?
Modified in JDF1.2
	Details of the ThreadSealing process.

Output Resources

	Name
	Description

	Component
	One Component is produced.

6.5.41 ThreadSewing

Modified in JDF1.2
This process may include a gluing application, which would be used principally between the first and the second or the last and the last sheet but one. Gluing may also be necessary if different types of paper are used.

Input Resources
	Name
	Description

	Component
	The operation requires one component: the gathered sheets.

	ThreadSewingParams ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the thread-sewn components forming an item such as a raw book block.

6.5.42 Trimming

The Trimming process is performed to adjust a book block or sheet to its final size. In most cases, it follows a block joining process, and the process is often executed as an in-line operation of a production chain. For example, the binding station may deliver the book blocks to the trimmer. A Combined operation in the trimming machinery would then execute a cut at the front, head, and tail in a cycle of two operations. Closed edges of folded signatures would then be opened while the book block is trimmed to its predetermined dimensions.

Some trimming machines, such as magazine production systems, can produce N-ups. In every case, however, the additional trimming cuts that divide the N-ups result in separated book blocks. Sometimes a stripe is trimmed out between the book blocks. To describe these operations, multiple Trimming processes must be defined in JDF.
Input Resources

	Name
	Description

	Component
	A bound book block is required for Trimming.

	TrimmingParams
	Specific parameters, e.g., trim size, to set up the machinery.

Output Resources

	Name

	Description

	Component
	One Component is produced: the trimmed component.

6.5.43 WireCombBinding

Modified in JDF1.2
The WireCombBinding is a technique that creates bindings not meant to be reopened later. WireCombBinding is often named Wire-O®-binding. Metal wire, wire with plastic, or pure plastic is used to fasten prepunched sheets of paper, cardboard, or other such materials. The wire—often formed as a double wire—is inserted into the holes, then curled to create a circular enclosure.

Input Resources
	Name
	Description

	Component
	The operation requires one component: the pile of preprinted sheets often including a front and back cover.

	WireComb​Binding​Params ?
Modified in JDF1.2
	Specific parameters to set up the machinery.

Output Resources

	Name
	Description

	Component
	One Component is produced: the wire-comb bound component forming an item such as a calendar.

6.5.44 Wrapping

New in JDF 1.1

Single products, bundles or pallets can be wrapped by film or paper.

Input Resources
	Name
	Description

	Component
	The Wrapping process wraps a bundle that is represented by a Component.

	WrappingParams
	Specific parameters to set up the machinery.

	Media ?
	The wrapping material.

Output Resources

	Name
	Description

	Component
	One Component is produced: the wrapped Component.

6.5.45 Postpress Processes Structure

6.5.45.1 Block Production

This subcategory of the postpress processes merges together all the processes for making a book block. First the block is compiled using the Collecting and Gathering processes. After that, it is combined using one or several of the block joining processes, including CoverApplication, SaddleStitching, SideSewing, SpineTaping, Stitching, and ThreadSewing. The workflow using these processes eventually produces a Component that can be trimmed.

6.5.45.1.1 Block Compiling

The Gathering and Collecting processes are used to position unfolded sheets and/or folded sheets in a planned order. These operations set a fixed page sequence in preparation for three-side trimming and binding. Block compiling includes:

· Collecting
· Gathering
6.5.45.1.2 Block Joining

The block joining processes can be grouped into two major subcategories: conventional binding methods, which includes the processes of Stitching, SaddleStitching, CoverApplication, SpinePreparation, SpineTaping, ThreadSewing, and SideSewing; and single-leaf binding methods, which are listed in Section 6.5.45.1.2.1 Single-Leaf Binding Methods. Together they form a subcategory of block-production processes. All of these processes, which are known as block-joining processes, unite sheets and/or folded sheets lying loose on top of each other.

There are numerous possible binding methods. The most prominent ones are modeled by the processes described in the following sections. Many of them can be part of a combined production chain being performed as in-line tasks. Block Joining includes:

· AdhesiveBinding
· CoverApplication
· SaddleStitching
· SideSewing
· SpinePreparation
· SpineTaping
· Stitching
· ThreadSewing
6.5.45.1.2.1 Single-Leaf Binding Methods

Besides the conventional binding methods, there is a multifaceted group of binding methods for single-leaf bindings. This group can again be subdivided into two subtypes: loose-leaf binding and mechanical binding, each of which is described in the sections that follow.

6.5.45.1.2.1.1 Loose-Leaf Binding Method

This binding techniques allow contents to be changed, inserted, or removed at will. There are two essential groups of loose-leaf binding systems: those that require the paper to be punched or drilled and those that do not. The RingBinding method, described in the next section, is the most prominent binding in the loose-leaf binding category. Loose-Leaf Binding Methods include:

· RingBinding
6.5.45.1.2.1.2 Mechanical Binding Methods

Single leafs are fastened into what is essentially a permanent system that is not meant to be reopened. However, special machinery can be used to reopen some of the mechanical binding systems described below.

In mechanical binding, printing and folding can be done in a conventional manner. The gathered sheets, however, often require the back to be trimmed, as well as the other three sides. Mechanical bindings are often used for short-run jobs such as ones that have been printed digitally. The most prominent mechanical binding processes are described in the sections that follow. Mechanical Binding Methods include:

· ChannelBinding
· CoilBinding
· PlasticCombBinding
· RingBinding
· StripBinding
· WireCombBinding
6.5.45.2 HoleMaking

See HoleMaking.
6.5.45.3 Laminating

See Laminating.

6.5.45.4 Numbering

See Numbering.

6.5.45.5 Packaging Processes

The individual processes defined in this section replace the deprecated Packing process. Packaging processes include:

· BoxPacking
· Labeling
· Palletizing
· Shrinking
· Stacking
· Strapping
· Wrapping
Each of these processes share a common coordinate system as depicted below:

[image: image155.jpg]', .

JMF —|Message+ |
TimeStamp | 0= /
= SenderID
o Version?
o DeviceID?
Message families: | Message
« 1D
¢ Type |\~ —-———==—=== =
o Time? —‘QueryTypeObj |

—_——
Command

= AcknowledgeType?
Q AcknowledgeURL?

Subscription’?

. RepeatStep?
o RepeatTime?
. URL

ObservationTarget*

_p CommandTypeOb3j *

| SR — Z PR ——

Acknowledge Signal

& AcknowledgeType? o LastRepeat?
» refID b refID?

L returnCode?

—(Notmcatlon’?
Notification

]
Lz ResponseTypeObj)

______—/———'_\ —|ResponseTypeObj J'

Response T
e Acknowledged? —(Trlgger?
o relDl
o ReturnCode?
9 Subscribed?
—| Notification?
)
—U?esponseTypeObj |

Figure 6.2 Packaging Process Coordinate System

6.5.45.6 Processes in Hardcover Book Production

The following processes refer to the production of hard cover books. As there are several processes which are needed to produce a hardcover, some of them are optional, others are essential. The processes described are in detail:

CaseMaking:
Production of hard cover book cases.

BlockPreparation:
The optional hardcover design elements like rounding and backing, ribbon band, headband, side gluing, and tightbacking are described here. Application of kraft paper to the book block is described in the SpineTaping process.

CasingIn:
In this process, the case and the prepared book block are brought together.

Jacketing:
In the jacketing process, the jacket is wrapped around the hardcover book.

Processes in Hardcover Book Production include:

· BlockPreparation
· CaseMaking
· CasingIn
· HeadBandApplication
· Jacketing
6.5.45.7 Sheet Processes

Many printing processes produce sheets that must be processed further in finishing operations. The web processes presented in the preceding sections result in sheets that are treated in much the same way as sheets produced by sheetfed printing presses. The following processes describe these sheet finishing operations. Sheet processes include:

· Creasing
· Cutting
· Embossing
· Folding
· Gluing
· Perforating
· ShapeCutting
· ThreadSealing
6.5.45.8 Tip-on/in

The following processes (EndSheetGluing, Inserting) are part of the postpress operations. They can be grouped together as the tip-on/in processes. Both processes can be performed by hand, tip-on/in machine, or by a press. Tip-on/in includes:

· EndSheetGluing
· Inserting
6.5.45.9 Trimming

See Trimming.

6.5.45.10 Web Processes

This subchapter of the postpress processes is dedicated to web and ribbon operations, i.e., operations that require a web or a ribbon to execute. In essence, a ribbon is a web that has been slit or cross-cut. More specifically, a web is a continuous strip of Media to be used for printing, e.g., paper or foil. This substrate is called “web” while it is threaded through the printing machinery, but once it has run through the Dividing process and been slit, the web no longer exists. In its place are ribbons or sheets.

A ribbon, then, is the part of the web that enters the folder. If the web is never slit, however, the web and the ribbon are identical. Slitting and salvage-trim operations on a web can result in one or more ribbons. A ribbon can be further subdivided after it has been slit. After the Dividing process, sheets are treated further. The Gathering process and Folding process also handle web and ribbon applications.

Chapter 7 Resources

Introduction

Resources represent inputs and outputs, the ‘things” that are produced, modified, consumed, or in any way used by nodes. A more thorough description was provided in Section 3.7 Resources. The resources in this chapter are divided into two sections. The first section documents all of the resources of class Intent. The second section documents the rest of the resources that have been defined for JDF.

7.1 Intent Resources

[Clarified omitted span elements in intent.]
As was described in Section 4.1.1 Product Intent Constructs, intent resources are designed to narrow down the available options when defining a JDF job. Many of the elements in intent resources are optional. If an optional element of an intent resource is omitted, and no additional information is specified in the description, the value defaults to “don’t care”. The characteristics of the product that are not specified will be selected by the system that processes the intent resources. The system that processes the intent ticket may insert the details of its selection into the intent ticket.
All intent resources share a set of subelements that allow a Request for Quote to describe a range of acceptable values for various aspects of the product. These elements, taken together, allow an administrator to provide a specific value for the quote. Section 7.1.1, below, describes these elements.

Each of the following sections begins with a brief narrative description of the resource. Following that is a list containing details about the properties of the resource, as shown below. The first item in the list provides the class of the resource, which, in this section is always Intent. For more information on resource class, see Section 3.7.1 Resource Classes. A template of this list is shown below.

After the list describing the resource properties, each section contains tables that outline the structure of each resource and, when applicable, the abstract or subelement information that pertains to the resource structure. The first column contains the name of the attribute or element. In some cases, a resource will contain an element with more than one value associated with it. If this is the case, the element name is listed as often as it appears, and a term in parentheses that identifies the kind of element is included in the column. A template of these tables is also provided below.

Resource Properties Template

Resource class:
Defines the resource class.

Resource referenced by:
List of parent resources that contain elements of this type. Only valid for elements.

Example Partition:
List of valid partitioning boundaries: BlockName, DocIndex, DocRunIndex, DocSheetIndex, FountainNumber, LayerIDs, Location, Option, PageNumber, PartVersion, PreviewType, RibbonName, Run, RunIndex, RunTag, RunPage, Separation, SetIndex, SheetIndex, SheetName, Side, SignatureName, TileID, WebName If a partition is specified, the resource may contain nested elements of its own type.
Note that resources may also be partitioned by keys that are not included in the list, e.g., Option, which is valid for any resource.

Input of processes:
List of node types that use the resource as an input resource.

Output of processes:
List of node types that create the resource as an output resource.

Resource Structure Template

	Name
	Data Type
	Description

	Name of attribute
	data type of attribute
	Usage of the attribute.

	Name of element
	element
	Subelements that must be defined locally within the resource.

	Name of element
	refelement
	Elements that are based on other atomic resources or resource elements. These may either be in-line elements or instances of ResourceRef elements (see Section 3.8.6). In case of ResourceRef elements, a "Ref" must be appended to the name specified in the table column entitled "Name".

7.1.1 Intent Resource Span Subelements

Intent resources contain subelements that allow spans of values to be specified. These subelements also provide mechanisms to select a set of values from the provided range and map them to a set of quotes. These subelements are called span elements. The abstract span element to be used is determined by the data type of the values to be recorded. All possible span elements are listed in the following table.

Each span element contains further attributes or subelements. The contents shared by all span elements are listed in the Section 7.1.1.1 Structure of Abstract Span Subelement, below, and the contents particular to each span element type are described in the sections that follow.

	Span Element Types
	Data Type
	Description

	DurationSpan

New in JDF 1.1
	element
	Describes a set of duration values.

	EnumerationSpan
	element
	Describes a set of enumeration values.

	IntegerSpan
	element
	Describes a numerical range of integer values.

	NameSpan
	element
	Describes a set of NMTOKEN values.

	NumberSpan
	element
	Describes a numerical range of values.

	OptionSpan
	element
	Describes an intent in which the principal information is that a specific option is requested.

	ShapeSpan

New in JDF 1.1
	element
	Describes a set of shape values.

	StringSpan
	element
	Describes a set of string values.

	TimeSpan
	element
	Describes a set of dateTime values.

	XYPairSpan
	element
	Describes a set of XYPair values.

7.1.1.1 Structure of Abstract Span Subelement

[ISSUE: Have the new Span data types been added to the DataType enumeration below?]
Abstract span elements of intent resources have a common set of attributes and elements that define the priority, data type, and requested identity of the element. These attributes are described in the following table. In addition, abstract Span elements have 3 attributes that define the aspects of the span. The data type of these values depends on the data type of the span and is defined in the following sections:

Actual:
The accepted actual value

Preferred:
A preferred value

Range:
A proposed range of values

	Name
	Data Type
	Description

	DataType
	enumeration
	Describes the data type of the span element within an intent resource. This attribute is provided for applications that do not have access to schema validation. Possible values are:

	
	
	DurationSpan

EnumerationSpan

IntegerSpan

NameSpan

NumberSpan
	OptionSpan

ShapeSpan

StringSpan

TimeSpan

XYPairSpan

	Priority ?
	enumeration
	Indicates the importance of the specific intent. The following values have prescribed meanings:

None – Default value.

Suggested – The customer will accept a value of Actual that is different than the value of Preferred or outside of Range.

Required – Actual must be equal to Preferred or within Range.

Note that the attribute Preferred is available in the data types which inherit from this abstract type.

The following table describes the allowed values defined by the combination of Range, Preferred, and Priority in Span resources.

	Priority
	Preferred Exists
	Range Exists
	Suggested Value

defined by:
	Required Value

defined by:

	None
	any
	any
	-
	-

	Suggested
	yes
	no
	Preferred
	-

	Suggested
	yes
	yes
	Preferred
	-

	Suggested
	no
	yes
	Range
	-

	Required
	yes
	no
	-
	Preferred

	Required
	yes
	yes
	Preferred
	Range

	Required
	no
	yes
	-
	Range

7.1.1.2 Structure of the DurationSpan Subelement

New in JDF 1.1

This span subelement is used to describe a selection of instances in time. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	duration
	The actual value selected for the quote.

	Preferred ?
	duration
	Provides a value specified by the person submitting the request, indicating what that person prefers. Preferred must fall within the range of values specified in Range.

	Range ?
	DurationRange
	Range provides a valid range of time durations. Default = Preferred.

7.1.1.3 Structure of the EnumerationSpan Subelement

This span subelement is used to describe ranges of enumerative values. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement. It is identical to the NameSpan element except for the fact that it describes a closed list of enumeration values.

	Name
	Data Type
	Description

	Actual ?
	enumeration
	The actual value selected for the quote.

	Preferred ?
	enumeration
	Provides a value specified by the person submitting the request, indicating what that person prefers. Preferred must fall within the range of values specified in Range.

	Range ?
	enumerations
	Provides a set of discreet enumeration values. Default = Preferred.

7.1.1.4 Structure of the IntegerSpan Subelement

This span subelement is used to describe ranges of integer values. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	integer
	The actual value selected for the quote.

	Preferred ?
	integer
	Provides a value specified by the person submitting the request, indicating what that person prefers. The value of Preferred must fall within the range of values specified in Range.

	Range ?
	IntegerRangeList
	Provides either a set of discreet values, a range of values, or a combination of the two that comprise all allowed values for the span. Default = Preferred.

7.1.1.5 Structure of the NameSpan Subelement

This span subelement is used to describe name ranges. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement. It is identical to the EnumerationSpan element except for the fact that it describes an extensible list of NMTOKEN values.

	Name
	Data Type
	Description

	Actual ?
	NMTOKEN
	The actual value selected for the quote.

	Preferred ?
	NMTOKEN
	Provides a value specified by the person submitting the request, indicating what that person prefers. Preferred must fall within the range of values specified in Range.

	Range ?
	NMTOKENS
	Provides a set of discreet values. Default = Preferred.

7.1.1.5.1 Specifying New Values in a NameSpan Subelement

NameSpan elements generally define an open list of predefined values. If a value that is not included in the list must be specified, a comment that defines that value can be included in the NameSpan using the new name as a Name attribute of the comment, as demonstrated in the following example:

<HoleType DataType=”NameSpan” Range=”36Hole 42Hole”>

<Comment Name=”36Hole”>6 equidistant holes on each side of a hexagonal piece of paper </Comment>

<Comment Name=”42Hole”>7 equidistant holes on each side of a hexagonal piece of paper </Comment>

</HoleType>
7.1.1.6 Structure of the NumberSpan Subelement

This span subelement is used to describe a numerical range of values. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	number
	The actual value selected for the quote.

	Preferred ?
	number
	Provides a value specified by the person submitting the request, indicating what that person prefers. Preferred must fall within the range of values specified in Range.

	Range ?
	NumberRangeList
	Provides either a set of discreet values, a range of values, or a combination of the two. Default = Preferred.

7.1.1.7 Structure of the OptionSpan Subelement

This span subelement is used to describe a range of options or boolean values. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	boolean
	The actual value selected for the quote. If the option is included = true.

	Preferred ?
	boolean
	Provides a value specified by the person submitting the request, indicating what that person prefers.

	Detail ?
	string
	Detail provides information about the option.

7.1.1.8 Structure of the ShapeSpan Subelement

New in JDF 1.1
This span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	shape
	The actual value selected for the quote.

	Preferred ?
	shape
	Provides a value specified by the person submitting the request, indicating what that person prefers. The value of Preferred must fall within the range of values specified in Range.

	Range ?
	ShapeRangeList
	Provides either a set of discreet values, a range of values, or a combination of the two that comprise all allowed values for the span. Default = Preferred.

7.1.1.9 Structure of the StringSpan Subelement

This span subelement is used to describe string ranges. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	string
	The actual value selected for the quote.

	Preferred ?
	string
	Provides a value specified by the person submitting the request, indicating what that person prefers. Preferred must fall within the range of values specified in Range.

	Range *
	telem
	Provides a set of discreet string values. Default = Preferred.

7.1.1.10 Structure of the TimeSpan Subelement

This span subelement is used to describe a selection of instances in time. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	dateTime
	The actual value selected for the quote.

	Preferred ?
	dateTime
	Provides a value specified by the person submitting the request, indicating what that person prefers. Preferred must fall within the range of values specified in Range.

	Range ?
	TimeRange
	Range provides a valid time period. Default = Preferred.

7.1.1.11 Structure of the XYPairSpan Subelement

This span subelement is used to describe ranges of numerical value pairs. It inherits from the abstract span element described in Section 7.1.1.1 Structure of Abstract Span Subelement.

	Name
	Data Type
	Description

	Actual ?
	XYPair
	The actual value selected for the quote.

	Preferred ?
	XYPair
	Provides a value specified by the person submitting the request, indicating what that person prefers. The value of Preferred must fall within the range of values specified in Range.

	Range ?
	XYPairRangeList
	Provides either a set of discreet values, a range of values, or a combination of the two that comprise all allowed values for the span. Default = Preferred.

7.1.2 ArtDeliveryIntent

This resource specifies the prepress art delivery intent for a JDF job and maps the items to the appropriate reader pages and separations. Art delivery refers to any physical or electronic asset that is required for processing the job.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ArtDeliveryDate ?

New in JDF 1.1
	TimeSpan
	Specifies the latest time by which the transfer of the artwork will be made.

	ArtDeliveryDuration ?

New in JDF 1.1
	Duration​Span
	Specifies the latest time by which the transfer will be made relative to the date of the purchase order. Within an RFQ or a Quote only one of either ArtDeliveryDate or ArtDeliveryDuration may be specified. Within a purchase order only ArtDeliveryDate is allowed.

	ArtHandling ?

New in JDF 1.1
	EnumerationSpan
	Describes what should happen to the artwork after usage. The return or pickup address must be specified by a Contact with ContactTypes including “Art​Return”. Possible values are:

ReturnWithProof – the artwork is delivered back to the customer together with the proof, if there is any.

ReturnWithProduct – the artwork is delivered back to the customer together with the final product. The default.

Return – the artwork is delivered back independently directly after usage.

Pickup – the customer picks up the artwork

Destroy – the printer must destroy the artwork

PrinterOwns – the artwork belongs to the printer

Store – the printer has to store the artwork for future purposes

	DeliveryCharge ?

New in JDF 1.1
	EnumerationSpan
	Specifies who pays for a delivery being made by a third party. Possible values are:

Printer

Buyer: The default.

	Method ?
	NameSpan
	Identifies a required delivery method, may be a generic item, e.g.:

EMail
ExpressMail
InterofficeMail

OvernightService

Courier

CompanyTruck
May also be a delivery service brand, e.g.:

UPS

DHL

FedEx

	PreflightStatus ?

New in JDF 1.1
	enumeration
	Information about a preflight process probably applied to the artworks before being submitted. Possible values are:

NotPerformed – No preflighting was applied. The default.

WithErrors – Preflighting resulted in error and warning messages.

WithoutErrors – Preflighting was successful.

	ReturnList ?

New in JDF 1.1
	NMTOKENS
	Type of printer created intermediate materials that should be sent to the customer after usage. Possible values include:

DigitalMedia – Digital data on media such as a CD.

DigitalNetwork – Digital data via network.
ExposedPlate – Preexposed press plates, usually used for a rerun.

ImposedFilm – Film of the imposed surfaces.

LooseFilm – Film of individual pages or sections.
OriginalPhysicalArt – Analog artwork, e.g,. reflective or transparencies

Tool – Tools required for processing the job, e.g., a die for die cutting or embossing stamp.
None – No intermediate materials should be returned to the customer. The default.

	ReturnMethod ?

New in JDF 1.1
	NameSpan
	Identifies a required delivery method for returning the artwork, if ArtHandling = Return and for the printer created materials listed in ReturnList. The predefined values are the same as the list specified in Method.

	Transfer ?

New in JDF 1.1
	EnumerationSpan
	Describes the responsibility of the transfer. Possible values are:

BuyerToPrinterDeliver – the buyer delivers the artwork to the printer. The printer may specify in the quote a special Contact with ContactTypes including Delivery, where the buyer should send the artwork.

BuyerToPrinterPickup – the printer picks up the artwork. The Contact with ContactTypes including pickup describes, where the printer has to pick up the artwork.

	ArtDelivery +

Modified in JDF 1.1
	element
	Individual delivery.

	Company ?

Deprecated in JDF 1.1
	refelement
	Address and further information of the art delivery. This must only be specified if the printer is expected to pick up the art delivery at this address. Defaults to an empty element, i.e., the art is delivered to the printer.

	Contact *

New in JDF 1.1
	refelement
	Address and further information about the transfer of the artwork. The actual delivery address is specified as the Address of the Contact with ContactTypes including Delivery. Only one Contact with ContactTypes including Delivery may be specified. The actual pickup address is specified as the Address of the Contact with ContactTypes including Pickup. Only one Contact with ContactTypes including Pickup may be specified.

Structure of ArtDelivery Elements

Each ArtDelivery element defines a set of existing products that are required to create the specified product. Attributes that are specified in an ArtDelivery element overwrite those that are specified in their parent ArtDeliveryIntent element. If optional attributes are not specified, their values default to the values specified in ArtDeliveryIntent.

	Name
	Data Type
	Description

	Amount ?
	integer
	Number of physical objects to be delivered. Only valid if no detailed resource description, i.e. ExposedMedia​, RunList, ScanParams or Tool is specified.

	ArtDeliveryDate ?

New in JDF 1.1
	TimeSpan
	Specifies the latest time by which the transfer of the artwork will be made.

	ArtDeliveryDuration ?

New in JDF 1.1
	Duration​Span
	Specifies the latest time by which the transfer will be made relative to the date of the purchase order. Within an RFQ or a Quote only one of either ArtDeliveryDate or ArtDeliveryDuration may be specified. Within a purchase order only the ArtDeliveryDate is allowed.

	ArtDeliveryType

New in JDF 1.1
	NMTOKEN
	Type of artwork supplied. Possible values include:

DigitalMedia – Digital data on media such as a CD.

DigitalNetwork – Digital data via network.
ExposedPlate – preexposed press plates, usually used for a rerun.

ImposedFilm – Film of the imposed surfaces.

LooseFilm – Film of individual pages or sections.
OriginalPhysicalArt – analog artwork, e.g. reflective or transparencies

Proof – physical proof delivered with digital scan or separated film asset.

Tool – Tools required for processing the job, e.g. a Die for Die cutting or embossing stamp.
None – No artwork exists and it must be created

	ArtHandling ?

New in JDF 1.1
	Enumeration​Span
	Describes what should happen to the artwork after usage. The return or pickup address must be specified by a Contact with ContactTypes including “ArtReturn”. Possible values are:

ReturnWithProof – the artwork is delivered back to the customer together with the proof, if there is any.

ReturnWithProduct – the artwork is delivered back to the customer together with the final product.

Return – the artwork is delivered back independently directly after usage.

Pickup – the customer picks up the artwork

Destroy – the printer must destroy the artwork

PrinterOwns – the artwork belongs to the printer

Store – the printer has to store the artwork for future purposes

Defaults to the value of ArtHandling in ArtDeliveryIntent.

	DeliveryCharge ?

New in JDF 1.1
	EnumerationSpan
	Specifies who pays for a delivery being made by a 3rd party. Possible values are:

Printer

Buyer

Defaults to the value of DeliveryCharge in ArtDeliveryIntent

	HasBleeds ?
	boolean
	If true, the file has bleeds.

Default = false.

	IsTrapped ?
	boolean
	If true, the file has been trapped.

Default = false.

	Method ?
	NameSpan
	Identifies a required delivery method, may be either a generic item from the following list:

EMail,

ExpressMail,

InterofficeMail,

OvernightService,

Courier,

CompanyTruck.

May also be a delivery service brand. For example:

UPS

DHL

FedEx

Defaults to the value of Method in ArtDeliveryIntent.

	PageList ?
	IntegerRangeList
	Set of pages of the output Component that are filled by this ArtDelivery. This maps the pages in the ArtDelivery to the Pages in the product that is produced. For example if PageList = “3~5”, page 0 of the ArtDelivery (e.g., RunList) is page 3 in the product, page 1 is page 4, etc. Default = “0~-1”, i.e., all pages in reader order.

	PreflightOutput ?

New in JDF 1.1
	URL
	Pointer to the output information created by the preflight tool, if PreflightStatus is either WithoutErrors or WithErrors.

	PreflightStatus ?

New in JDF 1.1
	enumeration
	Information about a preflight process. The values are identical to those of PreflightStatus in ArtDeliveryIntent.
Defaults to the value of PreflightStatus in ArtDeliveryIntent.

	ReturnMethod ?

New in JDF 1.1
	NameSpan
	Identifies a required delivery method for returning the artwork, if ArtHandling = Return. Defaults to the value of ReturnMethod in ArtDeliveryIntent.

	Transfer ?

New in JDF 1.1
	EnumerationSpan
	Describes the responsibility of the transfer. The values are identical to those of Transfer in ArtDeliveryIntent.
Defaults to the value of Transfer in ArtDeliveryIntent.

	Company ?

Deprecated in JDF 1.1
	refelement
	Address and further information about the art delivery. This must only be specified if the printer is expected to pick up the art delivery at this address. Defaults to the value of Company specified in the parent ArtDeliveryIntent.

	Component ?

Deprecated in JDF 1.1
	refelement
	Description of a physical component, e.g., physical artwork. If neither Component, ExposedMedia nor RunList are specified, no details of the ArtDelivery except the ArtDeliveryType and Amount are known.

	Contact *
New in JDF 1.1
	refelement
	Address and further information about the art transfer. Defaults to the value of Contact specified in the parent ArtDeliveryIntent.

	ExposedMedia​ ?
	refelement
	Description of exposed media, e.g., film, plate or proof. If neither ExposedMedia, RunList, nor Tool are specified, no details of the ArtDelivery except the ArtDeliveryType and Amount are known.

	RunList ?
	refelement
	Link to digital artwork. If neither ExposedMedia, RunList, nor Tool are specified, no details of the ArtDelivery except the ArtDeliveryType and Amount are known.

	ScanParams ?
	refelement
	Description of a ScanParams that defines scanning details for the exposed media defined by ExposedMedia.

	Tool ?

New in JDF 1.1
	refelement
	Details of the Tool if ArtDeliveryType = “Tool”. If neither ExposedMedia, RunList, nor Tool are specified, no details of the ArtDelivery except the ArtDeliveryType and Amount are known.

7.1.3 BindingIntent

Modified in JDF 1.2
[Removed duplicate StripBind value in BindingType, DEPRECATED BookCase element reference in BindingIntent/BindList/BindItem element to agree with JDF/1.1 DEPRECATION of BindingIntent/BindList/BindItem/BookCase subelement]
This resource specifies the binding intent for a JDF job using information that identifies the type of binding required and which side is to be bound. The input components that are used as a cover should have a ProcessUsage of Cover. The input components that are used as a hard cover jacket should have a ProcessUsage of Jacket. All other input components are bound in the order of their appearance in the ResourceLinkPool of the JDF node that contains the BindingIntent.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BackCoverColor ?

New in JDF 1.1
	Enumeration​Span
	Defines the color of the back cover material of the binding. Allowed values are defined in Appendix A.2.8 NamedColor. If not specified, it defaults to the values defined in CoverColor.

	BindingOrder ?

New in JDF 1.1
	enumeration
	Specifies whether the child Components should be collected or gathered if multiple child Components are combined. One of:

Collecting: The child Components are collected on a spine and placed within one another. The first Component is on the outside.

Gathering: The child Components are gathered on a pile and placed on top of one another. The first Component is on the top. The default.

List: More complex ordering of child Components is specified using the BindList in this intent resource for this product.

	BindingColor ?
	Enumeration​Span
	Defines the color of the spine material of the binding. Allowed values are defined in Appendix A.2.8 NamedColor.

Default = don’t care, i.e., system specified.

	BindingLength ?
	Enumeration​Span
	Indicates which side should be bound when no content and, thus, no orientation is available but a quote for binding is required. Possible values are:
Long – The default, if neither BindingLength nor BindingSide were specified.

Short

	BindingSide ?
	Enumeration​Span
	Indicates which side should be bound. Possible values are:
Top

Bottom

Right

Left
Each of these values is intended to identify an edge of the job. These edges are defined relative to the orientation of the first page in the job with content on it. Default = BindingLength value, unless non-empty BindList was specified. If both BindingSide and BindingLength are specified, BindingSide has precedence.

	BindingType

Modified in JDF 1.1
	EnumerationSpan
	Describes the desired binding for the job. Possible values are:

Adhesive – This type of binding can be handled with the AdhesiveBinding process. It includes perfect binding. Deprecated in JDF1.1 and replaced with SoftCover or HardCover.

ChannelBinding – This type of binding can be handled with the ChannelBinding process.
CoilBinding – This type of binding can be handled with the CoilBinding process.
EdgeGluing – Gluing gathered sheets at one edge of the pile. This Type of Binding can be handled with the Gluing process.
HardCover – This type of binding defines a hard cover bound book.

LooseBinding – This type of binding defines a stack of pages with no additional binding.

PlasticComb – This type of binding can be handled with the PlasticCombBinding process.
Ring – This type of binding can be handled with the RingBinding process.
SaddleStitch – This type of binding can be handled with the Stitching process.
Sewn – This type of binding can be handled with the ThreadSewing process.

SideSewn – This type of binding can be handled with the ThreadSewing process.
SideStitch – This type of binding can be handled with the Stitching process.
SoftCover – This type of binding defines a soft cover bound book. It includes perfect binding.

StripBind – This type of binding can be handled with the StripBinding process.
Tape – This type of binding is an inexpensive version of the SoftCover.

ThreadSealing – This type of binding can be handled with the ThreadSealing process.

WireComb – This type of binding can be handled with the WireCombBinding process.

	CoverColor ?
	EnumerationSpan
	Defines the color of the cover material of the binding. Allowed values are defined in Appendix A.2.8 NamedColor.

Default = don’t care, i.e., system specified.

	AdhesiveBinding ?

Deprecated in JDF 1.1
	element
	Details of AdhesiveBinding.

	BindList ?

New in JDF 1.1
	element
	Details of binding of individual child Components.

	BookCase ?

Deprecated in JDF 1.1
	element
	Details of the book Case. Used in Combination with AdhesiveBinding ,ThreadSewing or ThreadSealing.

	ChannelBinding ?
	element
	Details of ChannelBinding. Default = ChannelBinding value.

	CoilBinding ?
	element
	Details of CoilBinding. Default = CoilBinding value.

	EdgeGluing ?

New in JDF 1.1
	element
	Details of EdgeGluing. Default = EdgeGluing value.

	HardCoverBinding ?

New in JDF 1.1
	element
	Details of HardCoverBinding. Default = HardCoverBinding value.

	PlasticCombBinding ?
	element
	Details of PlasticCombBinding.

Default = PlasticCombBinding value.

	RingBinding ?
	element
	Details of RingBinding. Default = RingBinding value.

	SaddleStitching ?
	element
	Details of SaddleStitching. Default = SaddleStitching value.

	SideSewing ?
	element
	Details of SideSewing. Default = SideSewing value.

	SideStitching ?
	element
	Details of SideSewing. Default = SideSewing value.

	SoftCoverBinding ?

New in JDF 1.1
	element
	Details of SoftCoverBinding. Default = SoftCoverBinding value.

	Tape ?

New in JDF 1.1
	element
	Details of Tape binding. Default = Tape value.

	Tabs ?
	element
	Details of Tabs. Default = no tabs

	ThreadSealing ?
	element
	Details of ThreadSealing. Default = ThreadSealing value.

	ThreadSewing?
	element
	Details of ThreadSewing. Default = ThreadSewing value.

	StripBinding ?

New in JDF 1.1
	element
	Details of StripBinding.

Default = StripBinding value.

	VeloBinding ?

Deprecated in JDF 1.1
	element
	Details of VeloBinding. Renamed to StripBinding in JDF 1.1.

	WireCombBinding ?
	element
	Details of WireCombBinding. Default = WireCombBinding value.

Structure of BindList Subelement

New in JDF 1.1
	Name
	Data Type
	Description

	 BindItem *
	element
	Individual bind item description.

Default = BindingIntent::BindingSide value if empty, i.e., as if the BindList element weren’t there.

Structure of BindItem Subelement

New in JDF 1.1
	Name
	Data Type
	Description

	BindingType ?
	Enumeration​Span
	Describes the desired binding for the individual BindItem. The list of possible values is defined in BindingIntent:BindingType.
Defaults to the value specified in the parent BindingIntent.

	ChildFolio ?
	XYPair
	Definition of the fold between two pages in the BindItem component that is bound to the cover. The two numbers in the ChildFolio attribute are the page numbers of the two outer pages of the child Component, which touch the cover or an other child Component. The pages are counted in the order, which is described in FolioCount of the child product. Defaults to the spine of the child.

	ParentFolio
	XYPair
	Definition of the fold between two pages in the Cover Component that receive the BindItem. The two numbers in the ParentFolio attribute are the page numbers in the Cover Component, which touch the child Component. The pages are counted in the order, which is described in FolioCount of the cover product.

	Transformation ?
	matrix
	Rotation and offset between the Component to be inserted and the “parent” Component. For details on transformations, see How and Where Coordinates and Transformations Are Used/Defined in JDF.

	WrapPages ?
	Integer​Range​List
	List of pages of the Cover that wrap around a BindItem after all folds are correctly positioned. It is sufficient to specify the pages of the Front surface of the cover. Note that this key must only be specified if the folding is ambiguous. Default = empty list.

	BookCase ?
Deprecated in JDF 1.2
	element
	Details of the hard cover book Case. Used in Combination with HardCoverBinding.

	ChannelBinding ?
	element
	Details of ChannelBinding.

	CoilBinding ?
	element
	Details of CoilBinding.

	EdgeGluing ?
	element
	Details of EdgeGluing.

	HardCoverBinding ?
	element
	Details of HardCoverBinding.

	PlasticCombBinding ?
	element
	Details of PlasticCombBinding.

	RingBinding ?
	element
	Details of RingBinding.

	SaddleStitching ?
	element
	Details of SaddleStitching.

	SideSewing ?
	element
	Details of SideSewing.

	SideStitching ?
	element
	Details of SideStitching.

	SoftCoverBinding ?
	element
	Details of SoftCoverBinding.

	Tape ?
	element
	Details of Tape binding.

	Tabs ?
	element
	Details of Tabs.

	ThreadSealing ?
	element
	Details of ThreadSealing.

	ThreadSewing?
	element
	Details of ThreadSewing.

	StripBinding ?
	element
	Details of StripBinding.

	WireCombBinding ?
	element
	Details of WireCombBinding.

Structure of the AdhesiveBinding Subelement.

Deprecated in JDF 1.1
	Name
	Data Type
	Description

	Scoring ?
	EnumerationSpan
	Scoring option for AdhesiveBinding. Possible values are:

TwiceScored

QuadScored

None

Values are based on viewing the cover in its flat prebinding state.

	SpineGlue ?
	EnumerationSpan
	Glue type used to define AdhesiveBinding procedures. Possible values are:

ColdGlue

Hotmelt

PUR – Polyurethane Rubber

	TapeBinding ?

	OptionSpan
	If true, a cloth tape which has been preglued with hot-melt adhesive is used in AdhesiveBinding the unmilled block., e.g., FastBack or DocuTech binding.

Default = false

Structure of the BookCase Subelement.

Deprecated in JDF 1.1
This subelements contains details of the book case for hard cover book binding. The actual binding parameters are set in the appropriate AdhesiveBinding, ThreadSewing or ThreadSealing elements.

	Name
	Data Type
	Description

	HeadBands ?
	OptionSpan
	The following CaseBinding choice specifies the use of headbands on a case bound book.

If true, headbands are inserted both top and bottom.

Default = false.

	Shape ?
	Enumeration​Span
	Indicates the shape of the “back” or spine of a Casebound book. Possible values are:

RoundedBack

SquareBack

	Thickness ?
	NumberSpan
	Specifies thickness of board which is wrapped as front and back covers of a case bound book, in points.

Structure of the ChannelBinding Subelement.

	Name
	Data Type
	Description

	Cover ?
	OptionSpan
	If true, the clamp used in ChannelBinding includes a preassembled cover.

Default = false

	Thickness ?
	NumberSpan
	Specifies thickness of board which is wrapped as front and back covers of a Case bound book, in points.

Default = system specified.

Structure of the CoilBinding Subelement.

	Name
	Data Type
	Description

	CoilMaterial ?
	EnumerationSpan
	The coil materials available for CoilBinding. Possible values are:

Steel – plain steel

ColorCoatedSteel – coated steel

Plastic – plastic

Default = system specified

Structure of the EdgeGluing Subelement.

New in JDF 1.1
	Name
	Data Type
	Description

	EdgeGlue ?
	Enumeration​Span
	Glue type used to glue the edge of the gathered sheets. Possible values are:

ColdGlue

Hotmelt

PUR – Polyurethane Rubber

Default = system specified

Structure of the HardCoverBinding Subelement.
New in JDF 1.1
	Name
	Data Type
	Description

	BlockThreadSewing ?
	OptionSpan
	Option if the block is also thread sewn.

Default = false

	EndSheets ?
	OptionSpan
	Option if end sheets are applied.

Default = true

	StripMaterial ?
	Enumeration​Span
	SpineTaping strip material. Possible values are:

Calico

Cardboard

CrepePaper

Gauze

Paper

PaperlinedMules

Tape

	HeadBands ?
	OptionSpan
	The following CaseBinding choice specifies the use of headbands on a case bound book.

If true, headbands are inserted both top and bottom.

Default = false.

	HeadBandColor ?
	Enumeration​Span
	Defines the color of the headband. Allowed values are defined in Appendix A.2.8 NamedColor.

	Jacket ?
	EnumerationSpan
	Specifies whether a hard cover jacket is needed and how it is attached. If specified, details of the jacket are described in the Component with ProcessUsage of Jacket. Possible values:

None: No jacket is required.

Loose: The jacket is loosely wrapped.

Glue: Jacket is glued to the spine

Default = None

	JapanBind ?
	OptionSpan
	Bind the book block at the open edge, so that the folds are visible on the outside. Default = false.

	SpineBrushing ?
	OptionSpan
	Brushing option for SpinePreparation.

	SpineFiberRoughing ?
	OptionSpan
	FiberRoughing option for SpinePreparation.

	SpineGlue ?
	Enumeration​Span
	Glue type used to glue the book block to the cover. Possible values are:

ColdGlue

Hotmelt

PUR – Polyurethane Rubber

	SpineLevelling ?
	OptionSpan
	Leveling option for SpinePreparation.

	SpineMilling ?
	OptionSpan
	Milling option for SpinePreparation.

	SpineNotching ?
	OptionSpan
	Notching option for SpinePreparation.

	SpineSanding ?
	OptionSpan
	Sanding option for SpinePreparation.

	SpineShredding ?
	OptionSpan
	Shredding option for SpinePreparation.

	Thickness ?
	NumberSpan
	Specifies thickness of board which is wrapped as front and back covers of a case bound book, in points.

	TightBacking ?
	Enumeration​Span
	Definition of the geometry of the back of the book block. This can be one of:

Flat: The default

Round: rounding way,

FlatBacked: backing way,

RoundBacked, rounding way, backing way.

	RegisterRibbon*
	refelement
	Number, materials, colors and details of register ribbons.

Structure of the PlasticCombBinding Subelement.

	Name
	Data Type
	Description

	PlasticCombType ?

Modified in JDF 1.1
	NameSpan
	The distance between the “teeth” in PlasticCombBinding and the distance between the holes of the prepunched sheets must be the same. The following values from the hole type catalog in Appendix L exist:

P12m-rect-02: Distance = 12 mm; Holes = 7 mm x 3 mm

P16_9i-rect-0t: Distance = 14.28 mm; Holes = 8 mm x 3 mm

The following values are deprecated in JDF 1.1.

Euro – Distance = 12 mm; Holes = 7 mm x 3 mm

USA1 – Distance = 14.28 mm; Holes = 8 mm x 3 mm

Default = system specified

Structure of the RingBinding Subelement.

	Name
	Data Type
	Description

	BinderMaterial ?
	NameSpan
	The following describe RingBinding binder materials used. Values include:

Cardboard – Cardboard with no covering.

ClothCovered – Cardboard with cloth covering.
Plastic – Binder cover fabricated from solid plastic sheet material, e.g., PVC sheet.
VinylCovered – Cardboard with colored vinyl covering.

Default = system specified

	HoleType ?

New in JDF 1.1
	EnumerationSpan
	Predefined hole pattern for the ring system. Multiple hole patterns are not allowed, e.g., 3-hole ring binding and 4-hole ring binding holes on one piece of media. For details of the hole types, refer to Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values include:

	
	
	R2-generic

R2m-DIN

R2m-ISO

R2i-US-a

R2i-US-b

R3-generic.
R3i-US

R4-generic
R4m-DIN-A4

R4m-DIN-A5

R4m-swedish

R4i-US
	R5-generic

R5i-US-a

R5i-US-b

R5i-US-c

R6-generic

R6m-4h2s

R6m-DIN-A5

R7-generic

R7i-US-a

R7i-US-b

R7i-US-c

R11m-7h4s

	RingDiameter ?
	NumberSpan
	Size of the rings in points.

Default = system specified, but suitable for specified HoleType (s).

Note: In ring shapes other than round, this size is specified by industry-standard method.

	RingMechanic ?
	OptionSpan
	The ring binder used includes a lever for opening and closing.

Default = false

	RingShape ?
	NameSpan
	The following RingBinding shapes are used:

Round: the default.
Oval

D-shape

SlantD

	RingSystem

Deprecated in JDF 1.1
	NameSpan
	The following values are deprecated from JDF 1.1

2HoleEuro

3HoleUS

4HoleEuro
These have been replaced by HoleType.

	RivetsExposed ?
	OptionSpan
	The following RingBinding choice describes mounting of the ring mechanism in binder case.

If true, the heads of the rivets are visible on the exterior of the binder. If false, the binder covering material covers the rivet heads.

Default = true.

	ViewBinder ?
	NameSpan
	The following RingBinding clear vinyl outer wrap types are used on top of a colored base wrap:

Embedded – Printed material is embedded by sealing between the colored and clear vinyl layers during the binder manufacturing.

Pocket – Binder is designed so that Printed material may be inserted between the color and clear vinyl layers after the binder is manufactured.

Default = Pocket

Structure of the SaddleStitching Subelement.

	Name
	Data Type
	Description

	StitchNumber ?

New in JDF 1.1
	Integer​Span
	Number of stitches used for saddle stitching.

Default = system specified.

Structure of the SideSewing Subelement.

This is a placeholder that may be filled with private or future data.

	Name
	Data Type
	Description

Structure of the SideStitching Subelement.

This is a placeholder that may be filled with private or future data.

	Name
	Data Type
	Description

Structure of the SoftCoverBinding Subelement.

New in JDF 1.1
	Name
	Data Type
	Description

	BlockThreadSewing ?
	OptionSpan
	Specifies whether the block is also thread sewn.

Default = false

	GlueProcedure ?
	Enumeration​Span
	Glue procedure used to glue the book block to the cover. Possible values are:

Spine:

SideOnly: Glued at the side/endsheets but not the spine.

SingleSide: Swiss Brochure

SideSpine: Both side gluing and SpineGluing. The default.

	Scoring ?
	EnumerationSpan
	Scoring option for SoftCoverBinding. Possible values are:

TwiceScored

QuadScored

None

Values are based on viewing the cover in its flat prebinding state.

	SpineBrushing ?
	OptionSpan
	Brushing option for SpinePreparation.

	SpineFiberRoughing ?
	OptionSpan
	FiberRoughing option for SpinePreparation.

	SpineGlue ?
	Enumeration​Span
	Glue type used to glue the book block to the cover. Possible values are:

ColdGlue

Hotmelt

PUR – Polyurethane Rubber

	SpineLevelling ?
	OptionSpan
	Leveling option for SpinePreparation.

	SpineMilling ?
	OptionSpan
	Milling option for SpinePreparation.

	SpineNotching ?
	OptionSpan
	Notching option for SpinePreparation.

	SpineSanding ?
	OptionSpan
	Sanding option for SpinePreparation.

	SpineShredding ?
	OptionSpan
	Shredding option for SpinePreparation.

Structure of the Tape Subelement.

New in JDF 1.1
	Name
	Data Type
	Description

	TapeColor ?
	EnumerationSpan
	Defines the color of the tape material of the binding. Allowed values are defined in Appendix A.2.8 NamedColor.

Default = don’t care, i.e., system specified

Structure of the Tabs Subelement.

Specifies tabs.

	Name
	Data Type
	Description

	TabBanks ?
	Integer
	Number of rows of tabs on the face of the book. Default = 1

	TabsPerBank ?
	Integer
	Number of equal-sized tabs in a single bank, if all positions were filled. Default = don’t care, i.e., system specified.

Note: Banks may have tabs only in some of the possible positions

	TabExtensionDistance ?
	NumberSpan
	Distance tab extends beyond the body of the book block, in points.

Default = system specified

	TabExtensionMylar ?
	OptionSpan
	If true, the tab extension will be mylar reinforced

Default = false

	TabBindMylar ?
	OptionSpan
	If true, the tab bind edge will be mylar reinforced

Default = false

	TabBodyCopy ?
	OptionSpan
	If true, Color will be applied not only on tab extension, but also on tab body.

Note: Lack of body copy allows all tabs within a bank to be printed on a single sheet.

Default = false

	 TabMylarColor ?
	EnumerationSpan
	Specifies the color of the mylar used to reinforce the tab extension. This is conditional on TabExtensionMylar being true. Allowed values are defined in Appendix A.2.8 NamedColor.

Default = don’t care, i.e., system specified

Structure of the ThreadSealing Subelement.

This is a placeholder that may be filled with private or future data.

	Name
	Data Type
	Description

Structure of the ThreadSewing Subelement.

This is a placeholder that may be filled with private or future data.

	Name
	Data Type
	Description

	Sealing ?
	OptionSpan
	If true, thermo-sealing is required in ThreadSewing.

Structure of the StripBinding Subelement.

New in JDF 1.1
This is a placeholder that may be filled with private or future data.

	Name
	Data Type
	Description

Structure of the VeloBinding Subelement.

Deprecated in JDF 1.1

This is a placeholder that may be filled with private or future data.

	Name
	Data Type
	Description

Structure of the WireCombBinding Subelement.

	Name
	Data Type
	Description

	WireCombMaterial ?
	EnumerationSpan
	The material used for forming the WireCombBinding. Possible values are:

Steel-Silver – The default if BindingColor is specified as silver, otherwise ColorCoatedSteel.

ColorCoatedSteel

	WireCombShape ?
	EnumerationSpan
	The shape of the WireCombBinding. Possible values are:

Single – Each “tooth” is made with one wire
Twin – The shape of each “tooth” is made with a double wire, e.g., Wire-O.

Default = system specified

7.1.4 ColorIntent

Modified in JDF 1.2
[Added 2 attributes: ColorManagementSystem and ICCProfileSequence, added 5 refelements: AutomatedOverprintParams, ColorantAlias, ColorSpaceConversionOp, FileSpec (ActualOutputProfile), FileSpec (ReferenceOutputProfile), added values to and deprecated other values of ColorStandard, changed SeparationSpec * to a refelement for consistency, added Table NN - Mapping of ColorSpaceConversion output profile resources, 3 ISSUEs (Color WG), ISSUE (publish ISSUE in JDF/1.2 spec), ACTION (ICC Liaison to CIP4, Ann McCarthy)]
This resource specifies the type of ink to be used. Typically, the parameters consist of a manufacturer name and additional identifying information. The resource also specifies any coatings and colors to be used, including the process color model and any spot colors.

Resource Properties

Resource class:
Intent

Example Partition:
Option, PageNumber, Side
Resource referenced by:
-

Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Coatings ?

Modified in JDF 1.1
	StringSpan
	Material usually applied to a full surface on press as a protective or gloss enhancing layer over ink. Possible values include:

DullVarnish

GlossVarnish

UV

Aqueous

Silicone

The individual strings within Coatings are of type NMTOKENS and may contain multiple entries from the above list.

	ColorManagementSystem ?
New in JDF 1.2
	NameSpan
	Identifies the preferred ICC color management system to use when performing color transformations. When specified, this attribute overrides any default selection of a color management system by an application and overrides the ‘CMM Type’ value (bytes 4-7 of an ICC Profile Header) in any of the job related ICC profiles. This string attribute value identifies the manufacturer of the preferred CMM and must match one of the registered four-character ICC CMM Type values. See the ICC Manufacturer's Signature Registry at http://www.color.org. Example values: "ADBE" for the Adobe CMM, and “KODA” for the Kodak CMM.
ISSUE (publish ISSUE in JDF/1.2 spec): The ICC Manufacter’s Registry is not specific to CMM, so some CMM manufacturers, such as Adobe, have registered without any devices. Other CMM manufacturers, such as Microsoft, haven’t registered. The ICC has indicated that it is low priority to create a separate CMM Manufacturer Registry.
ACTION (ICC Liaison to CIP4, Ann McCarthy): The ICC (Technical Secretary Tony Johnson) has accepted the Action Request (June 4, 2003) to see that all CMM Manufactures register a 4-byte signature in a CMM Manufacturer’s Registry.

	ColorStandard ?
Modified in JDF 1.2
	NameSpan
	The color process (i.e., printing condition) standard requested for the job. Possible values are defined as NMTOKEN by removing SPACE characters from the standard or registration designation and preserving case. Possible values include:

CMYK – Generic four color process.
FIRST – Flexographic Image Reproduction Specifications & Tolerances. Deprecated in JDF 1.2 Characterization data correspoding to specific printing conditions derived from the FIRST standard need to be registered with the ICC.
GRACOL – General Requirements for Applications in Commercial Offset Lithography Deprecated in JDF 1.2 Multiple characterization data sets correspoding to specific printing conditions derived from the GRACOL standard are expected to be registered with the ICC.
GrayScale – Generic single color, multi-level printing condition. See also Monochrome.New in JDF 1.2
Hexachrome – 6 Colors CMYK+Orange and Green.
HIFI – 7 Colors CMYK+Red, Green and Blue.
In addition to the pre-defined values specified in this document, the ColorStandard attribute value can also include any Characterization Data registered with the ICC (http://www.color.org/drsection1.html). In this case the syntax will be ICC:ReferenceName as shown in the examples below. See section 3.11.4 “Extending NMTOKEN Lists” for the use of prefixes with NMTOKEN.
The following example values have been registered with the ICC. The values are taken from the Reference Name field in the ICC Registry and prefixed with "ICC:" to indicate that these names are taken from the ICC registry with the SPACE characters removed and case preserved. Any additional values from the ICC Registry may be used as long as they are prefixed with "ICC:" with SPACE characters removed and case preserved:

ICC:OFCOMPOP1F60 - Registerd by FOGRA with the ICC pertaining to printing condition: offset commercial and speciality printing according to ISO 12647-2, positive plates, paper type 1 (gloss-coated, above 70 g/m2), screen frequency 60/cm.
ICC:OFCOMPOP2F60 - Registerd by FOGRA with the ICC pertaining to printing condition: offset commercial and specialty printing according to ISO 12647-2, positive plates, paper type 2 (matte-coated, above 70 g/m2), screen frequency 60/cm.
…
New in JDF 1.2
ISO12647 – ISO offset standard. Deprecated in JDF 1.2 Characterization data correspoding to specific printing conditions derived from the ISO 12647 standard need to be registered with the ICC.
JapanColor2001 – Japan Color 2001 standard [JapanColor].
Monochrome – Generic single color, bi-level printing condition, e.g., Black and white. See also GrayScale. Modified in JDF 1.2
None – No marks. Used to define one-sided printing. Deprecated in JDF 1.2, instead use LayoutIntent Sides.
SNAP – Specifications for Newsprint Advertising Production

SWOP – Specifications for Web Offset Publications. Registered by ANSI with the ICC as ICC:CGATSTR001 pertaining to printing conditions that conform to ANSI CGATS.6 which is based on Publication printing in the US as defined by SWOP.

	Coverage ?
	NumberSpan
	Cumulative colorant coverage percentage. For example, a full sheet of 100% deep black in CMYK has Coverage = “400". Typical coverages based on one color plane are:

Light = 1-9%

Medium= 10-35%

Heavy= 36+%

	ICCProfileSequence
New in JDF 1.2
	enumeration
	This attribute indicates whether the customer requests:

1. a two-stage source to destination conversion with intent to simulate a Reference Output (e.g., source is RGB, print "like SWOP" on a digital press), or
2. a one-stage source-to-destination conversion (e.g., source is CMYK - print to digital press, OR source is RGB - print to press with no intent to simulate a Reference Output).
See table below for additional information.
Also, this attribute specifies where to obtain the Reference Output profile and/or Actual Output target device profile, i.e., either from the PDF/X job content, from originator through the ColorIntent, or from the print provider – when the ColorSpaceConversionParams are populated. The customer may supply either or both of the Reference Output and Actual Output target printer profiles. Possible values are:
OneStageActualPDFX – Use embedded PDF/X ICC output profile with no Reference Output simulation. Only one iteration of ColorSpaceConversion is required. This value is valid for both ColorIntent and ColorSpaceConversionParams.

Note that this case would be valid for either PDF/X or PDF. In the case of PDF – because no embedded PDF ICC output profile exists – then this case would mean (“use JDF supplied ActualOutputProfile ICC output profile with no Reference Output simulation.” If no ActualOutputProfile is supplied in the ColorIntent, then the ActualOutputProfile is defined by the print provider.This case would enable creation of a common job ticket for PDF and PDF/X versions of a job.

Note that the ColorSpaceConversionParams/FileSpec attribute is ignored in the ColorSpaceConversion process iteration WHEN ICCProfileSequence = OneStageActualPDFX AND the job content is supplied in a PDF/X file that contains the required embedded ICC output profile.

TwoStageReferencePDFX – Use embedded PDF/X ICC output profile as the ICC Reference Output simulation profile – to be followed by a second iteration of ColorSpaceConversion with ICCProfileSequence = TwoStageActualJDF.

Note: In the ColorIntent resource, the values TwoStageReferencePDFX and TwoStageActualJDF may occur together to define this case. Alternatively, if no FileSpec “ActualOutputProfile” is supplied in the ColorIntent, then the Actual Output ICC profile is supplied by the print provider – based on the specified Printing Conditions – when the print production ColorSpaceConversionParams are populated.
Note that the ColorSpaceConversionParams/FileSpec attribute is ignored in the ColorSpaceConversion process in which ICCProfileSequence = TwoStageReferencePDFX.
TwoStageActualPDFX – Use embedded PDF/X ICC output profile as the ICC Actual Output profile. This iteration has been preceded by a prior iteration of ColorSpaceConversion with ICCProfileSequence = TwoStageReferenceJDF.

Note: In the ColorIntent resource, the values TwoStageReferenceJDF and TwoStageActualPDFX should occur together. Alternatively, if no FileSpec “ReferenceOutputProfile” is supplied in the ColorIntent, then the Reference Output ICC profile is supplied by the print provider – based on the ColorIntent/ColorStandard – when the print production ColorSpaceConversionParams are populated.
Note that the ColorSpaceConversionParams/FileSpec attribute is ignored in the ColorSpaceConversion process in which ICCProfileSequence = TwoStageActualPDFX.
OneStageActualJDF – Use FileSpec supplied “ActualOutputProfile” ICC output profile with no Reference Output simulation. Only one iteration of ColorSpaceConversion is required.

Note that this case would be valid for either PDF/X or PDF. This case would enable creation of a common job ticket for PDF and PDF/X versions of a job.

TwoStageActualJDF – Use FileSpec supplied “ActualOutputProfile” ICC output profile – in a second stage ColorSpaceConversion iteration that is sequenced after a prior ColorSpaceConversion iteration that used the embedded PDF/X ICC output profile (with ICCProfileSequence = TwoStageReferencePDFX) or that used a supplied ICC profile (ICCProfileSequence = TwoStageReferenceJDF) as the Reference Output simulation profile.

Note that if ICCProfileSequence = TwoStageActualJDF – and no ICCProfileSequence = TwoStageReferencePDFX or ICCProfileSequence = TwoStageReferenceJDF is present, and FileSpec “ReferenceOutputProfile” is NOT supplied in the ColorIntent, then the Reference Output ICC profile is supplied by the print provider – based on the ColorIntent/ColorStandard – when the print production ColorSpaceConversionParams are populated.
TwoStageReferenceJDF – Use FileSpec supplied “ReferenceOutputProfile” ICC output profile as the ICC Reference Output simulation profile. This iteration is to be followed by a second iteration of ColorSpaceConversion with ICCProfileSequence = TwoStageActualPDFX or with ICCProfileSequence = TwoStageActualJDF.

When both the Reference Output simulation profile and the Actual Output target profile are supplied in the ColorIntent resource then TwoStageActualJDF and TwoStageReferenceJDF must occur in the ICCProfileSequence attribute in the ColorIntent resource.

Note that Reference Output simulation and Actual Output target profile combinations may be used to accomplish either proofing, or final output target rendering which includes “simulation” of another printer’s output behavior.

ISSUE (Color WG): Is this new ICCProfileSequence attribute OK to add to JDF/1.2?

	InkManufacturer ?
	NameSpan
	Name of the manufacturer of the ink requested, e.g.:

Toyo

Sun

Gans

	AutomatedOverprint​Params ?
New in JDF 1.2
	refelement
	A resource that provides controls for the automated selection of overprinting of black text or graphics.

	ColorantAlias *
New in JDF 1.2
	refelement
	Each resource instance specifies a replacement colorant name string to be used instead of one or more named colorant strings. Each resouce instance also defines the mapping method for the color values for the replacement colorant. When the MappingSelection attribute value is UseProcessColorValues, then ColorPool must be present. The specific color values for the named colorant resulting from the aliasing can be defined in ColorPool.

	ColorPool ?

New in JDF 1.1
	refelement
	Additional details about the colors used. A resource that identifies the colorant values that should be mapped to a named colorant. The named colorant may map from the results of ColorantAlias.

	ColorSpaceConversionOp *
New in JDF 1.2
	refelement
	List of ColorSpaceConversionOp subelements, each of which identifies a type of object, defines the source colorspace for that type of object, and specifies the behavior of the conversion operation for that type of object. If not present, the default conversion behavior is derived from ColorStandard.

	ColorsUsed ?
	element
	Array of color separation names that are requested. If not specified, the values are implied from ColorStandard.

If additional information about the colors is required, it can be specified in the referenced ColorPool resource.

	FileSpec ?
New in JDF 1.2
	refelement
	A FileSpec resource pointing to an ICC profile that describes the characterization of the actual output target device. This item is required for a requested color transformation when ICCProfileSequence values include OneStageActualJDF or TwoStageActualJDF. The ResourceUsage attribute of the FileSpec must be "ActualOutputProfile". Note that if the ICCProfileSequence attribute includes values: OneStageActualJDF or TwoStageActualJDF then this FileSpec refelement must be present. ISSUE (Color WG): Is this Description OK?

	FileSpec ?

New in JDF 1.2
	refelement
	A FileSpec resource pointing to an ICC profile that describes a Reference Output print condition behavior that should be simulated as a part of a requested color transformation. This item is required for a requested color transformation when ICCProfileSequence values include TwoStageReferenceJDF. The ResourceUsage attribute of the FileSpec must be "ReferenceOutputProfile". Note that if the ICCProfileSequence attribute includes the TwoStageReferenceJDF then this FileSpec refelement must be present.
ISSUE (Color WG): Is this Description OK?

Structure of the ColorsUsed Subelement

	Name
	Data Type
	Description

	SeparationSpec*

Modified in JDF 1.2
	refelement
	These can be process colors, generic spot colors or specific colors.

In addition, partial coating is specified by adding a SeparationSpec with anything from Coatings as Name:

DullVarnish

GlossVarnish

UV

Aqueous

Bronzing

Silicone

Notes:
The table below shows example interactions between ColorStandard, FileSpec with "ReferenceOutputProfile," FileSpec with "ActualOutputProfile," ICCProfileSequence, and file format.
Table NN – Mapping of ColorSpaceConversion output profile resources.
	Result
	File format
	Reference Output
	Actual Output

	Two stage Color Space Conversion, print provider supplies Actual Output ICC profile – based on Print Conditions (media, screening, printing equipment).
	PDF/X
	ICCProfileSequence = TwoStageReferenceJDF and FileSpec with "ReferenceOutputProfile"

OR
ICCProfileSequence = TwoStageReferencePDFX
	Print provider supplies Actual Output ICC profile – based on Print Conditions (media, screening, printing equipment).

	
	other
	ICCProfileSequence = TwoStageReferenceJDF and FileSpec with "ReferenceOutputProfile"
	Print provider supplies Actual Output ICC profile – based on Print Conditions (media, screening, printing equipment).

	Two stage Color Space Conversion, print provider supplies Reference Output ICC profile – based on ColorStandard value.
	PDF/X
	Print provider supplies Reference Output ICC profile – based on ColorStandard value.
	ICCProfileSequence = TwoStageActualJDF and FileSpec with "ActualOutputProfile"

OR

ICCProfileSequence = TwoStageActualPDFX

Note: If used, the supplied ActualOutputProfile or PDF/X Output Intent must match requested Print Conditions.

	
	other
	Print provider supplies Reference Output ICC profile – based on ColorStandard value.
	ICCProfileSequence = TwoStageActualJDF and FileSpec with "ActualOutputProfile"
Note: If used, the supplied ActualOutputProfile must match requested Print Conditions.

	One stage Color Space Conversion, NO profiles supplied in ColorIntent.
	PDF/X
	ColorStandard is not populated in ColorIntent.
	CASE 1:

PDF/X file contains ICCBased CMYK (or RGB) source profile

 + same model OutputIntent (identifier ‘name’ + registry location + Profile)

(intelligent compare (colorimetric tables) of PDF/X source and output intent profiles to determine if data values are the same
(if same AND if match requested Print Conditions

then no transform
(elseif NOT same OR if do not match requested Print Conditions, then apply color-render path using ICCBased source and color-rendering to PDF/X output intent IFF matches requested Print Condition – else to Print provider supplied Actual Output ICC profile. Using Rendering Intents as follows:
 (in precedence order – 1, 2, or 3)

1. IF Present: JDF Rendering Intent (ColorSpaceConversionOp/RenderingIntent and ColorSpaceConversionOp/SourceRenderingIntent – if present)
2. IFF source is RGB model use Perceptual Rendering Intent

3. Relative Colorimetric Rendering Intent

Case 2:
IF source profile is not there – and data is labeled as DeviceCMYK (or DeviceRGB) + data model (CMYK, RGB) agrees with OutputIntent – then assume data is prepared for that OutputIntent. IF PDF/X output intent matches requested Print Conditions then no transform.

Else (DefaultCMYK definition should not be used for re-purposing or re-targeting.) USE source transform of PDF/X OutputIntent profile and transform to requested Print Conditions. Use Rendering Intents as in Case 1.
Case 3:
IF source profile is not there – and data is labeled as DeviceCMYK (or DeviceRGB) + data model (CMYK, RGB) does NOT agree with OutputIntent – then use PDF “DefaultCMYK” (or DefaultRGB) as source definition. IF PDF/X output intent matches requested Print Conditions then apply OutputIntent profile to prepare for output. Else use Print Provider Actual Output profile. Use Rendering Intents as in Case 1.

	
	other
	ColorStandard is not populated in ColorIntent.
	Print provider supplies Actual Output ICC profile – based on Print Conditions (media, screening, printing equipment).

	Two stage Color Space Conversion, NO profiles supplied in ColorIntent. Reference Output simulation request is indicated by populated ColorStandard.
	PDF/X
	PDF/X Output Intent is used as the Reference Output ICC profile – should correspond to ColorIntent/ColorStandard value.
	CASE 1:

PDF/X file contains ICCBased CMYK (or RGB) source profile

 + same model OutputIntent (identifier ‘name’ + registry location + Profile)

(intelligent compare (colorimetric tables) of PDF/X source and output intent profiles to determine if data values are the same

(if same AND if match requested Print Conditions

then no transform (assume that Reference Output simulation and Actual Output transform have already been applied.)
(elseif same and do NOT match requested Print Conditions – then color-render using print provider Actual Output profile (assume that Reference Output simulation has already been applied.)
(elseif NOT same then apply two stage color-render path using PDF/X ICCBased source,
(rendering first to the PDF/X Output Intent (assume that is intended as Reference Output simulation) – using Rendering Intent (in precedence order 1, 2, 3):
1. JDF Rendering Intent (ColorSpaceConversionOp/RenderingIntent and ColorSpaceConversionOp/SourceRenderingIntent if present).
2. IFF source is RGB Perceptual Rendering Intent
3. Relative Colorimetric Rendering Intent
(then rendering to print provider supplied Actual Output profile, using relative colorimetric rendering intent.

Case 2:
IF PDF/X ICCBased source profile is not there – and data is labeled as DeviceCMYK (or DeviceRGB)
(IF data model (CMYK, RGB) agrees with OutputIntent – then assume data is prepared for that OutputIntent. (DefaultCMYK definition should not be used for re-purposing or re-targeting, rather use source transform of OutputIntent profile.)

(IF PDF/X output intent matches requested Reference Output simulation – then complete 2nd stage of color-rendering to print provider supplied Actual Output profile, using relative colorimetric rendering intent.
(IF PDF/X output intent does not match requested Reference Output simulation – then do both 1st and 2nd stages of color-rendering, first to the Reference Output simulation defined in ColorIntent (using rendering intents as in Case 1), second to the print provider supplied Actual Output profile, using relative colorimetric rendering intent.
Case 3:
IF PDF/X ICCBased source profile is not there – and data is labeled as DeviceCMYK (or DeviceRGB) + (IFF model (CMYK, RGB) does NOT agree with OutputIntent –

assume data is NOT prepared for that output intent and that the PDF/X output intent is intented as the Reference Output simulation.
(then use PDF “DefaultCMYK” (or DefaultRGB) as source definition and do both 1st and 2nd stages of color-rendering to prepare for output. (First to the Reference Output simulation as defined by the PDF/X output intent (using rendering intents as defined in case 1), second to the print provider supplied Actual Output profile (using relative colorimetric rendering intent).

	
	other
	Print provider supplies Reference Output ICC profile – based on ColorIntent/ColorStandard value.
	Print provider supplies Actual Output ICC profile – based on Print Conditions (media, screening, printing equipment).

7.1.5 DeliveryIntent

Summarizes the options that describe pickup or delivery time and location options of a job. It also defines the number of copies that are requested for a specific job or delivery. This includes delivery of both final products and of proofs.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Accepted ?
	boolean
	The quote that is specified by this DeliveryIntent has been accepted. Default = false

	BuyerAccount ?
	string
	Account ID of the buyer with the delivery service.

	DeliveryCharge ?

New in JDF 1.1
	Enumeration​Span
	Specifies who pays for a delivery being made by a 3rd party. Possible values are:

Printer

Default = Buyer

	Earliest ?
	TimeSpan
	Specifies the earliest time after which the transfer may be made.

	EarliestDuration ?
	DurationSpan
	Specifies the earliest time by which the transfer must be made relative to the date of the purchase order. Within an RFQ or a Quote, only one of either Earliest or EarliestDuration may be specified. Within a purchase order only the Earliest is allowed.

	Method ?
	NameSpan
	Identifies a required delivery method, may be a generic item from the following list:

BestWay – The sender decides how to deliver.

CompanyTruck

Courier

Email
ExpressMail
InterofficeMail

Storage – The product must be stored by the supplier.

OvernightService
Unknown

May also be a delivery service brand. For example:

UPS

DHL

FedEx

	Ownership ?
	enumeration
	If Origin (default), then ownership of goods is transferred upon leaving point of origin. If Destination, ownership is transferred upon receipt at destination.

	Overage ?
	NumberSpan
	Percentage value that defines the acceptable upwards variation of Amount. Defaults to the trade custom defaults as defined by PIA, BVD etc.

	Pickup ?

Deprecated in JDF 1.1
	boolean
	Specifies whether the delivery brings or picks up the merchandise.

Default = false, which means that the drop is delivered to the address specified in Company.

If Pickup = true, the DeliveryIntent describes an input to the job, e.g., a CD for inserting, a preprinted cover, etc. In this case Company describes the location where the merchandise is picked up.

	Required ?
	TimeSpan
	Specifies the time by which the transfer must be made.

	Required​Duration ?
	DurationSpan
	Specifies the time by which the transfer must be made relative to the date of the purchase order. Within an RFQ or a Quote only one of either Required or RequiredDuration must be specified. Within a purchase order only Required is allowed.

	ReturnMethod ?

New in JDF 1.1
	NameSpan
	Identifies a required delivery method for returning the surplus material, if SurplusHandling = Return. The values may be of the same list as specified in Method.

	SurplusHandling ?

New in JDF 1.1
	Enumeration​Span
	Describes what should happen with unused or redundant parts of the transfer specified with Transfer = BuyerToPrinterDeliver or BuyerToPrinterPickup after the job. The return delivery or pickup address is specified in the Contact with ContactTypes including SurplusReturn. Possible values are:

ReturnWithProduct – The surplus material is delivered back to the customer together with the final product.

Return – The surplus material is delivered back independently directly after usage.

Pickup – The customer picks up the surplus material

Destroy – The printer must destroy the surplus material

PrinterOwns – The surplus material belongs to the printer

Store – The printer has to store the surplus material for future purposes

Default = ReturnWithProduct.

	Transfer ?

New in JDF 1.1
	EnumerationSpan
	Describes the direction and responsibility of the transfer. Possible values are:

BuyerToPrinterDeliver – The DeliveryIntent describes an input to the job, e.g., a CD for inserting, a preprinted cover, etc. In this case, the buyer delivers the merchandise to the printer. The printer may specify in the quote a special Contact with ContactTypes including “Delivery”, where the buyer should send the merchandise to.

BuyerToPrinterPickup – The DeliveryIntent describes an input to the job, e.g., a CD for inserting, a preprinted cover, etc. In this case, the printer picks up the merchandise. The Contact with ContactTypes including pickup describes, where the printer has to pick up the merchandise.

PrinterToBuyerDeliver – The DeliveryIntent describes an output of the job. In this, case the printer delivers the merchandise to the buyer. The Contact that has ContactTypes including “Delivery” specifies where the printer should send the merchandise.

PrinterToBuyerPickup – the DeliveryIntent describes an output of the job. In this case, the buyer picks up the merchandise. The printer may specify in the quote a special Contact that has ContactTypes including “Pickup”, where the buyer should pick up the merchandise.

	Underage ?
	NumberSpan
	Percentage value that defines the acceptable downwards variation of Amount. Defaults to the trade custom defaults as defined by PIA, BVD etc.

	Company ?

Deprecated in JDF 1.1
	refelement
	Address and further information of the addressee.

	Contact *

New in JDF 1.1
	refelement
	Address and further information of the Contact responsible for the transfer. The actual delivery address is specified as the Address of the Contact with ContactTypes that includes ”Delivery”. The actual pickup address is specified as the Address of the Contact with ContactTypes that includes “Pickup”. For each of the values “Delivery”, “Pickup”, and “Billing” only one Contact with ContactTypes including these values may be specified.

	DropIntent +
	element
	Includes all locations where the product will be delivered. Note that multiple DropIntents specify multiple deliveries and not options for delivery.

	Pricing ?
	element
	Pricing elements that define the pricing of the complete DeliveryIntent including any DropIntents or DropItemIntents that may contain further Pricing elements.

Structure of DeliveryIntent Elements

DropIntent

This element contains information about the intended individual drop of a delivery. Attributes that are specified in a DropIntent element overwrite those that are specified in their parent DeliveryIntent element. If optional values are not specified, they default to the values specified in the DeliveryIntent.
	Name
	Data Type
	Description

	Earliest ?
	TimeSpan
	Specifies the earliest time after which the transfer may be made.

	EarliestDuration ?
	DurationSpan
	Specifies the earliest time by which the transfer must be made relative to the date of the purchase order. Within an RFQ or a Quote, only one of either Earliest or EarliestDuration may be specified. Within a purchase order only the Earliest is allowed.

	Method ?
	NameSpan
	Identifies a required delivery method. The values are identical to those of Method in the DeliveryIntent root. Defaults to the value of Method in DeliveryIntent.

	Pickup ?

Deprecated in JDF 1.1
	boolean
	If true, the merchandise is picked up. If false, the merchandise is delivered.

Default = false, which means that the DropIntent is delivered to the address specified in Company.

If Pickup = true, the DropIntent describes an input to the job, e.g., a CD for inserting, a preprinted cover, etc. In this case, Company describes the location where the merchandise is picked up.

	Required ?
	TimeSpan
	Specifies the time by which the delivery must be made.

	RequiredDuration ?
	DurationSpan
	Specifies the time by which the delivery must be made relative to the date of the purchase order. Within an RFQ or a Quote only, one of either Required or RequiredDuration must be specified. Within a purchase order only Required is allowed.

	ReturnMethod ?

New in JDF 1.1
	NameSpan
	Identifies a required delivery method for returning the surplus material, if SurplusHandling = Return. Defaults to the value of ReturnMethod in DeliveryIntent.

	SurplusHandling ?

New in JDF 1.1
	Enumeration​Span
	Describes what should happen with unused or redundant parts of the transfer. The values are identical to those of SurplusHandling in DeliveryIntent. Defaults to the value of SurplusHandling in DeliveryIntent.

	Transfer ?

New in JDF 1.1
	EnumerationSpan
	Describes the direction and responsibility of the transfer. The values are identical to those of Transfer in DeliveryIntent. Defaults to the value of Transfer in DeliveryIntent.

	Company ?

Deprecated in JDF 1.1
	refelement
	Address and further information of the addressee. Defaults to the Company specified in the parent resource.

	Contact *

New in JDF 1.1
	refelement
	Address and further information of the Contact responsible for the transfer. The actual delivery address is specified as the Address of the Contact with ContactTypes that includes “Delivery”. The actual pickup address is specified as the Address of the Contact with ContactTypes that includes “Pickup”. For each of the values “Delivery”, “Pickup”, and “Billing”, only one Contact with ContactTypes including these values may be specified. Defaults to the Contact specified in the parent resource.

	DropItemIntent +
	element
	A DropIntent may consist of multiple products, which are represented by their respective Component resources. Each DropItemIntent element describes a number of individual resources that is part of this DropIntent.

	Pricing ?
	element
	Pricing element that defines the pricing of the DropIntent.

Structure of the DropItemIntent Subelement

	Name
	Data Type
	Description

	AdditionalAmount ?
	integer
	Number of components used to calculate the value of the AdditionalPrice attribute in the Pricing. Default = 1.

	Amount ?
	integer
	Specifies the final number of components delivered. If not specified, defaults to the total amount of the resource that is referenced by Component or 1 if this DropItemIntent specifies a proof.

	OrderedAmount ?
	integer
	Specifies the original number of components ordered. If not specified, Default = Amount.

	Proof ?

New in JDF 1.1
	string
	This DropItem refers to a proof that is specified in a ProofItem of the ProofingIntent of this product node. The ProofName attribute of a ProofItem must match Proof. One of either Component or Proof must be specified.

	Unit ?
	string
	Unit of measurement for the Amount specified in the Component attribute.

Defaults to the value of Unit defined in the resource described by the Component.

	PhysicalResource?

Modified in JDF 1.1
	refelement
	Description of the individual item that is delivered. One of either PhysicalResource or Proof must be specified. Note that PhysicalResource is an abstract resource and that the element must be an instance of PhysicalResource.

	Pricing ?
	element
	Pricing element that defines the pricing of the DropItemIntent.

Contents of the Pricing Subelement

	Name
	Data Type
	Description

	AdditionalPrice ?
	number
	Price for ordering the number of copies specified in the AdditionalAmount attribute as specified in the parent element of the Pricing.

	Currency ?
	NMTOKEN
	Three digit currency definition according to ISO 4217. It defaults to the currency defined in the parent quote.

	HasPrice ?
	boolean
	Specifies whether the line item defined by this quote has a price. If false, the line item is not included in the parent quote, and the price is unknown and must be added. Default = true, i.e., the line item is included in the parent quote.

	Item ?
	string
	Name of the item that this particular quote element describes.

Default = everything

	Price ?
	number
	Price for ordering the number of copies specified in the Amount attribute as specified in the parent element of the Pricing. If not specified, it defaults to the sum of prices of the direct child Pricing elements.

	Payment ?

New in JDF 1.1
	element
	Details of the payment method.

	Pricing *
	element
	Individual items of the quote. Note that a parent quote defines the complete quote, i.e., including the values defined in the line items of any child quotes but excluding all line items with HasPrice = “false”. The sum of line items need not be identical to the parent quote.

Contents of the Payment Subelement

New in JDF 1.1
	Name
	Data Type
	Description

	PayTerm ?
	telem
	Describes the payment terms & conditions.

	CreditCard ?
	element
	Specifies credit card information

Contents of the CreditCard Subelement

New in JDF 1.1
	Name
	Data Type
	Description

	Authorization ?
	String
	Authorization code for this transaction.

	AuthorizationExpires ?
	gYearMonth
	Expiration date of the Authorization.

	Expires
	gYearMonth
	Expiration date of the credit card.

	Number
	NMTOKEN
	Credit card number. The format is specified without blanks or any other separator characters.

	Type
	NMTOKEN
	Credit card brand. Possible values include:

Amex

DinersClub

Discovery

MasterCard: This includes derived brands, e.g., EuroCard

Visa

7.1.6 EmbossingIntent

New in JDF 1.1
This resource specifies the embossing and/or foil stamping intent for a JDF job using information that identifies whether or not the product is embossed or stamped and, if desired, the complexity of the affected area.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option, PageNumber, Side
Input of processes:
Any product node

Output of processes:
-

Resource Structure
	Name
	Data Type
	Description

	EmbossingItem +
	refelement
	Each embossed image is described by one EmbossingItem.

Structure of the EmbossingItem Subelement
	Name
	Data Type
	Description

	Direction
	EnumerationSpan
	The direction of the image. Possible values are:

Both – Both debossing and embossing in one stamp.

Depressed – Debossing

Raised – Embossing

	EdgeAngle ?
	NumberSpan
	The angle of a beveled edge in degrees. Typical values are an angle of: 30, 40, 45, 50, or 60 degrees. For EdgeAngle to exist, EdgeShape = Beveled must be specified.

	EdgeShape ?
	EnumerationSpan
	The transition between the embossed surface and the surrounding media may be rounded or beveled (angled). Possible values are:

Rounded

Beveled

	EmbossingType
	StringSpan
	The strings defined in EmbossingType are whitespace separated combinations of the following tokens. Possible values for the tokens are:

BlindEmbossing – Embossed forms that are not inked or foiled. The color of the image is the same as the paper.

FoilEmbossing – Combines embossing with foil stamping in one single impression.

FoilStamping-using a heated die to place a metallic or pigmented image from a coated foil on the paper.
RegisteredEmbossing – Creates an embossed image that exactly registers to a printed image.

	FoilColor ?
	EnumerationSpan
	Defines the color of the foil material which is used within the FoilStamp process. Allowed values are defined in the appendix A.2.8 NamedColor.

	Height ?
	NumberSpan
	The height of the levels. This value specifies the vertical distance between the highest and lowest point of the stamp, regardless of the value of Direction.

	ImageSize ?
	XYPairSpan
	The size of the bounding box of one single image.

	Level ?
	Enumeration​Span
	The level of embossing. Possible values are:

SingleLevel,

MultiLevel,

Sculpted

	Position ?
	XYPairSpan
	Position of the center of the bounding box of the embossed image in the coordinate system of the Component.

7.1.7 FoldingIntent

This resource specifies the fold intent for a JDF job using information that identifies the number of folds, the height and width of the folds, and the folding catalog number. Note that the folding catalog is described in Section 7.2.58 and that the number of folds and the folding catalog are related.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	FoldingCatalog
	NameSpan
	Description of the folding scheme as specified in the FoldingParams folding catalog attribute in the format “Fn-i”. See JDF Folding Catalog descriptions in
[image: image65.jpg]F4-1 2x1 F6-1 3x1 3x1 F6-3 3x1 F64 3x1
1 5 2 1 2 G
112 /3 11/3 TRl /4 1172 M/3 1173
F6-5 3x1 F8-1 4x1 F8-2 4x1 F8-3 4x1 F8-4 ax1
21 12 12 oIS 13 2
I
l U
i
1213 11/3 M2 11/4 112 41/4 T1/4 1174 11/4 1174 11/2 11/4
F8-5 4x1 F8-6 4x1 F8-7 22 F10-1 5x1 F10-2 5x1
12 3 2 3 1 1 1234 23 41
i 2 .
T1/4 11/4 11/4 13/4 11/4 11/4 112 41172 /5 1175 175 11/5 14/5 11/5 11/5 11/5
F10-3 5x1 F12-1 6x1 F12:2 6x1 F12:3 6x1 F124 6x1
tusi2 1izis 1o, 128 123

12/5 12/5 11/5

113 11/3 11/6

11/3 11/3 11/6

11/2 11/6 11/6

11/2 11/6 11/6

F12-5 6x1
S

F12-6 6x1

12345

11/2 11/3 11/6

11/6 11/6 11/6 11/6 11/6

T1/3 11/3 +11/2

F12-8 3x2

F12-9 3x2
1

12/3 11/3 +11/2

11/3 11/3+11/2

F12-10 3x2

T

12/3 11/3 +11/2

F12-11 3x2
1

F12-12 2x3
1

F12-13 2x3

F12-14 2x3

T1/3 +11/2 11/3

11/2 +12/3 11/3

T1/2 +11/3 11/3

3
2

T2 +11/3 113

F14-1 7x1
123456

F16-1 8x1
128

F16-2 8x1

F16-3 8x1
123

F16-4 8x1
12l

AN2Es

M7 417 117
USRI

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

F16-5 8x1
1234567

F16-6 4x2

F16-7 4x2

F16-8 4x2

F16-9

11/8 11/8 11/8 11/8

1172+ 11/2+ 11/4

TH2 14112

1178 11/8 11/8 T2+ 1172+ 1174 TM/2+ 4172+ 41/4
F16-10 4x2 F16-11 4x2 F16-12 4x2 F16-13 2x4 F18-1 o
1 2 1 2 3 1 2 3 i g 12345678

3

=, = . :

11/2 11/4+ 11/2

11/4 11/4 11/4+11/2

11/4 11/4 11/4 +11/2

11/2+11/2 11/4

11/9 11/9 11/9 11/9
11/9 11/9 11/9 11/9

Figure 7.11 Fold Catalog part 1
 and Figure 7.12 Fold Catalog part 2.

Note: The folding scheme in this context refers to the folding of the finished product as seen after the cutting, not the folding, of the flat as seen in production.

	Folds ?

Deprecated in JDF 1.1
	XYPair
	Number of folds in x and in y direction. This attribute specifies the number of folds seen in the sheet after folding not the number of fold operations needed to achieve that result. If not specified, it must be inferred from FoldingCatalog. The product 2*(X+1)*(Y+1) of Folds must always match the n of “Fn-i” of FoldingCatalog.

	Fold *

New in JDF 1.1
	element
	This describes the details of folding operations in the sequence described by the value of FoldingCatalog. Fold must be specified if non-symmetrical folds are requested.

7.1.8 HoleMakingIntent

Clarified in JDF 1.2
[Clarified the HoleMakingIntent applies equally to pre-drilled and drilling/punching.]
This resource specifies the holemaking intent for a JDF job, using information that identifies the type of HoleMaking operation or alternatively, an explicit list of holes. This resource does not specify whether the media will be pre-drilled or the media will be drilled or punched as part of making the product.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	HoleReferenceEdge ?

New in JDF 1.1
	enumeration
	The edge of the media relative to where the holes should be punched. Use with HoleType. Possible values are:

Left

Right

Top

Bottom
Pattern – Specifies that the reference edge implied by the value of HoleType in Appendix L JDF/CIP4 Hole Pattern Catalog is used. The default if HoleType is not Explicit, otherwise Left.

	HoleType

Modified in JDF 1.1

	StringSpan
	Predefined hole pattern. Multiple hole patterns are specified as one NMTOKENS string, e.g., 3-hole ring binding and 4-hole ring binding holes on one piece of media. For details of the hole types, refer to Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values include:

	
	
	R2-generic

R2m-DIN

R2m-ISO

R2i-US-a

R2i-US-b

R3-generic

R3i-US

R4-generic

R4m-DIN-A4

R4m-DIN-A5

R4m-swedish

R4i-US

R5-generic

R5i-US-a

R5i-US-b

R5i-US-c
	R6-generic

R6m-4h2s

R6m-DIN-A5

R7-generic

R7i-US-a

R7i-US-b

R7i-US-c

R11m-7h4s

P12m-rect-0t

P16_9i-rect-0t

W2_1i-round-0t

W2_1i-square-0t

W3_1i-square-0t

C9.5m-round-0t
Explicit – Holes are defined in an array of Hole elements.

	
	
	The following values are deprecated from JDF 1.0

2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5.

	HoleList ?
	element
	Array of all Hole elements. Used when HoleType = Explicit.

Default = no holes

Structure of the HoleList Subelement

	Name
	Data Type
	Description

	Hole *

Modified in JDF 1.1
	refelement
	Description of individual holes. See 7.2.67 Hole.

	HoleLine *

New in JDF 1.1
	refelement
	Array of all HoleLine elements. See 7.2.68 HoleLine.

7.1.9 InsertingIntent

This resource specifies the placing or inserting of one component within another, using information that identifies page location, position and attachment method. The receiving component is defined by a ProcessUsage attribute of “Parent”. All other input components are mapped to the Insert elements by their ordering in the ResourceLinkPool.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	GlueType ?
	Enumeration​Span
	Glue used to fasten the insert. Possible values are:

Permanent

Removable

Default = system specified

	InsertList
	Element
	List of individual inserts.

	Method
	Enumeration​Span
	Possible values are:

BindIn – Apply glue to fasten the insert
BlowIn – Loose insert. The default.

Structure of InsertList Subelement

	Name
	Data Type
	Description

	Insert *
	element
	Individual insert description.

Structure of Insert Subelement

	Name
	Data Type
	Description

	Folio
	IntegerRangeList
	List of potential folios where the insert is to be placed. A Folio is defined by its first page in case Method = BlowIn and by the page that the glue is applied in case Method = BindIn. In general, a list of folios will only be supplied for Method = BlowIn. The pages are counted in the order, which is described in FolioCount of the parent Component.

	GlueType ?
	Enumeration​Span
	Glue used to fasten the insert. Possible values are:

Removable

Permanent

Defaults to the GlueType specified in the parent resource.

	Method ?
	EnumerationSpan
	Inserting method. Possible values are:

BindIn – Apply glue to fasten the insert
BlowIn – Loose insert

Defaults to the Method specified in the parent resource.

	SheetOffset ?

Deprecated in JDF 1.1
	XYPair
	Offset between the Component to be inserted and page in the parent Component.

	Transformation ?
	matrix
	Rotation and offset between the Component to be inserted and the parent Component. For details on transformations, see How and Where Coordinates and Transformations Are Used/Defined in JDF.

Default = identity

	WrapPages ?

New in JDF 1.1
	Integer​Range​List
	List of pages of the Cover that wrap around an Insert after all folds are correctly positioned. It is sufficient to specify the pages of the Front surface of the cover. Note that this key must only be specified if the folding is ambiguous. Default = empty list.

	GlueLine *

New in JDF 1.1
	element
	Array of all GlueLine elements used to glue in the Insert. Must not be specified in conjunction with GlueType.

7.1.10 LaminatingIntent

This resource specifies the laminating intent for a JDF job using information that identifies whether or not the product is laminated and, if desired, the temperature and thickness of the laminant.

Resource Properties

Resource class:
Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Laminated

Deprecated in JDF 1.1
	OptionSpan
	If true, the product is laminated.

Default = false

	Temperature
	Enumeration​Span
	Temperature used in the lamination process. Possible values are:

Hot

Cold

	Surface ?
	Enumeration​Span
	The surface to be laminated. One of:

Front

Back

Both

Default = system specified

	Thickness ?
	NumberSpan
	Thickness of the laminating material. Measured in micron[µm].

Default = system specified

7.1.11 LayoutIntent

Modified in JDF 1.2
[added 1 attributes: FinishedGrainDirection, clarified Dimensions, FinishedDimensions, Pages and PageVariance, fixed 2 typos, 1 ISSUE, 1 ISSUE (eCommerce)]
This resource records the size of the finished pages for the product component. It does not, however, specify the size of any intermediate results, such as press sheets. It also describes how the pages of the product component should be imaged onto the finished media. The size definition of the finished media describes the size of a sheet that is folded to create a product, not the size of a production sheet, e.g., in the press.

Resource Properties

Resource class:

Intent

Example Partition:

Option
Resource referenced by:
-
Input of processes:
Any product node
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Dimensions ?

New in JDF 1.1
Clarified in JDF 1.2

	XYPairSpan
	Specifies the width (X) and height (Y), respectively, of the media or product Component unfolded in points. For example, Dimensions for a z-fold is the unfolded dimensions, while Finished​Dimensions is the folded dimensions, if known. Use Dimensions if Finished​Dimensions is not known.

	Finished​Dimensions ?

New in JDF 1.1
Clarified in JDF 1.2
	ShapeSpan
	Specifies the width (X), height (Y) and depth (Z) in points, respectively, of the finished product Component after all finishing, including folding, trimming, etc.. If the Z coordinate is 0, it is ignored. Only Finished​Dimensions should be specified if both Finished​Dimensions and Dimensions are known.
ISSUE: (eCommerce): eCommerce WG needs to review these clarifications.

	FinishedGrainDirection ?
New in JDF 1.2
	EnumerationSpan
	Specifies the media grain direction of the Finished Page with respect to the binding edge. Possible values are:

ParallelToBind – grain direction is parallel to the binding edge.
PerpendiculatToBind – grain direction is perpendictular to the binding edge.
SystemSpecified – grain direction is system specified.

	FinishedPage​Orientation ?

Deprecated in JDF 1.1
	enumeration
	Indicates the desired orientation of the finished Media. Possible values are:

Portrait – The short edges of the media are the top and bottom.

Landscape – The long edges of the media are the top and bottom.

Default = Portrait.

In JDF 1.1, the page orientation is implied by the value of Dimensions and FinishedDimensions. If height (X) > width (Y), the product is portrait.

	FolioCount ?

New in JDF 1.1
	enumeration
	Defines the method used when counting page folios. The number of pages of one sheet of an individual component is given by the product 2*(X+1)*(Y+1), where x denotes the number of folds in x direction and y denotes the number of folds in y direction. One of:

Booklet: Each sample of the component consists of two pages with no fold inside the page (the front side and the back side of one sample of the component). The pages are counted in reader order of the pages of the component in the product. The default.
Flat: The pages are counted from the top left of the front side of the top media to the bottom right of the back side of the bottom media. Flat should be used for non-standard products where the reader order is ambiguous. The page breaks on a sheet are defined by the folds as specified by FoldingCatalog (see
[image: image66.jpg]F4-1 2x1 F6-1 3x1 3x1 F6-3 3x1 F64 3x1
1 5 2 1 2 G
112 /3 11/3 TRl /4 1172 M/3 1173
F6-5 3x1 F8-1 4x1 F8-2 4x1 F8-3 4x1 F8-4 ax1
21 12 12 oIS 13 2
I
l U
i
1213 11/3 M2 11/4 112 41/4 T1/4 1174 11/4 1174 11/2 11/4
F8-5 4x1 F8-6 4x1 F8-7 22 F10-1 5x1 F10-2 5x1
12 3 2 3 1 1 1234 23 41
i 2 .
T1/4 11/4 11/4 13/4 11/4 11/4 112 41172 /5 1175 175 11/5 14/5 11/5 11/5 11/5
F10-3 5x1 F12-1 6x1 F12:2 6x1 F12:3 6x1 F124 6x1
tusi2 1izis 1o, 128 123

12/5 12/5 11/5

113 11/3 11/6

11/3 11/3 11/6

11/2 11/6 11/6

11/2 11/6 11/6

F12-5 6x1
S

F12-6 6x1

12345

11/2 11/3 11/6

11/6 11/6 11/6 11/6 11/6

T1/3 11/3 +11/2

F12-8 3x2

F12-9 3x2
1

12/3 11/3 +11/2

11/3 11/3+11/2

F12-10 3x2

T

12/3 11/3 +11/2

F12-11 3x2
1

F12-12 2x3
1

F12-13 2x3

F12-14 2x3

T1/3 +11/2 11/3

11/2 +12/3 11/3

T1/2 +11/3 11/3

3
2

T2 +11/3 113

F14-1 7x1
123456

F16-1 8x1
128

F16-2 8x1

F16-3 8x1
123

F16-4 8x1
12l

AN2Es

M7 417 117
USRI

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

F16-5 8x1
1234567

F16-6 4x2

F16-7 4x2

F16-8 4x2

F16-9

11/8 11/8 11/8 11/8

1172+ 11/2+ 11/4

TH2 14112

1178 11/8 11/8 T2+ 1172+ 1174 TM/2+ 4172+ 41/4
F16-10 4x2 F16-11 4x2 F16-12 4x2 F16-13 2x4 F18-1 o
1 2 1 2 3 1 2 3 i g 12345678

3

=, = . :

11/2 11/4+ 11/2

11/4 11/4 11/4+11/2

11/4 11/4 11/4 +11/2

11/2+11/2 11/4

11/9 11/9 11/9 11/9
11/9 11/9 11/9 11/9

Figure 7.11
 and Figure 7.12) in the FoldingIntent for the product. All sheets are counted, even if they are not included in the product, e.g., due to a ShapeCuttingIntent.

	NumberUp ?
	XYPair
	Specifies a regular, multi-up grid of page cells into which content pages are mapped.

The first value specifies the number of rows of page cells and the second value specifies the number of columns of page cells in the multi-up grid. Default = 1 1, i.e., 1 document page per side.

	Pages ?

New in JDF 1.1
Clarified in JDF 1.2
	IntegerSpan
	Specifies the number of Finished pages (see section 1.4 Glossary of Terminology) of the product component, including blank Finished pages, as perceived by the reader, independent of the finishing and binding. For two sided printing, this value should be an even number. For example, the value for Pages for a two-sided booklet with 7 reader pages would be 8, whether the booklet were saddle stitched or glued.
For two-sided printing Pages multiplied with FinishedDimensions divided by 2 plus the remainder always defines the amount of paper that is used in the product. Pages describes the paper usage regardless of document layout. Default = 1
ISSUE: OK for Pages * FinishedDimensions, not Pages * Dimensions to the amount of paper, since the definition of Finished pages in section 1.4 counts each page if the final product sheet has folds visible. So a z-fold sheet would have 6 Pages.

	PageVariance ?

New in JDF 1.1
Clarified in JDF 1.2
	IntegerSpan
	Specifies the number of non-identical Finished pages of the product component, i.e., the number of distinct master copied to produce the product. If not specified, Default = value of Pages. For example, if there are 10 Finished pages, in which 3 are identical, PageVariance = 8 since it would take 8 master copies to produce the product.

	Sides ?
	enumeration
	Indicates whether contents should be printed on one or both sides of the media. Possible values are:

OneSided – Page contents will only be imaged on one side of the media.

TwoSidedHeadToHead – Impose pages upon the front and back sides of media sheets so that the head (top) of page contents back up to each other.

TwoSidedHeadToFoot – Impose pages upon the front and back sides of media sheets so that the head (top) of the front backs up to the foot (bottom) of the back.

	Layout ?

New in JDF 1.1
	refelement
	Specifies the details of a more complex Layout. Must not be specified together with NumberUp.

7.1.12 MediaIntent

Modified in JDF 1.2
[added 10 attributes: CIETint, CIEWhiteness, CIEWhitenessStandard, GlossMeasurement, GrainDirection, MediaColorDetails, MediaColorMeasurement, MediaColorStandard, OpacityLevel, and RecycledPercentage, deprecated USWeight, and 6 clarifications: Brightness, Dimensions, Grade, MediaColor, Opacity, Weight. Added Disc to MediaType, added Continuous, ContinuousLong, and ContinuousShort to MediaUnit, added Coated and InkJet values to BackCoatings and FrontCoatings, added Translucent value to Opacity, added Uncalendared to Texture, deprecated Continuous, ContinuousLong, ContinuousShort, and Transparency in UserMediaType. Clarified why HoleType doesn't have a SystemSpecified value]
This resource describes the media to be used for the product component. In some cases, the exact identity of the medium is known, while in other cases, the characteristics are described and a particular stock is matched to those characteristics.
Note: The Media resource duplicates most of these attributes. However, MediaIntent::MediaType is a small subset of Media::MediaType and MediaIntent::UserMediaType is a subset of Media::MediaTypeDetails.
Resource Properties

Resource class:

Intent

Example Partition:
Option
Resource referenced by:
-
Input of processes:
Any product node
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BackCoatings ?
	EnumerationSpan
	Identical to FrontCoatings, but applied to the back surface of the media.

Default = value of FrontCoatings.

	Brightness ?
Clarified in JDF 1.2
	NumberSpan
	Reflectance percentage of diffuse blue reflectance as defined by ISO2470 – ISO 2470:1977 Paper and board – Measurement of diffuse blue reflectance factor (ISO brightness). The reflectance is reported per ISO 2470 as the diffuse blue reflectance factor of the paper or board in percent to the nearest 0.5% reflectance factor.

	BuyerSupplied ?
	OptionSpan
	Indicates whether the customer will supply the media.

	CIETint ?
New in JDF 1.2
	NumberSpan
	Average CIE Tint. Average CIE Tint is calculated according to equations given in (both T560 and T562 use the same calculations):
“TAPPI T 560” – TAPPI T 560 “CIE Whiteness and Tint of Paper and Paper Board (using d/0(, diffuse illumation and normal viewing)”

“TAPPI T 562” – TAPPI T 562 “CIE Whiteness and Tint of Paper and Paper Board (using 45(/0(directional illumination and normal viewing)”.

If the measurement is to be reproduced use the method given in CIEWhitenessStandard.

	CIEWhiteness ?
New in JDF 1.2
	NumberSpan
	Average CIE Whiteness. Average CIE Whiteness is calculated according to equations given in (both T560 and T562 use the same calculations):

“TAPPI T 560” – TAPPI T 560 “CIE Whiteness and Tint of Paper and Paper Board (using d/0(, diffuse illumation and normal viewing)”

“TAPPI T 562” – TAPPI T 562 “CIE Whiteness and Tint of Paper and Paper Board (using 45(/0(directional illumination and normal viewing)”.

If the measurement is to be reproduced use the method given in CIEWhitenessStandard.

	CIEWhitenessStandard ?
New in JDF 1.2
	string
	Standard used to specify CIE Whiteness and CIE Tint measurement methods. Possible values are defined as a string using the standards body's complete designation and preserving case, SPACE characters, version numbers, dates (if used by the standards organization to designate the standard), and all special characters that are in the standard designation. Possible values include:

“ASTM E 313-98” – ASTM E 313-98 Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates.
“TAPPI T 560” – TAPPI T 560 “CIE Whiteness and Tint of Paper and Paper Board (using d/0(, diffuse illumation and normal viewing)”

“TAPPI T 562” – TAPPI T 562 “CIE Whiteness and Tint of Paper and Paper Board (using 45(/0(directional illumination and normal viewing)”
“SystemSpecified” – the default.

	Dimensions ?
Clarified in JDF 1.2

	XYPairSpan
	Specifies the size of the supplied media in points when BuyerSupplied evaluates to true. Must be ignored if BuyerSupplied evaluates to false.
Note: Size of the finished product is always specified in LayoutIntent FinishedDimensions.

	FrontCoatings ?
Modified in JDF 1.2
	EnumerationSpan
	What preprocess coating has been applied to the front surface of the media. Possible values are:

None: the default.

Coated – A coating of a system specified type. New in JDF 1.2
Glossy

HighGloss

InkJet – A coating intended for use with inkjet technology. New in JDF 1.2
Matte

Satin

Semigloss

	GlossMeasurement ?
New in JDF 1.2
	NumberSpan
	Gloss in gloss units as defined by ISO 8254-1:1995 Paper and board – Measurement of specular gloss – Part 1: 75º gloss with a converging beam, TAPPI method. Refer also to TAPPI T 480 om-92 “Specular gloss of paper and paper board at 75 degrees” for examples of gloss calculation.

	Grade ?
Clarified in JDF 1.2

	IntegerSpan
	The intended grade of the media on a scale of 1 through 5.
Grade is ignored if MediaType is not “Paper”.
Grade of paper material is defined in accordance with the paper “types” set forth in ISO 12647-2[iso12647-2]. Offset printing paper types are defined with the following integer values:

1: Gloss-coated paper
2: Matte-coated paper
3: Gloss-coated, web paper
4: Uncoated, white paper
5: Uncoated, yellowish paper
Note that ISO 12647-2 paper type attribute values do NOT align with U.S. GRACOL paper grade attribute values, e.g, ISO 12647-2 type 1 does not equal U.S. GRACOL grade 1.

	GrainDirection ?

New in JDF 1.2
	EnumerationSpan
	Direction of the grain in the coordinate system defined by Dimensions. Possible values are:

ShortEdge: Along the shorter axis as defined by Dimensions.
LongEdge: Along the longer axis as defined by Dimensions.
If not specified the direction is unknown.

	HoleCount ?

Deprecated in JDF 1.1
	IntegerSpan
	The intended number of holes that should be punched in the media (either pre- or post-punched). Default = 0. In JDF/1.1, use HoleType which includes the number of holes.

	HoleType ?

New in JDF 1.1
	StringSpan
	Predefined hole pattern that specifies the prepunched holes in the media. If custom holes are required, or the hole manufacturing method (prepunched or post-punched) is “don’t care,” this must be specified in HoleMakingIntent. Multiple hole patterns are specified as one NMTOKENS string, e.g, 3-hole ring binding and 4-hole ring binding holes on one piece of media. For details of the hole types, refer to Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values include:

	
	
	None: The default.

R2-generic

R2m-DIN

R2m-ISO

R2i-US-a

R2i-US-b

R3-generic

R3i-US

R4-generic
R4m-DIN-A4

R4m-DIN-A5

R4m-swedish

R4i-US

R5-generic

R5i-US-a

R5i-US-b
	R5i-US-c

R6-generic

R6m-4h2s

R6m-DIN-A5

R7-generic

R7i-US-a

R7i-US-b

R7i-US-c

R11m-7h4s

P12m-rect-0t

P16_9i-rect-0t

W2_1i-round-0t

W2_1i-square-0t

W3_1i-square-0t

C9.5m-round-0t

	MediaColor ?
Clarified in JDF 1.2
	Enumeration​Span
	Color of the media. Allowed values are defined in Appendix A.2.8 NamedColor. If more-specific, specialized, or site-specific media color names are needed, use MediaColorDetails.

	MediaColorDetails?
New in JDF 1.2
	StringSpan
	A more-specific, specialized, or site defined name for the media color. If MediaColorDetails is supplied, MediaColor must also be supplied. Note that there is a one to one relationship between entries in MediaColor and MediaColorDetails.

	MediaColorMeasurement ?
New in JDF 1.2
	LabColor

	MediaColorMeasurement is a CIE LAB color value computed as specified in
TAPPI T524 “Color of Paper and Paperboard (45(/0(geometry)”
and in (identical calculation)
TAPPI T527 “Color of Paper and Paperboard (d/0(geometry)”.

MediaColorMeasurement is data type LabColor.

Color values are stated in CIELAB, which can be translated to other color spaces as needed through well-known transforms.

	MediaColorStandard ?

New in JDF 1.2
	NMTOKEN
	The color standard to be used if media color measurements for the MediaColorMeasurement attribute are to be reproduced.
Possible values are defined as a string using the standards body's complete designation and preserving case, SPACE characters, version numbers, dates (if used by the standards organization to designate the standard), and all special characters that are in the standard designation. Possible values include:
“TAPPI T 524” – TAPPI T 524 “Color of Paper and Paperboard (45(/0(geometry)”
“TAPPI T 527” – TAPPI T 527 “Color of Paper and Paperboard (d/0(geometry)”
“SystemSpecified” – the default.

	MediaSetCount ?
	integer
	When the input media is grouped in sets, identifies the number of pieces of media in each set. For example, if the UserMediaType is “PreCutTabs”, a MediaSetCount of 5 would indicate that each set includes 5 tab sheets.

	MediaType ?

New in JDF 1.1
Modified in JDF 1.2
	Enumeration​Span
	Describes the medium being employed. Possible values are:

Disc - CD or DVD disc to be printed on. New in JDF 1.2
Other: any other Media.

Paper: the default.
Transparency

	MediaUnit ?
Modified in JDF 1.2
	Enumeration​Span
	Describes the format of the media as it is delivered to the device. Possible values are:

Continuous – Continuously connected sheets which may be fan folded. Which edge is connected is not specified. New in JDF 1.2
ContinuousLong – Continuously connected sheets connected along the long edge which may be fan folded. New in JDF 1.2
ContinuousShort – Continuously connected sheets connected along the short edge which may be fan folded. New in JDF 1.2
Roll

Sheet – individual cut sheets.

	Opacity ?
Modified in JDF 1.2
	EnumerationSpan
	The opacity of the media. See OpacityLevel to specify the degree of opacity for any of these values. Possible values are:

Opaque – the media is opaque. With two-sided printing the printing on the other side does not show through under normal incident light. The default.
Translucent – The media is translucent to a system specified amount. For example, translucent media can be used for back lit viewing. New in JDF 1.2
Transparent – the media is transparent to a system specified amount.

	OpacityLevel ?
New in JDF 1.2
	NumberSpan
	Normalized TAPPI Opacity, Cn, as defined and computed in ISO 2471:1998 “Paper and board – Determination of opacity (paper backing) – Diffuse reflectance method”. Refer also to TAPPI T 519 “Diffuse opacity of paper (d/0(paper backing)” for calculation examples.

	PrePrinted ?
	boolean
	Indicates whether the media is preprinted. Default = false

	Recycled ?
	OptionSpan
	If true, recycled media is requested.

	RecycledPercentage ?
New in JDF 1.2
	NumberSpan
	The percentage, between 0 and 100, of recycled material that the media contains. Recycled must be set to true when RecycledPercentage is present. If Recycled is false or omitted, RecycledPercentage is ignored. If Recycled is true and RecycledPercentage is not present, the media contains a system specified percentage of recycled material.

	StockBrand ?
	StringSpan
	Strings providing available brand names. The customer may know exactly what paper is to be used. Example is “Lustro” or “Warren Lustro” even though the manufacturer name is included.

	StockType ?
	NameSpan
	Strings describing the available stock. Examples include:

Bristol

Cove
Bond

Newsprint

Index

Offset – This includes book stock.
Tag

Text

	Texture ?

	NameSpan
	The intended texture of the media. Examples include:

Antique – Rougher than vellum surface
Calendared – Extra-smooth or polished uncoated paper
Linen – Texture of coarse woven cloth
Smooth

Stipple – Fine pebble finish
Uncalendared – Rough, unpolished, and uncoated paper New in JDF 1.2
Vellum – Slightly rough surface

	Thickness ?

New in JDF 1.1
	NumberSpan
	The thickness of the chosen medium. Measured in micron [µm].

	UserMediaType ?

	NMTOKEN
	A human-readable description of the type of media. The value can be used by an operator to select the correct media to load. The semantics of the values will be site-specific. Possible values include:

Continuous – Continuously connected sheets of an opaque material. Which edge is connected is not specified. Deprecated in JDF 1.2 moved to MediaUnit.
ContinuousLong – Continuously connected sheets of an opaque material connected along the long edge. Deprecated in JDF 1.2 moved to MediaUnit.
ContinuousShort – Continuously connected sheets of an opaque material connected along the short edge. Deprecated in JDF 1.2 moved to MediaUnit.

Envelope – Envelopes that can be used for conventional mailing purposes.
EnvelopePlain – Envelopes that are not preprinted and have no windows.
EnvelopeWindow – Envelopes that have windows for addressing purposes.
FullCutTabs – Media with a tab that runs the full length of the medium so that only one tab is visible extending out beyond the edge of non-tabbed media.
Labels – Label stock, e.g., a sheet of peel-off labels.

Letterhead – Separately cut sheets of an opaque material including a letterhead.
MultiLayer – Form medium composed of multiple layers which are preattached to one another, e.g., for use with impact printers.
MultiPartForm – Form medium composed of multiple layers not preattached to one another; each sheet may be drawn separately from an input source.
Photographic – Separately cut sheets of an opaque material to produce photographic quality images.
PreCutTabs – Media with tabs that are cut so that more than one tab is visible extending out beyond the edge of non-tabbed media.
Stationery – Separately cut sheets of an opaque material.
TabStock – Media with tabs (either precut or full-cut).
Transparency – Separately cut sheets of a transparent material. Deprecated in JDF 1.2 Its in MediaType.

	USWeight ?
Deprecated in JDF 1.2
	NumberSpan
	The intended weight of the media, measured in pounds per ream of basis size. Only one of Weight and USWeight may be specified. If known, Weight should be specified (in g/m2). In JDF 1.2 and beyond use Weight.

	Weight ?
Clarified in JDF 1.2
	NumberSpan
	The intended weight (grammage) of the media, measured in (g/m2). See Appendix M for an explanatin of how to calculate the US weight from the grammage for different stock types.

7.1.13 NumberingIntent

This resource describes the parameters of stamping or applying variable marks in order to produce unique components, for items such as lottery notes or currency.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
See Laminating.

Numbering

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ColorName ?
	EnumerationSpan
	Defines the color of the numbering. Allowed values are defined in Appendix A.2.8 NamedColor. Default = don’t care, i.e., system specified.

	ColorPool ?
	refelement
	Additional details about the colors used.

	NumberItem +
	element
	Individual position of the numbers on the finished page.

Structure of NumberItem Subelement

	Name
	Data Type
	Description

	ColorName ?
	EnumerationSpan
	Defines the color of the numbering. Allowed values are defined in Appendix A.2.8 NamedColor. If not specified, it defaults to the values defined in NumberingIntent.

	StartValue ?
	string
	First value of the numbering machine. Default = 1, i.e., system specified.

	XPosition ?
	NumberSpan
	Position of the numbering machine along the printer axis.

Default = system specified.

	YPosition ?
	NumberSpan
	Position of the numbering machine across the printer axis.

Default = system specified.

	Orientation ?
	NumberSpan
	Rotation of the numbering machine in degrees. If Orientation = 0, the top of the numbers is along the leading edge. Default = 0

	Step ?
	integer
	Number that specifies the difference between two subsequent numbers of the numbering machine.

Default = 1

	SeparationSpec?
Modified in JDF 1.2
	refelement
	Specifies the name of the Color in the ColorPool that is used for Numbering.

7.1.14 PackingIntent

This resource specifies the packaging intent for a JDF job, using information that identifies the type of package, the wrapping used, and the shape of the package. Note that this specifies packing for shipping only, not packing of items into custom boxes, etc. Boxes are convenience packaging and are not envisioned to be protection for shipping. Cartons perform this function. All quantities are specified as finished pieces per wrapped/boxed/carton or palletized package. The model for packaging is that products are wrapped together, wrapped packages are placed in boxes, boxes are placed in cartons, and cartons are stacked on pallets.

Resource Properties

Resource class:

Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BoxedQuantity ?
	IntegerSpan
	How many units of product in a box.

	BoxShape ?
	ShapeSpan
	Describes the length, width, and height of the box in points.

	CartonQuantity ?
	IntegerSpan
	How many units of product in a carton.

	CartonShape ?
	ShapeSpan
	Describes the length, width ,and height of the carton in points. For example, 288 544 1012

	CartonMaxWeight ?
	NumberSpan
	Maximum weight of an individual carton in kilograms.

	CartonStrength ?
	NumberSpan
	Strength of the carton in kilograms.

	FoldingCatalog ?
	NameSpan
	Description of the folding scheme for folding the product for packaging as specified in the FoldingParams folding catalog attribute in the format “Fx-y”. See JDF Folding Catalog descriptions in
[image: image67.jpg]F4-1 2x1 F6-1 3x1 3x1 F6-3 3x1 F64 3x1
1 5 2 1 2 G
112 /3 11/3 TRl /4 1172 M/3 1173
F6-5 3x1 F8-1 4x1 F8-2 4x1 F8-3 4x1 F8-4 ax1
21 12 12 oIS 13 2
I
l U
i
1213 11/3 M2 11/4 112 41/4 T1/4 1174 11/4 1174 11/2 11/4
F8-5 4x1 F8-6 4x1 F8-7 22 F10-1 5x1 F10-2 5x1
12 3 2 3 1 1 1234 23 41
i 2 .
T1/4 11/4 11/4 13/4 11/4 11/4 112 41172 /5 1175 175 11/5 14/5 11/5 11/5 11/5
F10-3 5x1 F12-1 6x1 F12:2 6x1 F12:3 6x1 F124 6x1
tusi2 1izis 1o, 128 123

12/5 12/5 11/5

113 11/3 11/6

11/3 11/3 11/6

11/2 11/6 11/6

11/2 11/6 11/6

F12-5 6x1
S

F12-6 6x1

12345

11/2 11/3 11/6

11/6 11/6 11/6 11/6 11/6

T1/3 11/3 +11/2

F12-8 3x2

F12-9 3x2
1

12/3 11/3 +11/2

11/3 11/3+11/2

F12-10 3x2

T

12/3 11/3 +11/2

F12-11 3x2
1

F12-12 2x3
1

F12-13 2x3

F12-14 2x3

T1/3 +11/2 11/3

11/2 +12/3 11/3

T1/2 +11/3 11/3

3
2

T2 +11/3 113

F14-1 7x1
123456

F16-1 8x1
128

F16-2 8x1

F16-3 8x1
123

F16-4 8x1
12l

AN2Es

M7 417 117
USRI

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

F16-5 8x1
1234567

F16-6 4x2

F16-7 4x2

F16-8 4x2

F16-9

11/8 11/8 11/8 11/8

1172+ 11/2+ 11/4

TH2 14112

1178 11/8 11/8 T2+ 1172+ 1174 TM/2+ 4172+ 41/4
F16-10 4x2 F16-11 4x2 F16-12 4x2 F16-13 2x4 F18-1 o
1 2 1 2 3 1 2 3 i g 12345678

3

=, = . :

11/2 11/4+ 11/2

11/4 11/4 11/4+11/2

11/4 11/4 11/4 +11/2

11/2+11/2 11/4

11/9 11/9 11/9 11/9
11/9 11/9 11/9 11/9

Figure 7.11 Fold Catalog part 1
 and Figure 7.12 Fold Catalog part 2.
Note: The folding scheme in this context refers to the folding of the finished product for packaging only. The folding has no effect on the page/folio definition.

	PalletQuantity ?
	IntegerSpan
	Number of product per pallet

	PalletSize ?
	XYPairSpan
	Describes the length and width of the pallet in points, e.g., 3500 3500

	PalletMaxHeight ?
	NumberSpan
	Maximum height of a loaded pallet in points.

	PalletMaxWeight ?
	NumberSpan
	Maximum weight of a loaded pallet in kilograms.

	PalletType ?
	NameSpan
	Type of pallet used. Examples include:

2Way: Two-way entry

4Way: Four-way entry

Euro: Standard 1*1 m Euro pallet

	PalletWrapping ?
	NameSpan
	Wrapping of the completed pallet. Examples include:

StretchWrap

Banding

Default = None

	WrappedQuantity ?
	IntegerSpan
	Number of units of product per wrapped package.

	WrappingMaterial ?
	NameSpan
	Examples include:

RubberBand

ShrinkWrap

PaperBand

Polyethylene

Default = None

7.1.15 ProductionIntent

This resource specifies the manufacturing intent and considerations for a JDF job using information that identifies the desired result or specified manufacturing path.

Resource Properties

Resource class:

Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	PrintPreference ?
	EnumerationSpan
	Intended result or goal. Possible values are:

Balanced – Request for a manufacturing process that balances the requirements for cost, speed and quality. The default.
CostEffective – Request for the most cost effective manufacturing process.

Fastest – Request for the most time effective manufacturing process. Cost and Quality may be sacrificed for a fast turnaround time.

HighestQuality – Request for the manufacturing process which will result in the highest quality.

	PrintProcess ?
	EnumerationSpan
	Print process requested. Allowed values are:

Electrophotography

Flexography

Gravure

Inkjet

Lithography

Letterpress

Screen

Thermography

7.1.16 ProofingIntent

Modified in JDF 1.2
[Added 1 attribute: ImageViewingStrategy, added 2 values: GrayScale to ColorType and UseReference to ImageViewingStrategy, changed SeparationSpec * to a refelement for consistency, 1 clarification, 1 ISSUE, ISSUE (Digital Printing, O & P, and Color WGs)]
This resource specifies the prepress proofing intent for a JDF job, using information that identifies the type, quality, brand name and overlay of the proof. The delivery options of proofs are specified in DeliveryIntent.

Resource Properties

Resource class:

Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ProofItem *

New in JDF 1.1
	element
	Specifies the details of the proofs that are required. If no ProofItem exists in a ProofingIntent, it explicitly specifies that no proofs are desired.

Structure of the ProofItem Element

All parameters of ProofingIntent have been moved into ProofItem in JDF 1.1.

	Name
	Data Type
	Description

	Amount ?

Modified in JDF 1.1
	IntegerSpan
	Specifies the total number of copies of this proof that is required. If not specified, it defaults to an IntegerSpan with Preferred = 1.

	BrandName ?

Modified in JDF 1.1
	StringSpan
	Brand name of the proof, such as “Iris”.

	ColorType ?

Modified in JDF 1.1
Modified in JDF 1.2
	EnumerationSpan
	Color quality of the proof. Possible values are:

GrayScale – Generic single color, multi-level proof. See also Monochrome. New in JDF 1.2
Monochrome – Generic single color, bi-level proof, e.g., Black and white. See also GrayScale. Modified in JDF 1.2
BasicColor – Color does not match precisely. This implies the absence of a color matching system.

MatchedColor – Color is matched to the output of the press using a color matching system.

	Contract ?

Modified in JDF 1.1
	boolean
	Requires proof to be a legally binding, accurate representation of the image to be printed, e.g., color quality requirements have been met when the printed piece acceptably matches the proof.

If true, a contract proof is required.

If false, a lesser proof demonstrating content, color-breaks, or position is adequate.

Default = false

	HalfTone ?

Modified in JDF 1.1
	OptionSpan
	Specifies whether the proof should emulate halftone screens. Default = false

	ImageStrategy ?
New in JDF 1.2
	EnumerationSpan

	Identifies which images (OPI or other) will be printed during the Proofing or displayed during the SoftProofing process
NoImages
LowResolution -
HighResolution -

	PageIndex ?

New in JDF 1.1
	Integer​RangeList
	List of pages in the numbering scheme given by the FolioCount attribute of the component that should be proofed. Default = 0~-1, i.e., all pages.

	ProofName ?

New in JDF 1.1
	string
	Name of the ProofItem. This field must exist, if delivery of a proof is specified in DeliveryIntent.

	ProofTarget ?

Modified in JDF 1.1
	URL
	Identifies a remote target for the proof output. This can be either a soft or a hard proofing target.

	Technology ?

Modified in JDF 1.1
	NameSpan
	Technology used for making the proof. Possible values are:

BlueLine

DyeSub

InkJet

Laser

PressProof

SoftProof

	ProofType ?

Modified in JDF 1.1
	EnumerationSpan
	The kind of proof. Possible values are:

Page – Page proof

Imposition – Imposition proof

None – No Proof is required. The default.

	SeparationSpec *

New in JDF 1.1
Modified in JDF 1.2
	refelement
	Separations that are to be proofed. Default = all separations

7.1.17 ScreeningIntent
New in JDF 1.2
This resource specifies the screening intent parameters desired for a JDF job.
See also the ScreeningParams resource which duplicates all of these attributes (with the same values) and has many more attributes. In order to specify additional production details, an individual JDF Screening process nodes may be inserted into a ScreeningIntent product intent node. This process node may contain the requested ScreeningParams resource(s) as “Incomplete” input resource links. See 4.1.4 Specification of Process Specifics for Product Intent Nodes
 for additional requirements and an example.
Resource Properties

Resource class:

Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DotSize ?
	NumberSpan
	Specifies the dot size of the screen in microns [µm] when FM screening is used, otherwise DotSize is ignored.

	Frequency ?
	NumberSpan
	Specifies the line frequency of the screen in lines per inch (lpi) when AM screening is used, otherwise Frequency is ignored.

	ScreeningType ?
	EnumerationSpan
	General type of screening. Possible values are:

AM – (may be line or dot)

FM

7.1.18 ShapeCuttingIntent

This resource specifies form and line cutting for a JDF job. The cutting processes are applied for producing special shapes like an envelope window or a heart-shaped beer mat. Information that identifies the type and shape of cuts can be described. The cutting process(es) can be performed using tools such as hollow form punching, perforating, or die-cutting equipment.

Resource Properties

Resource class:

Intent

Resource referenced by:
-

Example Partition:
Option
Input of processes:
Any product node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ShapeCut *
	element
	Array of all ShapeCut elements. Used when each shape is exactly specified.

Structure of ShapeCut Subelement

	Name
	Data Type
	Description

	CutBox ?
	rectangle
	Specification of a rectangular window.

	CutOut ?
	boolean
	If true, the inside of a specified shape must be removed. If false, the outside of a specified shape must be removed. An example of an inside shape is a window, while an example of an outside shape is a shaped greeting card. Default = false

	CutPath ?
	path
	Specification of a complex path. This may be an open path in the case of a single line.

	Material ?
	StringSpan
	Transparent material that fills a shape, such as an envelope window, that was cut out when CutOut = true.

	CutType ?

Modified in JDF 1.1
	EnumerationSpan
	Type of cut or perforation used. Possible values are:

Cut: Full cut. The default.

Perforate: Interrupted perforation that does not span the entire sheet.

	ShapeDepth ?

New in JDF 1.1
	NumberSpan
	Depth of the shape cut. Measured in micron[µm]. If not specified, the shape is completely cut.

	Pages ?
	IntegerRangeList
	List of pages to which this shape must be applied. Only the pages of face-up surfaces should be specified.

	ShapeType
	EnumerationSpan
	Describes any precision cutting other than hole making. Possible values are:

Rectangular

Round

Path

	TeethPerDimension ?
	NumberSpan
	Number of teeth in a given perforation extent in teeth/point.

MicroPerforation is defined by specifying a large number of teeth (n>1000).

7.1.19 SizeIntent

Deprecated in JDF 1.1

SizeIntent has been deprecated in JDF 1.1. All contents have been moved to LayoutIntent. This resource records the size of the finished pages for the product component. It does not, however, specify the size of any intermediate results, such as press sheets.

Resource Properties

Resource class:

Intent

Example Partition:
Option
Resource referenced by:
-

Input of processes:
Any Product Node

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Dimensions
	XYPairSpan
	Specifies the height and width of the product component in pts. Note: Height and width are ambiguously specified in JDF 1.0.

	Pages ?
	IntegerSpan
	Specifies the number of pages of the product component.

	Type ?
	enumeration
	Specifies whether the product component referred to is flat or finished. Possible values are:

Folded = Size of the product after folding. Default value

Flat = Size of the unfolded sheet. Note that this describes the size of a sheet that is folded to create a product, not the size of the sheet in the press.

7.2 Process Resources

The rest of the resources described in this chapter are what are known as process resources. This means that they serve as necessary components in each of the JDF processes. Section 7.2.1 describes the template for all of the sections that follow. Then every resource already defined for JDF is chronicled, in alphabetical order, below.

7.2.1 Process Resource Template

Clarified in JDF 1.2
[Added 1 clarification]
Each of the following sections begins with a brief narrative description of the resource. Following that is a list containing details about the properties of the resource, as shown below. The first item in the list provides the class of the resource. As was described in Section 3.7.1 Resource Classes, all resources are derived from one of the following eight superclasses: Intent, Parameter, Implementation, Consumable, Quantity, Handling and PlaceHolder. All resources inherit additional contents (which may be attributes or elements) from their respective superclasses, and those attributes and elements are not repeated in this section. Thus those attributes associated with a resource of class Parameter, for example, can be found in Table 3‑11. Note that this inheritance is only valid for atomic resources, i.e., resources that reside directly in a ResourcePool.

Resource elements are listed in separate sections if they may be referenced by more than one resource. For an example, see the resource element SeparationSpec. If the resource is not referenced by multiple resources, it is described inside the resource section of the resource to which it belongs. For an example, see the Structure of the BundleItem Element of the Bundle resource. If an element inside a resource section of the resource is needed to be referenced by multiple resources in a revision of JDF, then that element is promoted to its own section. For an example, see the ColorSpaceConversionOp resource which was an element of the ColorSpaceConversionParams resource in JDF/1.1. The resource class of an atomic resource also defines the superclasses from which the resource
inherits additional contents. The Consumable, Quantity, and Handling resource elements inherit from the PhysicalResource element, which in turn inherits from the Resource element. Parameter and Implementation resource elements inherit from the Resource element directly. Non-atomic resources, i.e., resource subelements, do not inherit contents from resource superclasses.

Examples for resources that may be used as atomic resources or resource elements are: Employee, InsertSheet, LayoutElement, and Media. For example, if the Media is used as an atomic resource, it inherits all content from the resource class Consumable. If it is used as a resource element, then the Media may have only an ID as defined by Table 3‑22 Contents of the abstract ResourceElement.

After the list describing the resource properties, each section contains tables that outline the structure of each resource and, when applicable, the abstract or subelement information that pertains to the resource structure. The first column contains the name of the attribute or element. In some cases, a resource will contain an element with more than one value associated with it. If this is the case, the element name is listed as often as it appears, and a term in parentheses that identifies the kind of element is included in the column. For an example, see Section 7.2.53 EndSheetGluingParams or 7.2.126 Sheet. An example of the tables in this section is provided below.

Resource Properties Template

Resource class:
Defines the resource class or specifies ResourceElement if the element does not inherit content from a resource class.

Resource referenced by:
List of parent resources that contain elements of this type. Only valid for elements.

Example Partition:
List of valid partitioning boundaries: BlockName, DocIndex, DocRunIndex, DocSheetIndex, FountainNumber, LayerIDs, Location, Option, PageNumber, PartVersion, PreviewType, RibbonName, Run, RunIndex, RunTag, RunPage, Separation, SetIndex, SheetIndex, SheetName, Side, SignatureName, TileID, WebName If a partition is specified, the resource may contain nested elements of its own type.
The list of partitions represents a list of example partition keys for the respective resources. Note that resources may also be partitioned by keys that are not included in the list, e.g., PartVersion and Location, which is valid for any resource, respectively physical resource.

Input of processes:
List of node types that use the resource as an input resource.

Output of processes:
List of node types that create the resource as an output resource

Resource Structure Template

	Name
	Data Type
	Description

	Name of attribute
	data type of attribute
	Usage of the attribute.

	Name of element
	element
	Subelements that must be defined locally within the resource.

	Name of element
	refelement
	Elements that are based on other atomic resources or resource elements. These may either be in-line elements or instances of ResourceRef elements (see Section 3.8.6). In case of ResourceRef elements a "Ref" must be appended to the name specified in the table column entitled "Name".

7.2.2 Address

Definition of an address. The structure is derived from the vCard format and, therefore, is comprised of all address subtypes (ADR:) of the delivery address of the vCard format. The corresponding XML types of the vCard are quoted in the table.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Contact, Location (see Table 3‑14)

Example:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	City ?
	string
	City or locality of address (vCard: ADR:locality).

	Country ?
	string
	Country of address (vCard: ADR:country).

	CountryCode ?
	string
	Country of address. This value conforms to the ISO 3166 standard in which countries are represented as 2-character codes.

	PostBox ?
	string
	Post office address (vCard: ADR:pobox. For example: P.O. Box 101).

	PostalCode ?
	string
	Zip code or postal code of address (vCard: ADR:pcode).

	Region ?
	string
	State or province (vCard: ADR:region).

	Street ?
	string
	Street address (vCard: ADR:street).

	ExtendedAddress ?
	telem
	Extended address (vCard: ADR:extadd. For example: Suite 245).

7.2.3 Adhesive​Binding​Params

Deprecated in JDF 1.1

This resource describes the details of the following four subprocesses of the AdhesiveBinding process:

· back preparation

· multiple glue applications

· spine taping

· cover application
These subprocesses are identified as instances of the abstract ABOperation element. Although a workflow may exist that groups these processes according to its own capabilities, it is likely that they will be performed in the order presented. A description of each follows the table containing the contents of the AdhesiveBindingParams resource.
Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
AdhesiveBinding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	FlexValue ?
	double
	Flex quality parameter given in [N/cm].

	PullOutValue ?
	double
	Pull out quality parameter given in [N/cm].

	ABOperation +
	Element
	An abstract element which is a placeholder for an operation (SpinePreparation, GlueApplication, SpineTaping, and CoverApplication). Each ABOperation element describes the parameters of one single operation of the complete AdhesiveBinding process.

[image: image68.wmf]Block

Side gluing on

back side

Side gluing on

front side

Spine gluing

Front side

Back side

X

X

X

Y

Y

Y

Start

position

Glue

line

Figure 7.1 Parameters and coordinate system for glue application

7.2.4 ApprovalParams

This resource provides the details of an approval process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Approval
Output of processes:

Resource Structure

	Name
	Data Type
	Description

	ApprovalPerson *
	element
	List of people (such as a customer, printer, or manager) who can sign the approval.

Structure of ApprovalPerson Subelement

	Name
	Data Type
	Description

	Obligated ?
	boolean
	If true, the person has to sign this approval.

Default = true

	Contact
	refelement
	Contact (such as a customer, printer, or manager) who must sign the approval. The value of the ContactTypes attribute of this Contact element should be Administrator.

7.2.5 ApprovalSuccess

The signed ApprovalSuccess resource indicates the success of a soft proof, color proof, printing proof, or any other sort of proof.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, DocRunIndex, RunIndex, RunPage, RunTag, SetIndex, SheetName, Side, SignatureName, TileID
Input of processes:
any process

Output of processes:
Approval, Verification
Resource Structure

	Name
	Data Type
	Description

	FileSpec ?
	refelement
	The file that contains the approval signature. If FileSpec does not exist, ApprovalSuccess is a logical placeholder.

7.2.6 AutomatedOverprint​Params

Clarified in JDF 1.2
[added 2 clarifications]
This resource provides controls for the automated selection of overprinting of black text or graphics.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorIntent, RenderingParams, SeparationControlParams
Example Partition:
-
Input of processes:
-

Output of processes:
-
Resource Structure

	Name
	Data Type
	Description

	OverPrintBlackText ?
Clarified in JDF 1.2
	boolean
	Indicates whether overprint should be set to true for black text. If true, overprint of black text is applied regardless of any values in the PDL. If false, TextSizeThreshold and TextBlackLevel are ignored and PDL Text overprint operators are processed. Default = false

	OverPrintBlackLineArt ?
Clarified in JDF 1.2
	boolean
	Indicates whether overprint should be set to true for black line art. If true, overprint of black line art is applied regardless of any values in the PDL. If false, LineArtBlackLevel is ignored and PDL Line Art overprint operators are processed. Default = false

	TextSizeThreshold ?
	integer
	Indicates the point size for text below which black text will be set to overprint. For asymmetrically scaled text, the minimum point size between both axes will be used. Default = 99999, i.e., all text is set to overprint.

	TextBlackLevel ?
	number
	A value between 0.0 and 1.0 which indicates the minimum black level for the text stroke or fill colors that cause the text to be set to overprint. Default = 1

	LineArtBlackLevel ?
	number
	A value between 0.0 and 1.0 which indicates the minimum black level for the stroke or fill colors that cause the line art to be set to overprint. Defaults to the value of TextBlackLevel.

7.2.7 Block​Preparation​Params

New in JDF 1.1

This resource describes the settings of a BlockPreparation process. For the tightbacking there are four different kinds of book forms:

[image: image69.png]

[image: image70.png]

[image: image71.png]

[image: image72.png]

flat

round

flat and backed

rounded and backed

Flat

Round

FlatBacked

RoundBacked
For the rounding and for the backing there are two additional measurements:

Rounding:
rounding way

Backing:
backing way

[image: image73.png]

[image: image74.wmf]
Resource Properties

Resource class:
Parameter

Resource referenced by:

Example Partition:
-
Input of processes:
BlockPreparation
Resource Structure

	Name
	Data Type
	Description

	Backing ?
	number
	Backing distance in points. Default =system specified.

	Rounding ?
	number
	Rounding distance in points. Default =system specified.

	TightBacking?
	enumeration
	Definition of the geometry of the back of the book block. This can be one of:

Flat: The default.

Round: Rounding way

FlatBacked: Backing way

RoundBacked: Rounding way, backing way

	RegisterRibbon*
	refelement
	Description of the register ribbons that are included within the book block.

7.2.8 BoxPackingParams

New in JDF 1.1
This resource defines the parameters for packing a box of components. Details of the box used for BoxPacking can be found in the Component (Box) resource that is also an input of the BoxPacking process.

Resource Properties

Resource class:
Parameter

Resource referenced by:

Example Partition:
-
Input of processes:
BoxPacking
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Pattern ?
	string
	Name of the box packing pattern. Used to store a predefined pattern that defines the layers and positioning of individual component in the box or carton.

	FillMaterial ?
	NMTOKEN
	Material to fill boxes that are not completely filled. Includes

Paper

Styrofoam

BlisterPack

Default = None

7.2.9 BufferParams

New in JDF 1.1
This resource provides controls for Buffer process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-
Example Partition:
-
Input of processes:
Buffer
Output of processes:
-
Resource Structure

	Name
	Data Type
	Description

	MinimumWait ?
	duration
	Minimum amount of time that an individual resource must be buffered.

7.2.10 Bundle

New in JDF 1.1
Bundles are used to describe sets of components.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Component
Example Partition:
-
Input of processes:
-
Output of processes:
-
Resource Structure

	Name
	Data Type
	Description

	BundleType
	enumeration
	One of:
BoundSet: Stack of components that are bound together.
Box

Carton

Palette

Sheet – Multiple individual items printed onto one Sheet.

Stack – Loose stack of components. The default.

WrappedBundle

	FolioCount ?
	integer
	Total Amount of individual finished pages that this bundle contains. If not specified, it must be calculated from the individual BundleItems.

	ReaderPageCount ?
	integer
	Total Amount of individual reader pages that this bundle contains. If not specified, it must be calculated from the individual BundleItems.

	TotalAmount ?
	integer
	Total Amount of individual products that this bundle contains. If not specified, it must be calculated from the individual BundleItems.

	BundleItem *
	refelement
	References to the individual items that form this Bundle.

Structure of the BundleItem Element

	Name
	Data Type
	Description

	Amount
	integer
	Number of this type of items.

	Orientation ?
	enumeration
	Named Orientation of the Component respective to the Bundle coordinate system. Allowed values are:

Rotate0
Rotate90
Rotate180
Rotate0
Flip270
Flip90
Flip180
Flip270
For details, of the semantics of the enumeration, see Table 2‑3
Only one of Orientation or Transformation may be specified.

	Transformation ?
	matrix
	Orientation of the Component respective to the Bundle coordinate system.

	Component
	refelement
	Reference to a Component that is part of this Bundle.

The following example code shows a JDF that describes Boxing and Palletizing for 4200 books. The appropriate Bundle elements are highlighted The resources have not yet been completely filled in.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="Bundle" Type="ProcessGroup" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <!-- The BoxPacking process consumes the thing to pack and the boxes-->

 <!-- The BoxPacking process creates packed boxes -->

 <JDF ID="n0235" Type="BoxPacking" Status="Waiting">

 <ResourceLinkPool>

 <ComponentLink rRef="BoxID" Usage="Input" ProcessUsage="Box"/>

 <BoxPackingParamsLink rRef="BoxParamsID" Usage="Input"/>

 <ComponentLink rRef="ComponentID" Usage="Input"/>

 <ComponentLink rRef="PackedBoxID" Usage="Output"/>

 </ResourceLinkPool>

 <!-- The BoxPacking process has the following local resources -->

 <ResourcePool>

 <BoxPackingParams ID="BoxParamsID" Class="Parameter" Status="Available" Quantity="42"/>

 <Component ID="BoxID" Class="Quantity" Amount="100" Status="Available"/>

 </ResourcePool>

 </JDF>

 <ResourcePool>

 <!-- This Component describes a Box with 42 Books -->

 <Component ID="PackedBoxID" Class="Quantity" rRefs="ComponentID" Amount="100" Status="Unavailable">

 <Bundle BundleType=”Box” TotalAmount="42">

 <BundleItem Amount="42">

 <ComponentRef rRef="ComponentID"/>

 </BundleItem>

 </Bundle>
 </Component>

 <Component ID="ComponentID" Class="Quantity" Amount="4200" Status="Available"/>

 <!-- This Component describes the contents of the palette: 100 Boxes with 42 Books -->

 <Component ID="PaletteContentsID" Class="Quantity" rRefs="PackedBoxID" Amount="10" Status="Unavailable">

 <Bundle BundleType=”Palette” TotalAmount="420">

 <BundleItem Amount="10">

 <ComponentRef rRef="PackedBoxID"/>

 </BundleItem>

 </Bundle>
 </Component>

 </ResourcePool>

 <JDF ID="n0239" Type="Palletizing" Status="Waiting">

 <ResourceLinkPool>

 <ComponentLink rRef="PackedBoxID" Usage="Input"/>

 <PaletteLink rRef="PaletteID" Usage="Input"/>

 <PalletizingParamsLink rRef="PaletteParamsID" Usage="Input"/>

 <ComponentLink rRef="PaletteContentsID" Usage="Output"/>

 </ResourceLinkPool>

 <ResourcePool>

 <Palette ID="PaletteID" Class="Consumable" Amount="10" Status="Available"/>

 <PalletizingParams ID="PaletteParamsID" Class="Parameter" Status="Available" Quantity="10"/>

 </ResourcePool>

 </JDF>

</JDF>

7.2.11 ByteMap

This resource specifies the structure of bytemaps produced by various processes within a JDF system. A ByteMap represents a raster of image data. This data may have multiple bits per pixel, may represent a varying set of color planes, and may or may not be interleaved. A Bitmap is a special case of a ByteMap in which each pixel is represented by a single bit per color.

Personalized printing requires that certain regions of a given page be dynamically replaced. The optional mask associated with each band of data allows for omitting certain pixels from the base image represented by the ByteMap so that they may be replaced.

Resource Properties

Resource class:
Parameter

Resource references:
RunList
Example Partition:
-
Input of processes:
Screening
Output of processes:
Scanning, Rendering, Screening
Resource Structure

	Name
	Data Type
	Description

	BandOrdering ?
	enumeration
	Identifies the precedence given when ordering the produced bands. Possible values are:

BandMajor – The position of the bands on the page is prioritized over the color.

ColorMajor – All bands of a single color are played in order before progressing to the next plane. This is only possible with non-interleaved data.

This field is required for non-interleaved data and is ignored for interleaved data.

	FrameHeight
	integer
	Height of the overall image that may be broken into multiple bands

	FrameWidth
	integer
	Width of overall image that may be broken into multiple columns

	Halftoned
	boolean
	Indicates whether or not the data has been halftoned.

	Interleaved
	boolean
	If true, the data is interleaved, or chunky. Otherwise the data is non-interleaved, or planar.

	PixelSkip ?
	integer
	Number of bits to skip between pixels of interleaved data.

	Resolution
	XYPair
	Output resolution.

	Band +
	element
	Array of bands containing raster data.

	FileSpec ?
	refelement

	A FileSpec resource pointing to a location where the raster should be (or already is) stored. The ResourceUsage attribute of the FileSpec must be “RasterFileLocation”.

	PixelColorant +
	element
	Ordered list containing information about which colorants are represented and how many bits per pixel are used.

Structure of Band Subelement

	Name
	Data Type
	Description

	Data
	URL
	Actual bytes of data.

	Height
	integer
	Height in pixels of the band.

	Mask ?
	URL
	1-bit mask of raster data indicating which bits of the band data should actually be used. It is required that the mask dimensions and resolution be equivalent to the contents of the band itself.

	WasMarked
	boolean
	Indicates whether any rendering marks were made in this band. This attribute allows a band to be skipped if no marks were made in the band.

	Width
	integer
	Width in pixels of the band.

Structure of PixelColorant Subelement

	Name
	Data Type
	Description

	ColorantName
	string
	Name of colorant.

	PixelDepth
	integer
	Number of bits per pixel for each colorant.

7.2.12 Case​Making​Params

New in JDF 1.1
This resource describes the settings of a CaseMaking process.

[image: image75.jpg]FrontFoldin ;
SpineBoardWidth CoverBoardWidth

P

TopFoldin

c
k=
S
i
5
2
5
@

Center of the BookCase coordinate system

JointWidth (For better clarity on the process details, the
drawing is seen from the back side of the case

which contacts the inner side of the book. For

CoverBoardThickness SpineBoardThickness this rson the cooriste Tymsm is aligned
ike above]

ither linen or inted/proce:

Figure 7.2 CaseMakingParams

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
CaseMaking
Resource Structure

	Name
	Data Type
	Description

	BottomFoldIn ?
	number
	 Defines the width of the part of the CoverMaterial on the lower edge inside of the case. If not specified, defaults to TopFoldIn.

	CoverWidth ?
	number
	Width of the cover cardboard in points.

	CornerType ?
	NMTOKEN
	Method of wrapping the corners of the cover material around the corners of the board. Possible values include:

LibraryCorner: the American Library Corner style.

If not specified defaults to the equipment specific setting.

	FrontFoldIn ?
	number
	Defines the width of the part of the cover material on the front edges inside of the case.

	Height
	number
	Height of the book case in points.

	JointWidth
	number
	Width of the joint in points as seen when laying the cardboard on the CoverMaterial.

	SpineWidth
	number
	Width of the spine cardboard in points.

	TopFoldIn ?
	number
	 Defines the width of the part of the CoverMaterial on the top edge inside of the case.

	GlueLine
	refelement
	As the glue is applied to the whole back side of the cover material, AreaGluing must be set to true.

7.2.13 CasingInParams

New in JDF 1.1
This resource describes the settings of a CasingIn process. The geometry is always centered.

[image: image76.jpg]Book block

Book case

Origi] of the book case coordi 6f the process coprdinate system

Figure 7.3 Parameters and Coordinate System for CasingIn

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
CasingIn
Resource Structure

	Name
	Data Type
	Description

	CaseRadius ?
	number
	Inner radius of the case spine rounding. If not specified, no rounding of the case spine is performed.

	GlueLine +
	refelement
	Properties of the glue used.

7.2.14 ChannelBindingParams

Modified in JDF 1.2
[Added ReferenceEdge attribute.]
This resource describes the details of the ChannelBinding process. Figure 7.4 depicts the ChannelBinding process.

[image: image77.jpg]L Pile of sheets

Channel bound document

Figure 7.4 Parameters used for channel binding

The symbols W, L, and ClampD of Figure 7.4 are described by the attributes ClampD and ClampSize of the table below.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
ChannelBinding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Brand ?
	string
	The name of the clamp (or preassembled cover with clamp) manufacturer and the name of the specific item.

	ClampColor ?
	NamedColor
	Determines the color of the clamp/cover. If the clamp is inside of a preassembled cover, then the color of the cover is meant. Default= Default =system specified.

	ClampD ?
	double
	The distance of the clamp that was “pressed away” (see Figure 7.4).

	ClampSize ?
	shape
	The shape size of the clamp. The first number of the shape data type corresponds to the clamp width W (see Figure 7.4) which is determined by the final height of the block of sheets to be bound. The second number corresponds to the length L (see Figure 7.4). The third corresponds to the spine length (not visible in Figure 7.4. The spine length is perpendicular on the paper plane).

	ClampSystem ?
	boolean
	If true the clamp is inside of a pre assembled cover.

Default = false

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be bound for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the ChannelBinding process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be bound. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

7.2.15 CIELABMeasuringField
Information about a color measuring field. The color is specified as CIE-L*a*b* value.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorControlStrip, Surface
Example Partition:
-
Input of processes:
Any printing process

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Center
	XYPair
	Position of the center of the color measuring field in the coordinates of the MarkObject that contains this mark. If the measuring field is defined within a ColorControlStrip, Center refers to the rectangle defined by Center and Size of the ColorControlStrip.

	CIELab
	LabColor
	L*a*b* color specification.

	DensityStandard ?

Deprecated in JDF 1.1
	enumeration
	Density filter standard used during density measurements. Possible values are:

ANSIA – ANSI Status A
ANSIE – ANSI Status E
ANSII – ANSI Status I
ANSIT – ANSI Status T. The default value

DIN16536

DIN16536NB

	Diameter ?

Modified in JDF 1.1
	double
	Diameter of measuring field.

	Light

Deprecated in JDF 1.1
	NMTOKEN
	Type of light. Possible values include:

D50
D65

	Observer

Deprecated in JDF 1.1
	integer
	Observer in degree (2 or 10)

	Percentages ?
	NumberList
	Percentage values for each separation. The number of array elements must match the number of separations.

	ScreenRuling ?

	NumberList
	Screen ruling values in lines per inch for each separation. The number of array elements must match the number of separations.

	ScreenShape ?

	string
	Shape of screening dots.

	Setup ?

Deprecated in JDF 1.1
	string
	Description of measurement setup.

	Tolerance ?

Modified in JDF 1.1
	double
	Tolerance in E.

	Color​Measurement​Conditions ?

New in JDF 1.1
	refelement
	Detailed description of the measurement conditions for color measurements.

7.2.16 CoilBindingParams

Modified in JDF 1.2
[Added ReferenceEdge attribute.]
This resource describes the details of the CoilBinding process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
CoilBinding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Brand ?
	string
	The name of the coil manufacturer and the name of the specific item. Default =system specified.

	Color ?
	NamedColor
	Determines the color of the coil. Default =system specified.

	Diameter ?
	double
	The coil diameter to be produced is determined by the height of the block of sheets to be bound. Default =system specified.

	Material ?
	enumeration
	The material used for forming the coil binding:

LaqueredSteel

NylonCoatedSteel

PVC

TinnedSteel

ZincsSteel

Default = system specified

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be bound for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the CoilBinding process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be bound. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	Shift ?
	double
	Amount of vertical shift that occurs as a result of the coil action while opening the document. It is determined by the distance between the holes. Default =system specified.

	Thickness ?
	double
	The coil’s thickness. Default =system specified.

	Tucked ?
	boolean
	If true, the ends of the coils are “tucked in”. Default = false

7.2.17 CollectingParams

The Collecting process needs no special attributes. However, this resource is provided as a container for extensions of the Collecting process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Input of processes:
Collecting
Output of processes:
-

[image: image78.wmf]Direction of travel

Collecting chain

Target or operation

coordinate system

Source or component

coordinate system

Width

Height

X

X

Y

Y

Figure 7.5 Coordinate systems used for collecting

7.2.18 Color

Clarified in JDF 1.2
[Clarified the Name attribute]
JDF describes spot color inks and, along that line, process color (inks). Spot colors are named colors that may either be separated or converted to process colors. It is important to know the density of the colorant (for trapping) and, in many cases, the Lab values (for representing them on screen). If you know the Lab value, you can calculate the density. When representing colors on screen, a conversion to process colors must be defined. This conversion is a simple linear interpolation between the CMYK value of the 100% spot color and its tint.

A color is represented by a Color element. It has a required Name attribute, which represents the name of either a spot color or a process color. The four names that are reserved for representing process CMYK color names are Cyan, Magenta, Yellow, and Black. Every colorant can have a Lab and/or CMYK color value. If both are specified and a system is capable of interpreting both values, the Lab value overrides the CMYK definition, unless the target device is compatible with the CMYKTarget. In this case the CMYK value has precedence.

The Lab value represents the Lab readings of the ink on certain media. This means that spot inks printed on two different kinds of stocks have different Lab values. Pantone books, for example, provide Lab values for two kinds of paper: coated (not necessarily glossy) and uncoated. Thus a color of ink should identify the media for which it is specified. CMYK colors are used to approximate spot colors when they are not separated. This conversion can be done by a color management system, or there can be fixed CMYK representation defined by colorbooks such as Pantone.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorPool, Media, TrappingDetails
Example Partition:
-

Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	CMYK ?
	CMYKColor
	CMYK value of the 100 % tint value of the colorant. Although optional, it is highly recommended that this value be filled.

	ColorBook ?
	NMTOKEN
	Definition of the color identification standard that is used to represent this color. Examples include:

HKS

Pantone

Toyo

Default = None

	ColorBookEntry ?
	string
	Definition of the Color within the ColorBook standard. Maps to the NCL2 value of a namedColorType tag of an ICC color profile. Defaults to an empty string. This entry is used to map from the JDF Color to an ICC namedColorType tag.

	ColorBookPrefix ?
	string
	Definition of the name prefix of the color book entry within a named ICC profile. Default = empty string. This entry is used to map from the JDF Color to an ICC namedColorType tag.

	ColorBookSuffix ?
	string
	Definition of the name suffix of the color book entry within a named ICC profile. Default = empty string. This entry is used to map from the JDF Color to an ICC namedColorType tag.

	ColorName ?

New in JDF 1.1
	NamedColor
	Mapping to a color name. Allowed values are defined in the appendix section A.2.8 NamedColor.

	ColorType ?
	enumeration
	A name that characterizes the colorant. If no value is specified, the device must provide a default value. Possible values are:

DieLine – Marks made with colorants of this type are ignored for trapping. Trapping processes need not generate a color plane for this colorant. DieLine can be used for auxiliary process separations.

Normal – Marks made with colorants of this type, marks covered by colorants of this type, and marks on top of colorants of this type are trapped.

Transparent – Marks made with colorants of this type are ignored for trapping. Trapping processes need not generate a color plane for this colorant. Transparent can be used for varnish.

Opaque – Marks covered by colorants of this type are ignored for trapping. Opaque can be used for metallic inks.

OpaqueIgnore – Marks made with colorants of this type and marks covered by colorants of this type are ignored for trapping. OpaqueIgnore can be used for metallic inks.

	Lab ?
	LabColor
	Lab value of the 100 % tint value of the colorant.

	MediaType ?
	string
	Specifies the media type. Possible values are:

Coated

Uncoated

	Name
	string
	Name of the colorant. This is the value that must match the Name attribute of a SeparationSpec that references this color,
e.g., in ColorantControl::DeviceNSpace::SeparationSpec::Name.

or

ColorantControl::ColorantParams::SeparationSpec::Name

This Name attribute may also be referenced from the Name attribute in the INK resource.

	NeutralDensity ?
	number
	A number in the range of 0.001 to 10 that represents the neutral density of the colorant, defined as 10*log(1/Y).

Y is the tristimulus value in CIEXYZ coordinates, normalized to 1.0. If no value is specified, the device must provide a default.

	sRGB ?
	sRGBColor
	sRGB value of the 100 % tint value of the colorant.

	UsePDLAlternateCS ?
	boolean
	If true, the alternate colorspace definition defined in the PDL must be used for color space transformations when available. If false, the alternate color space definitions defined in sRGB, CMYK or DeviceNColor of this Color must be used depending on the value of ProcessColorModel in ColorantControl.

Default = true

	Color​Measurement​Conditions ?

New in JDF 1.1
	refelement
	Detailed description of the measurement conditions for color measurements.

	DeviceNColor *
	element
	Elements that define the colorant in a non-standard device-dependent process color space.

	FileSpec ?
	refelement
	A FileSpec resource pointing to an ICC named color profile that describes further details of the color. The ResourceUsage attribute of the FileSpec must be “ColorProfile”. See Section 7.2.55 FileSpec.

	FileSpec ?
	refelement
	A FileSpec resource pointing to an ICC profile that defines the target output device in case the object that uses the Color has been colorspace converted to a device color space. TargetProfile applies to the alternate color defined by the value of UsePDLAlternateCS. The ResourceUsage attribute of the FileSpec must be “TargetProfile”. See Section 7.2.55 FileSpec.

	
	
	

	TransferCurve *

Modified in JDF 1.1
	refelement
	A list of color transfer functions that is used to convert a tint value to one of the alternative colorspaces. The transfer functions that are not specified here default to a linear transfer: “0 0 1 1”

Structure of DeviceNColor Subelement

	Name
	Data Type
	Description

	ColorList
	NumberList
	Value of the 100 % tint value of the colorant in the ordered DeviceN space. The list must have N elements. A value of 0 specifies no ink and a value of 1 specifies full ink. The mapping of indices to colors is specified in the DeviceNSpace element of the ColorantControl resource.

	N
	integer
	Number of colors that define the color space.

	Name
	string
	Color space name, such as HexaChrome or HiFi. Name must match the Name attribute of a DeviceNSpace element defined in a ColorantControl resource.

Color Example

This is an example of the structure for colorant. The transfer curves in this example are defined for process CMYK and sRGB, independently.

<Color Name="Pantone Deep Blue" Density="3.14" MediaType="Coated"

Lab="20. 30. 40." CMYK="0.2 0.3 0.4 0.5" sRGB="0.6 0.7 0.9">

<TransferCurve Separation ="Cyan" Curve="0 0 .5 .4 1 1"/>

<TransferCurve Separation ="Magenta" Curve="0 0 .5 .6 1 1"/>

<TransferCurve Separation ="Yellow" Curve="0 0 1 1"/>

<TransferCurve Separation ="Black" Curve="0 0 1 1"/>

<TransferCurve Separation ="sRed" Curve="0 0 1 1"/>

<TransferCurve Separation ="sGreen" Curve="0 0 1 1"/>

<TransferCurve Separation ="sBlue" Curve="0 0 1 1"/>

<Color/>

7.2.19 ColorantAlias
Modified in JDF 1.2
[Elevated from a subelement of ColorantControl to a top level resource, changed SeparationSpec + to a refelement for consistency, added 1 attribute: MappingSelection]
ColorantAlias is a resource that specifies a replacement colorant name string to be used instead of one or more named colorant strings. For example, SeparationSpec = ‘Pantone 135’, 'PANTONE 135' and ReplacementColorantName = 'Pantone 135 CV' maps string values: 'Pantone 135' and 'PANTONE 135' to the string value: 'Pantone 135 CV'.

ColorantAlias depends on values supplied from ColorPool in some cases. ColorPool is a resource that identifies specific color values for a colorant. For example: Consider the attributes and values: ReplacementColorantName = 'Pantone 135 CV' and MappingSelection = UseProcessColorValues and ColorPool::Color::CMYK = '0', '23', 75', '0' and ColorPool::Color::FileSpec/@ResourceUsage = “ColorProfile” containing a URL which points to, say, a SWOP profile. The process will use the specified process color values (identified as SWOP CMYK values by the profile) for solid color (100%) objects with the named color ‘Pantone 135 CV’. If a non-100 percentage tint is used for Pantone 135 CV, then the process color values given in ColorPool::Color::CMYK are used as the basis of the tint calculation. If the job is re-targeted, for example for proofing, the SWOP profile identified by ColorPool::Color::FileSpec/@ResourceUsage can be used to remap ColorPool::Color::CMYK to another output.
If both ColorantAlias and ColorPool resources are supplied, the ColorantAlias resource must be performed before the ColorPool resource. Subsequently, the process MUST perform any tint adjustment specified in the PDL.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorIntent, ColorantControl, ColorIntent
Example Partition:
-
Input of Processes:
-
Output of processes:
-
Resource Structure

	Name
	Data Type
	Description

	MappingSelection ?

New in JDF 1.2
	enumeration
	This value specified the mapping method to be used for the colorant specified by the ReplacementColorantName attribute. Possible values are:

UsePdlValues – Use color values specified in the PDL for the colorant specified by the ReplacementColorantName attribute. See Tech Note 5044 (page 12).

UseLocalPrinterValues – Use the Printer’s best local mapping for the colorant specified by the ReplacementColorantName attribute.

UseProcessColorValues – Use the values in the ColorPool resource for the colorant specified by the ReplacementColorantName attribute. A ColorPool resource must be present. The ColorPool::Color::CMYK and the ColorPool::Color::FileSpec attributes can be used to specify the color values.
SystemSpecified – the default.

	ReplacementColorantName
Clarified in JDF 1.2
	string
	The value of the colorant name string to be substituted for the colorant name strings in the SeparationSpec element list.

	SeparationSpec +
Modified in JDF 1.2
	refelement
	The names of the colorants to be replaced in PDL files.

7.2.20 ColorantControl

Modified in JDF 1.2
[Elevated 2 subelements: ColorantAlias and DeviceNSpace to the top level elements and made them a refelement in ColorantControl, added SystemSpecified value to ProcessColorModel, changed SeparationSpec * and PDLResourceAlias to a refelement for consistency, clarified: ProcessColorModel, ColorPool, 2 ISSUES (Craig)]
ColorantControl is a resource used to control the use of color when processing PDL pages. The attributes and elements of the ColorantControl resource describe how color information embedded in PDL pages must be translated into device colorant information.

Colorants are referenced in ColorantControl by name only. Additional details about individual colorants can be found in the Color element of the ColorPool resource. ColorantControl resources control which device colorants will be used as well as how document colors will be converted into device color spaces and how conflicting color information should be resolved. Separation control is specified by the Separation process being present.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName

Input of Processes:
ColorSpaceConversion, Screening, Separation, Trapping
Output of processes:
ColorSpaceConversion
Resource Structure

	Name
	Data Type
	Description

	ForceSeparations ?
	boolean
	If true, forces all colorants to be output as individual separations, regardless of any values defined in ColorantControl, i.e., all separations in a document are assumed to be valid and are output individually.

Default = false, which means respect the parameters specified in ColorantControl and elsewhere in the JDF.

	ProcessColorModel ?

Modified in JDF 1.2
	NMTOKEN
	Specifies the model to be used for rendering the colorants defined in color spaces into process colorants. Possible values include:

DeviceCMY

DeviceCMYK

DeviceGray

DeviceN - The specific DeviceN color space to operate on is defined in the DeviceNSpace resource. If this value is specified then the DeviceNSpace and ColorPool refelements must also be present.
DeviceRGB

Default = system specified

	ColorantAlias *
Modified in JDF 1.2
	refelement
	Identify one or more named colorants that should be replaced with a specified named colorant.

	ColorantOrder ?

Modified in JDF 1.1a
	element
	The ordering of named colorants to be processed, for example in the RIP. All of the colorants named must either occur in the ColorantParams list, or be implied by the ProcessColorModel.

If present, then only the colorants specified by ColorantOrder are output. If not present, then all colorants specified in ColorantParams and implied by ProcessColorModel are output.

	ColorantParams ?
	element
	A set of named colorants. This list defines all the colorants that are expected to be available on the device where the process will be executed. The colorants implied by the value of ProcessColorModel are assumed and must not be specified in this list.

	ColorPool ?
	refelement
	Pool of Color elements that define the specifics of the colors implied by ProcessColorModel and named in ColorantParams.

	ColorSpaceSubstitute *
	element
	These subelements identify a colorant that should be replaced by another colorant. ACTION (Tom): Ask Color Workflow WG to see if anyone is using. Check PJTF. Came from Creo.

	DeviceColorantOrder ?
	element
	The ordering of named colorants to be output on the device
, such as press modules. All of the colorants named must occur in the ColorantParams list, or be implied by the ProcessColorModel. If the DeviceColorantOrder element is not specified, the element defaults to ColorantOrder.

	DeviceNSpace *
Modified in JDF 1.2
	refelement
	Defines the colorants that make up a DeviceN color space.

	
	
	

	
	
	

	
	
	

Structure of ColorantOrder, ColorantParams, and DeviceColorantOrder Elements

	Name
	Data Type
	Description

	SeparationSpec *
Modified in JDF 1.2
	refelement
	The names of the colorants that define the respective lists.

Structure of ColorSpaceSubstitute Subelement

	Name
	Data Type
	Description

	PDLResourceAlias
Clarified in JDF 1.2
	refelement
	A reference to a color space description that replaces the color space defined by the colorants described by the SeparationSpec element(s).

	SeparationSpec +
Modified in JDF 1.2
	refelement
	A list of names that defines the colorants to be replaced. This could be a single name in the case of a Separation color space, or more than one name in the case of a DeviceN color space.

	
	
	

	
	
	

	
	
	

	
	
	

7.2.21 ColorControlStrip

This resource describes a color control strip. The type of the color control strip is given in the StripType attribute. If it is known at the system reading the JDF file, there is no need to define the elements of the strip, and the attribute DensityMeasuringFields is not needed. Otherwise, this attribute must contain a definition of the contained measuring fields. The lower left corner of the control strip box is used as the origin of the coordinate system used for the definition of the measuring fields. It can be calculated using the following formula:

[image: image79.wmf])

cos(

2

)

sin(

2

)

sin(

2

)

cos(

2

0

0

j

j

j

j

h

w

y

y

h

w

x

x

-

-

=

+

-

=

where
x = X element of the Center attribute
y = Y element of the Center attribute
w = X element of the Size attribute
h = Y element of the Size attribute
(= Value of the Rotation attribute

Resource Properties

Resource class:

Parameter

Resource referenced by:
Surface
Example Partition:
-
Input of processes:
Any printing process:

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Center
	XYPair
	Position of the center of the color control strip in the coordinates of the MarkObject that contains this mark.

	Rotation ?
	double
	Rotation in degrees. Positive graduation figures indicate counter-clockwise rotation; negative figures indicate clockwise rotation.

	Size
	XYPair
	Size of the color control strip.

	StripType ?
	NMTOKEN
	Type of color control strip. This attribute can be used for specifying a predefined, company-specific color control strip.

	CIELABMeasuringField *

New in JDF 1.1
	refelement
	Details of a CIELab measuring field that is part of this ColorControlStrip.

	DensityMeasuringField *

New in JDF 1.1
	refelement
	Details of a density measuring field that is part of this ColorControlStrip.

7.2.22 ColorCorrectionParams

Modified in JDF 1.2
[added 7 attributes to ColorCorrectionOp sub-element: AdjustCyanRed, AdjustMagentaGreen, AdjustYellowBlue, AdjustConstrast, AdjustHue, AdjustLightness, AdjustSaturation, added 1 refelement to ColorCorrectionOp sub-element: FileSpec (FinalTargetDevice), 2 clarifizations: ColorManagementSystem, FileSpec (AbstractProfile), ISSUE (Publish ISSUE in JDF 1.2), ISSUE (Color WG), ACTION (Ann), ACTION (Rick)]
This resource provides the information needed for an operator to correct or adjust colors on some PDL pages or content elements such as image, graphics, or formatted text.
The AdjustXxxx adjustments provide an integer color adjustment applied to the interpretation of the PDL data at an implementation dependent point in the processing after each source profile is applied. The integer values range from -100 to +100 to indicate the minimum and maximum of the range that the system supports. A 0 value means no adjustment. The color adjustment attributes differ from the Tone Reproduction Curve (TRC) attributes that can be applied later in the processing path in three key ways. First, the AdjustXxx use, even when included in the job, will vary as a function of job content. Second, the data values associated with the AdjustXxx attributes are arbitrary, and their interpretation will be printer dependent. Third, the color adjustments will be applied before the printer-specific color rendering transform.
ISSUE (Color WG): Didn’t we agree that these knobs are somehow calibrated? How? ACTION (Rick, Ann): Specify how adjust knobs are calibrated.
Note: These color adjustments are not available in any Product Intent Resource, such as ColorIntent. In order to request such adjustment in a Product Intent Job Ticket supplied to a Print Provider, attach to a Product Intent Node an incomplete ColorCorrection Process with a ColorCorrectionParams resource specifying the requested AdjustXxxx attributes. See section 4.1.4 entitled “Specification of Process Specifics for Product Intent Nodes” for this technique.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
ColorCorrection
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ColorManagementSystem ?
Clarified in JDF 1.2
	string
	Identifies the preferred ICC color-management system to use when performing color transformations. When specified, this attribute overrides any default selection of a color management system by an application and overrides the ‘CMM Type’ value (bytes 4-7 of an ICC Profile Header) in any of the job related ICC profiles. This string attribute value identifies the manufacturer of the preferred CMM and must match one of the registered four-character ICC CMM Type values. See the ICC Manufacturer's Signature Registry at http://www.color.org. Example values: "ADBE" for the Adobe CMM, and “KODA” for the Kodak CMM.

	FileSpec ?

	refelement
	A FileSpec resource pointing to an ICC profile that describes the characterization of the final output target device. The ResourceUsage attribute of the FileSpec must be “FinalTargetDevice”.

	FileSpec ?

Deprecated in JDF 1.1
	refelement
	A FileSpec resource pointing to an ICC profile that describes the assumed characterization of CMYK, RGB and Gray colorspaces. The ResourceUsage attribute of the FileSpec must be “WorkingColorSpace”.

	ColorCorrectionOp *
	element
	List of ColorCorrectionOp subelements.

It is assumed that color correction will be performed by a human operator. No attempt is made to encode specific types of operations. Subelements of the ColorCorrectionParams resource should contain a Comment to describe the desired correction operation, and, optionally, to provide a region to be corrected via the Comment::Path or Comment::Box elements.

Structure of ColorCorrectionOp Subelement

	Name
	Data Type
	Description

	AdjustCyanRed ?
New in JDF 1.2
	integer
	Specifies the adjustment in the Cyan/Red axis in the range ‑100 (maximum Cyan cast for the system) to + 100 (maximum Red cast for the system) while maintaining lightness. See explanation above.

	AdjustMagentaGreen ?
New in JDF 1.2
	integer
	Specifies the adjustment in the Magenta/Green axis in the range ‑100 (maximum Magenta cast for the system) to + 100 (maximum Green cast for the system) while maintaining lightness. See explanation above.

	AdjustYellowBlue ?
New in JDF 1.2
	integer
	Specifies the adjustment in the Yellow/Blue axis in the range ‑100 (maximum Yellow cast for the system) to + 100 (maximum Blue cast for the system) while maintaining lightness. See explanation above.

	AdjustConstrast ?
New in JDF 1.2
	integer
	Specifies the contrast adjustment in the range ‑100 (minimum constrast for the system, i.e., a solid midtone gray color,) to + 100 (maximum constrast for the system, i.e., either use full color (the maximum is restricted by the system ink limit) or no color for each of Cyan, Magenta, Yellow, and Black). Increasing the contrast value increases the variation between light and dark areas and decreasing the contrast value decreases the variation between light and dark areas. See explanation above.

	AdjustHue ?
New in JDF 1.2
	integer
	Specifies the change in the hue in the range ‑180 to 180 of all colors by the specified number of degrees of the color circle. See explanation above.

	AdjustLightness ?
New in JDF 1.2
	integer
	Specifies the decrease or increase of the lightness in the range ‑100 (minimum lightness for the system, i.e., black) to + 100 (maximum lightness for the system, i.e., white). Increasing the lightness value causes the output to appear lighter and decreasing the lightness value causes the output to appear darker. See explanation above.

	AdjustSaturation ?
New in JDF 1.2
	integer
	Specifies the increase or decrease of the color saturation in the range ‑100 (minimum saturation for the system) to + 100 (maximum saturation for the system). Increasing the saturation value causes the output to contain more vibrant colors and decreasing the saturation value causes the output to contain more pastel and gray colors. See explanation above.

	FileSpec ?
New in JDF 1.2
	refelement
	A FileSpec resource pointing to an ICC profile that describes the characterization of an Abstract Profile for specifying a preference adjustment (see explanation of adjustment at the beginning of this section). The ResourceUsage attribute of the FileSpec must be “AbstractProfile”.

	SourceObjects ?
	enumerations
	Identifies which class(es) of incoming graphical objects will be operated on. Possible values are:

All – Default value.

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of rasterized vector art.

Text

LineArt

SmoothShades – Gradients and blends.

7.2.23 Color​Measurement​Conditions

New in JDF 1.1
This resource contains information about the specific measurement conditions for spectral or densitometric color measurements. Spectral measurements refer to CIE Publication 15.2 - 1986 "Colorimetry, Second Edition" and ISO 13655:1996 "Graphic technology - Spectral measurement and colorimetric computation for graphic arts images." The default measurement conditions for spectral measurements are illuminant D50 and 2 degree observer.

Density measurements refer to ISO 5-3:1995 “Photography – Density measurements – Part 3: Spectral conditions” and ISO 5-4:1995 “Photography – Density measurements – Part 4: Geometric conditions for reflection density.” The default measurement conditions for densitometric measurements are density standard ISO/ANSI Status T, calibration to absolute white and using no polarization filter.

Resource Properties

Resource class:
Parameter

Resource referenced by:
CIELABMeasuringField, Color, DensityMeasuringField
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DensityStandard ?
	enumeration
	Density filter standard used during density measurements. Possible values are:

ANSIA – ANSI Status A
ANSIE – ANSI Status E
ANSII – ANSI Status I
ANSIT – ANSI Status T. The default value

DIN16536

DIN16536NB

	Illumination ?
	enumeration
	Illumination used during spectral measurements. Possible values are:

D50 – Default value.
D65

Unknown

	InkState ?
	enumeration
	State of the ink during color measurements. Possible values are:

Dry – Default value.
Wet

NA

	Instrumentation ?
	string
	Specific instrumentation used for color measurements, e.g., manufacturer, model number and serial number.

	MeasurementFilter ?
	enumeration
	Optical Filter used during color measurements. Possible values are:

None – No filter used. Default value.
Pol – Polarization filter used
UV – Ultraviolet cut filter used

	Observer ?
	integer
	CIE standard observer function (2 degree and 10 degree) used during spectral measurements. Values are in degree (2 or 10).

Default = 2

	SampleBacking ?
	enumeration
	Backing material used behind the sample during color measurements. Possible values are:

Black – Default value.
White

NA

	WhiteBase ?
	enumeration
	Reference for white calibration used for density measurements. Possible values are:

Absolute – Means the instrument is calibrated to a device specific calibration target (absolute white) for absolute density measurements. Default value
Paper – Means the instrument is calibrated relative to paper white

7.2.24 ColorPool

Clarified in JDF 1.2
[Added 1 clarification, 1 Resource referenced by: ColorSpaceConversionOP
The ColorPool resource contains a pool of all Color elements referred to in the job. In general it will be referenced as a ResourceRef from within resources that require access to color information. When referenced from ColorSpaceConversionOp, the ColorPool resource provides the color information for source color object interpretation. When referenced from ColorantControl, the ColorPool resource provides the color information for the target colorants.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorantControl, ColorSpaceConversionOp
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Color *
	element
	Individual named color.

	ColorantSetName ?
	string
	A string used to identify the named colorant parameter set. This string will be used to identify a set of color definitions (typically associated with a particular class of job or a particular press).

7.2.25 ColorSpaceConversionOp

Modified in JDF 1.2
[Elevated ColorSpaceConversionOp to top level in its own section, so it can be referenced from ColorIntent and ColorSpaceConversionParams, added 2 attributes: RGBGray2BlackThreshold, and SourceRenderingIntent, added 4 refelements: ColorPool, DeviceNSpace, FileSpec (AbstractProfile), and SeparationSpec, added 6 values to SourceCS: CIEBased, CMY, DeviceN, ICCBased, Lab, Separation, YUV, clarified Operation attribute Untag value, and RGBGray2Black, SourceCS, and FileSpec, modified 2 attributes: RenderingIntent, RGBGray2Black, added 2 clarification tables]
The ColorSpaceConversionOp resource identifies a type of object, defines the source colorspace for that type of object, and specifies the behavior of the conversion operation for that type of object.
Many of these attribute Descriptions refer to ICC Color Profiles. See [ICC.1] in section 1.2 Document References. See also the Internatioal Color Consortium (ICC) web site at http://www.color.org.

ACTION (Albert): Add Albert’s Color Space File Format Use Cases paper as an Application Note?
Resource Properties

Resource class:
Parameter
Resource referenced by:
ColorIntent, ColorSpaceConversionParams
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure
	Name
	Data Type
	Description

	IgnoreEmbeddedICC ?
	boolean
	If true, specifies that embedded source ICC profiles must be ignored and that the ICC profile [ICC.1]
defined by SourceProfile must be used instead. Default = false

	Operation

	enumeration
	Controls which of five functions the color space conversion utility performs. Possible values are:

Convert – Transforms graphical elements to final target color space.

Tag – Associates appropriate working space profile with uncharacterized graphical element.

Untag – Removes all profiles and color characterizations from graphical elements.
Retag – Equivalent to a sequence of UnTag –> Tag.

ConvertIgnore –
Equivalent to a sequence of UnTag –> Convert.
NOTE: The table below describes the effect of this attribute in combination with the SourceCS and IgnoreEmbeddedICC attributes.

	PreserveBlack ?

New in JDF 1.1
	boolean
	Controls how the tints of black (K in CMYK) should be handled. If PreserveBlack is false, these colors are processed through the standard ICC workflow. If PreserveBlack is true, these colors should be converted into other shades of black. The algorithm is implementation-specific.

Default = false

	RenderingIntent ?
Modified in JDF 1.2
	enumeration
	If the SourceRenderingIntent attribute is NOT present then RenderingIntent identifies the rendering intent transform elements to be selected from the source and destination profiles that will be used to color-render objects of type identified by the SourceObjects and SourceCS attributes.
If the SourceRenderingIntent attribute is present then RenderingIntent identifies the rendering intent transform elements to be selected from the destination profile that will be used to color-render objects of type identified by the SourceObjects and SourceCS attributes.

Possible ICC-defined [ICC.1] rendering intent values are:
Saturation

Perceptual Modified in JDF 1.2
RelativeColorimetric

AbsoluteColorimetric
ColorSpaceDependent
: default has changed in JDF 1.2….

	RGBGray2Black ?
Clarified in JDF 1.2
	boolean
	This feature controls what happens to gray values (R = G = B) when converting from RGB to CMYK for the incoming graphical objects indicated by SourceObjects. In the case of MS Office applications and screen dumps, there are a number of gray values in the images and line art. Printers do not want to have CMY under the K (causes registration problems). Therefore, they prefer to have K only, so the Printer converts the gray values to K. Gray values that exceed the RGBGray2BlackThreshold are not converted.
Default = false

	RGBGray2BlackThreshold ?
New in JDF 1.2
	number
	A value between 0.0 and 1.0 which specifies the threshold value above which the Device must not convert gray (R = G = B) to black (K only) when RGBGray2Black is true. So a 0 value means convert only R = G = B = 0 (black) to K only. Default = 1 (all values of R = G = B are converted to K if RGBGray2Black is true.

	SourceCS
Modified in JDF 1.2
	enumeration
	Identifies which of the incoming color spaces will be operated on. Possible values are:

Calibrated – Operates on CalGray and CalRGB color spaces. New in JDF 1.2
CIEBased – Operates on CIE-Based color spaces (CIEBasedA, CIEBasedABC, CIEBasedDEF, CIEBasedDEFG). New in JDF 1.2
CMYK – Operates on deviceCMYK.

DeviceN – Identifies the source color encoding as a DeviceN color space. The specific DeviceN color space to operate on is defined in the DeviceNSpace resource. If this value is specified then the DeviceNSpace and ColorPool refelements must also be present. New in JDF 1.2
Dev​Indep– Operates on device independent colorspaces (equivalent to Calibrated or CIEBased or ICCBased or Lab or YUV). Clarified in JDF 1.2
Gray – Operates on deviceGray.
ICCBased – Operates on color spaces defined using ICC profiles. ICCBased includes EPS, TIFF or PICT files with embedded ICC profiles. See [ICC.1].
If IgnoreEmbeddedICC is true then nominally ICCBased files or elements should be treated as being encoded in the Alternate or underlying color space, and a ColorSpaceConversionOp where SourceCS=DevIndep will not be applied, unless that color space is also device independent. New in JDF 1.2
Lab – Operates on Lab. New in JDF 1.2
RGB – Operates on deviceRGB Modified in JDF 1.2
Separation – Operates on Separation color spaces (spot colors). The specific separation(s) to operate on are defined in the SeparationSpec resource(s). If no SeparationSpec is defined, the operation will operate on all the separation color spaces in the input RunList. New in JDF 1.2
YUV – Operates on YUV (Also known as YCbCr). See [CCIR601-2] New in JDF 1.2
NOTE: JDF 1.1 defined that CalRGB be treated as RGB, CalGray as Gray and ICCBased color spaces as one of Gray, RGB or CMYK depending on the number of channels.

NOTE: see table below for a description on how the SourceCS values map into the most relevant file.

	SourceObjects ?
	enumerations
	List of object classes that identifies which incoming graphical objects will be operated on. Possible values are:

All – Default value.

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of rasterized vector art.

Text

LineArt

SmoothShades – Gradients and blends.

	SourceRenderingIntent ?
New in JDF 1.2
	enumeration
	Identifies the rendering intent transform elements to be selected from the source profile that will be used to interpret objects of type identified by the SourceObjects and SourceCS attributes. Possible ICC-defined [ICC.1] rendering intent values are:

Saturation

Perceptual

RelativeColorimetric

AbsoluteColorimetric
ColorSpaceDependent

If not specified, it inherits the value of RenderingIntent.
Note: The SourceRenderingIntent will pertain to the source profile used in a particular ColorSpaceConversion process (sources may be the native original color space, an intermediate working color space, or an Reference Output simulation color space).

	DeviceNSpace ?
New in JDF 1.2
	refelement
	DeviceNSpace resource that describe the DeviceN color space on which to operate when SourceCS=DeviceN. Individual colorant definitions for the colorant names given in DeviceNSpace are provided in the ColorPool resource, which must also be present.

	FileSpec ?

New in JDF 1.2
	refelement
	A FileSpec resource pointing to an ICC profile [ICC.1] that describes the characterization of an Abstract Profile for specifying a preference adjustment. The ResourceUsage attribute of the FileSpec must be “AbstractProfile”.
Note: there are different versions of the ICC profile format. The ability to support/process certain version will deppend on the color management system, operation and RunList format.

	FileSpec ?
Modified in JDF 1.2
	refelement
	A FileSpec resource pointing to an ICC profile [ICC.1] that describes the assumed color space. The default is to use embedded profiles. The ResourceUsage attribute of the FileSpec must be “SourceProfile”.

	SeparationSpec *
New in JDF 1.2
	refelement
	SeparationSpec resource(s) defining on which separation(s) to operate when SourceCS=Separation

Notes:
DevIndep has been retained for backwards compatibility with JDF 1.1, and because there will probably be cases where the same processing should be applied to all device independent spaces. An equivalent “DevDep” has not been added because it’s less likely that all device dependent spaces should be treated in the same way.
The following table summarizes how the SourceCS attribute is mapped from different file formats.

Table 7‑1 –Mapping of SourceCS enumeration values to color spaces in the most common input file formats.Appendix XXX
contains a detailed description of the color spaces supported by each one of these formats.

	SourceCS
	File format
	Color space(s)

	RGB
	PDF(2)
	DeviceRGB(1)

	
	PostScript
	DeviceRGB

	
	TIFF
	PhotometricInterp = 2

	CMYK
	PDF(2)
	DeviceCMYK(1)

	
	PostScript(2)
	DeviceCMYK

	
	TIFF
	PhotometricInterp = 5,
Samples per pixel = 4

	Gray
	PDF(2)
	DeviceGray(1)

	
	PostScript(2)
	DeviceGray

	
	TIFF
	PhotometricInterp = 0 or 1

	YUV
	PDF(2)
	N/a

	
	PostScript(2)
	N/a

	
	TIFF
	PhotometricInterp = 6

	Calibrated
	PDF(2)
	CalGray, CalRGB

	
	PostScript(2)
	N/a

	
	TIFF
	N/a

	CIEBased
	PDF(2)
	N/a

	
	PostScript(2)
	CIEBasedABC, CIEBasedA, CIEBasedDEF, CIEBasedDEFG

	
	TIFF
	N/a

	LAB
	PDF(2)
	LAB

	
	PostScript(2)
	N/a

	
	TIFF
	PhotometricInterp = 8 (CIELab 1976 “normal” encoding) or PhotometricInterp = 9 (CIELab 1976 using ICC profile v4 encoding)

	ICCBased
	PDF(2)
	ICCBased

	
	PostScript(2)
	N/a

	
	PostScript/EPS
	The EPS file has an embedded ICC profile

	
	TIFF
	The TIFF file has an embedded ICC profile

	Separation
	PDF(2)
	Separation

	
	PostScript(2)
	Separation

	
	TIFF
	PhotometricInterp = 5

(applies only to one of the planes in the separated image)

	DeviceN
	PDF(2)
	DeviceN

	
	PostScript(2)
	DeviceN

	
	TIFF
	PhotometricInterp = 5,
Samples per pixel != 4

(1)DeviceCMYK, DeviceRGB and DeviceGray in PDF files should be mapped through DefaultCMYK, DefaultRGB or DefaultGray color spaces, if present, before determining whether this operation should be applied.

(2) Where a Pattern or Indexed color space has been used the base color space is used to determine whether this operation should be applied.

Table 7‑2 - Effect of color space conversion operations on color spaces.

	SourceCS
	Opera
tion
	Ignore
Embedded
ICC
	FileSpec

(SourceProfile)
	Description

	CMYK
	Tag
	false
	CMYK ICC profile
	Changes the CMYK color spaces (i.e. those without ICC profiles) in the RunList to an ICCBased color space using the SourceProfile ICC profile.

	
	
	true
	CMYK ICC profile
	Changes the CMYK color spaces and all ICCBased color spaces with four components (CMYK) in the RunList to an ICCBased color space using the SourceProfile ICC profile.

	
	Untag
	N/a
	N/a
	N/a

	
	Convert
	false
	CMYK ICC profile
	Converts the objects and/or images in CMYK color spaces (i.e. those without ICC profiles) using the SourceProfile ICC profile as input profile and the FinalTargetDevice ICC profile as output profile.

	
	
	true
	CMYK ICC profile
	Converts the objects and/or images in CMYK color spaces and in four components (CMYK) ICCBased color spaces, using the SourceProfile ICC profile as input profile and the FinalTargetDevice ICC profile as output profile.

	RGB
	Tag
	false
	RGB ICC profile
	Changes the RGB color spaces (i.e. those without ICC profiles) in the RunList to an ICCBased color space using the SourceProfile ICC profile.

	
	
	true
	RGB ICC profile
	Changes the RGB color spaces and all ICCBased color spaces with three components (RGB) in the RunList to an ICCBased color space using the SourceProfile ICC profile.

	
	Untag
	N/a
	N/a
	N/a

	
	Convert
	false
	RGB ICC profile
	Converts the objects and/or images in RGB color spaces (i.e. those without ICC profiles) using the SourceProfile ICC profile as input profile and the FinalTargetDevice ICC profile as output profile.

	
	
	true
	RGB ICC profile
	Converts the objects and/or images in RGB color spaces and in three components (RGB) ICCBased color spaces, using the SourceProfile ICC profile as input profile and the FinalTargetDevice ICC profile as output profile.

	Gray
	Tag
	false
	Monochrome ICC profile
	Changes the Gray color spaces (i.e. those without ICC profiles) in the RunList to an ICCBased color space using the SourceProfile ICC profile.

	
	
	true
	Monochrome ICC profile
	Changes the Gray color spaces and all ICCBased color spaces with one component (Gray) in the RunList to an ICCBased color space using the SourceProfile ICC profile.

	
	Untag
	N/a
	N/a
	N/a

	
	Convert
	false
	Monochrome ICC profile
	Converts the objects and/or images in Gray color spaces (i.e. those without ICC profiles) using the SourceProfile ICC profile as input profile and the FinalTargetDevice ICC profile as output profile.

	
	
	true
	Monochrome ICC profile
	Converts the objects and/or images in Gray color spaces and in one component (Gray) ICCBased color spaces, using the SourceProfile ICC profile as input profile and the FinalTargetDevice ICC profile as output profile.

	YUV, Lab
	Tag
	N/a
	Lab or YUV ICC profile
	Changes the YUV or Lab color spaces in the RunList to an ICCBased color space using the SourceProfile ICC profile. If SourceProfile is a YUV profile only YUV color spaces are affected; if SourceProfile is an Lab profile only Lab color spaces are affected.

	
	Untag
	N/A
	N/a
	This operation does not have any effect.

	
	Convert
	N/a
	N/a
	Converts the objects and/or images in the specified color spaces using the source definition embedded in the file and the FinalTargetDevice ICC profile as output profile.

	Calibrated
	Tag
	N/a
	RGB or Monochrome ICC profile
	Changes the Calibrated color spaces in the RunList to an ICCBased color space using the SourceProfile ICC profile. If SourceProfile is an RGB profile only CalRGB color spaces are affected; if SourceProfile is a monochrome profile only CalGray color spaces are affected.

	
	Untag
	N/A
	N/a
	Changes CalRGB color spaces to RGB color space and CalGray color spaces to Gray color space.

	
	Convert
	N/a
	N/a
	The corresponding objects in the specified color space(s) are converted using the source definition embedded in the file and the FinalTragetDevice ICC profile as output profile.

	CIEBased
	Tag
	N/a
	N/a
	This operation does not have any effect.

	
	Untag
	N/A
	N/a
	This operation does not have any effect.

	
	Convert
	N/a
	N/a
	The corresponding objects in the specified color space(s) are converted using the source definition embedded in the file and the FinalTragetDevice ICC profile as output profile.

	ICCBased
	Tag
	N/a
	N/a
	N/a
NOTE: in order to change the profile associated to an ICCBased, an Untag operation (see below) should be performed before tagging. These two operations can be combined in a Retag operation

	
	Untag
	N/a
	N/a
	The ICC profiles in the input RunList are removed. The resulting color spaces depend on the input file format:

· PDF: use the corresponding alternate color space.

· EPS: use the PostScript file color spaces; the ICC profile comment in the EPS header is removed

· TIFF: use the color space defined by the photometric interpretation tag.

	
	Convert
	False
	N/a
	The ICCBased color spaces are converted using the corresponding embedded ICC profile as input profile and the FinalTargetDevice ICC profile as output profile

	
	
	True
	N/a
	This operation does not have any effect (to ignore embedded ICC profiles when converting, the CMYK, RGB or Gray SourceCS enumeration values must be used with the IgnoreEmbbededICC flag set to true. Each SourceCS value will require a different ColorSpaceConversionOp instance, with the corresponding ICC profile.

	DevIndep
	Tag
	N/a
	N/a
	This operation does not have any effect. The specific SourceCS enumeration values have to be used to select the color spaces to tag.

	
	Untag
	N/a
	N/a
	Untags ICCBased and Calibrated color spaces in the RunList. It does not have any effect on the other device independent color space

	
	Convert
	False
	N/a
	Converts all the device independent color spaces (CIEBased, Lab, YUV, Calibrated and ICCBased) using the corresponding characterizations embedded in the file and the FinalTargetDevice ICC profile as output profile

	
	
	True
	N/a
	This operation does not have any effect. The specific SourceCS enumeration values have to be used to select the color spaces to convert.

	Separation
	Tag
	N/a
	Named color ICC profile
	In PostScript or PDF, it sets the alternate color space to an ICCBased color space with the given ICC profile.

	
	
	
	No profile specified
	In PostScript or PDF, it sets the alternate color space to the color definition in the ColorPool (if present). If there is no color definition in the ColorPool, this operation does not have any effect.

	
	Untag
	N/a
	N/a
	This operation does not have any effect.

	
	Convert
	False
	N/a
	The specified separation(s) are converted using the alternate color space definitions in the RunList.

	
	
	True
	Named color ICC profile
	Converts the specified separation(s) using the SourceProfile profile as input profile and the FinalTargetDevice ICC profile as output profile.

	
	
	
	No profile specified
	Converts the specified separation(s) using the color definition in the ColorPool and the FinalTargetDevice ICC profile if needed.

	DeviceN
	Tag
	N/a
	N component ICC profile
	Changes the DeviceN color spaces in the RunList to ICCBased color spaces using the SourceProfile ICC profile. This operation only affects the selected DeviceN color spaces that have exactly the same number of components than the SourceProfile.

	
	Untag
	N/a
	N/a
	This operation does not have any effect.

	
	Convert
	False
	N/a
	In PostScript or PDF, the specified DeviceN color spaces are converted using the alternate color space.

	
	
	True
	N component ICC profile
	Converts the specified DeviceN color spaces using the SourceProfile ICC profile as input profile and the FinalTargetDevice ICC profile as output profile. This operation only affects the selected DeviceN color spaces that have exactly the same number of components than the SourceProfile.

NOTE: if the correct ICC profile is not specified for an operation that requires it, the operation does not have any effect.

7.2.26 ColorSpaceConversionParams

Modified in JDF 1.2
[Added a new FileSpec refelement with ResourceUsage = “ReferenceOutputProfile” to FileSpec as a separate choice from “ActualOutputProfile” that must be used in combination with a new ICCProfileSequence attribute, DEPRECATED the old FileSpec (FinalTargetDevice), elevated ColorSpaceConversionOp from a sub-element to a top level elemenet and changed 1 element to refelement: ColorSpaceConversionOp, clarified ColorManagementSystem and ColorSpaceConversionOp, ISSUE (Publish ISSUE in JDF 1.2), 2 ISSUE, ACTION (Ann)]
This set of parameters defines the rules for a ColorSpaceConversion process, the elements of which define the set of operations to be performed. Information inside the ColorSpaceConversionOp refelementsdefines the operation and identifies the colorspaces and types of objects to operate on. Other attributes define the color management system to use, as well as the working color space and the final target device.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
ColorSpaceConversion, Proofing, SoftProofing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ColorManagementSystem ?
Clarified in JDF 1.2
	string
	Identifies the preferred ICC color management system to use when performing color transformations. When specified, this attribute overrides any default selection of a color management system by an application and overrides the ‘CMM Type’ value (bytes 4-7 of an ICC Profile Header) any of the job related ICC profiles. This string attribute value identifies the manufacturer of the preferred CMM and must match one of the registered four-character ICC CMM Type values. See the ICC Manufacturer's Signature Registry at http://www.color.org. Example values: "ADBE" for the Adobe CMM, and “KODA” for the Kodak CMM.

	ConvertDev​IndepColors ?

Deprecated in JDF 1.1
	boolean
	When true, incoming device-independent colors are processed to the selected device space. If the chosen operation is untag and the characterization data are in the form of an ICC profile, then the profile is removed. Otherwise, these colors are left untouched. Default = false. The functionality of ConvertDev​IndepColors is superceded by including one or more ColorSpaceConversionOp with SourceCS=”Dev​Indep” in JDF 1.1.

	ICCProfileSequence
New in JDF 1.2
	enumeration
	This attribute specifies where to obtain the destination profile for the current iteration of the ColorSpaceConversion process, i.e., either from the PDF/X job content, or from the JDF resource. The JDF resource may contain a profile carried forward from the ColorIntent, or may contain a profile supplied by the print provider to match the color-rendering requirements. See detailed descriptions in the ColorIntent section. This attribute indicates whether the ColorSpaceConversion process will occur once or twice to complete a source to destination conversion, i.e., will the transformation be:

source -> final, or
source -> intermediate (as in Reference Output simulation or proofing) -> final.
This attribute also indicates the relationship between the current iteration of the ColorSpaceConversion process and another iteration of the ColorSpaceConversion process. Possible values are:
OneStageActualPDFX – Use embedded PDF/X ICC output profile with no Reference Output simulation. Only one iteration of ColorSpaceConversion is required. This value is valid for both ColorIntent and ColorSpaceConversionParams.

Note that this case would be valid for either PDF/X or PDF. In the case of PDF – because no embedded PDF ICC output profile exists – then this case would mean (“use JDF supplied ActualOutputProfile ICC output profile with no Reference Output simulation.” If no ActualOutputProfile is supplied in the ColorIntent, then the ActualOutputProfile is defined by the print provider. This case would enable creation of a common job ticket for PDF and PDF/X versions of a job.

Note that the ColorSpaceConversionParams/FileSpec attribute is ignored in the ColorSpaceConversion process iteration WHEN ICCProfileSequence = OneStageActualPDFX AND the job content is supplied in a PDF/X file that contains the required embedded ICC output profile.

TwoStageReferencePDFX – Use embedded PDF/X ICC output profile as the ICC Reference Output simulation profile – to be followed by a second iteration of ColorSpaceConversion with ICCProfileSequence = TwoStageActualJDF.

Note: In the ColorIntent resource, the values TwoStageReferencePDFX and TwoStageActualJDF may occur together to define this case. Alternatively, if no FileSpec “ActualOutputProfile” is supplied in the ColorIntent, then the Actual Output ICC profile is supplied by the print provider – based on the specified Printing Conditions – when the print production ColorSpaceConversionParams are populated.
Note that the ColorSpaceConversionParams/FileSpec attribute is ignored in the ColorSpaceConversion process in which ICCProfileSequence = TwoStageReferencePDFX.
TwoStageActualPDFX – Use embedded PDF/X ICC output profile as the ICC Actual Output profile. This iteration has been preceded by a prior iteration of ColorSpaceConversion with ICCProfileSequence = TwoStageReferenceJDF.

Note: In the ColorIntent resource, the values TwoStageReferenceJDF and TwoStageActualPDFX should occur together. Alternatively, if no FileSpec “ReferenceOutputProfile” is supplied in the ColorIntent, then the Reference Output ICC profile is supplied by the print provider – based on the ColorIntent/ColorStandard – when the print production ColorSpaceConversionParams are populated.
Note that the ColorSpaceConversionParams/FileSpec attribute is ignored in the ColorSpaceConversion process in which ICCProfileSequence = TwoStageActualPDFX.
OneStageActualJDF – Use FileSpec supplied “ActualOutputProfile” ICC output profile with no Reference Output simulation. Only one iteration of ColorSpaceConversion is required.

Note that this case would be valid for either PDF/X or PDF. This case would enable creation of a common job ticket for PDF and PDF/X versions of a job.

TwoStageActualJDF – Use FileSpec supplied “ActualOutputProfile” ICC output profile – sequenced after a prior ColorSpaceConversion iteration that used the embedded PDF/X ICC output profile (with ICCProfileSequence = TwoStageReferencePDFX) or that used a supplied ICC profile (ICCProfileSequence = TwoStageReferenceJDF) as the Reference Output simulation profile.
Note that if ICCProfileSequence = TwoStageActualJDF – and no ICCProfileSequence = TwoStageReferencePDFX or ICCProfileSequence = TwoStageReferenceJDF is present, and FileSpec “ReferenceOutputProfile” is NOT supplied in the ColorIntent, then the Reference Output ICC profile is supplied by the print provider – based on the ColorIntent/ColorStandard – when the print production ColorSpaceConversionParams are populated.
TwoStageReferenceJDF – Use FileSpec supplied “ReferenceOutputProfile” ICC output profile as the ICC Reference Output simulation profile. This iteration is to be followed by a second iteration of ColorSpaceConversion with ICCProfileSequence = TwoStageActualPDFX or with ICCProfileSequence = TwoStageActualJDF.

When both the Reference Output simulation profile and the Actual Output target profile are supplied in the ColorIntent resource then TwoStageReferenceJDF and TwoStageActualJDF will occur in the ICCProfileSequence attribute in the ColorIntent resource.

Note that Reference Output simulation and Actual Output target profile combinations may be used to accomplish either proofing, or final output target rendering which includes “simulation” of another printer’s output behavior.
ISSUE (Color DP WG): Is this new ICCProfileSequence attribute and the following new FileSpec OK to add to JDF/1.2 and DEPRECATE the older FileSpec ?

	FileSpec ?
New in JDF 1.2
	refelement
	A FileSpec resource pointing to an ICC profile that describes a characterization and color-rendering to be used in transforming to the color encoding for the output target device.

This item is required when converting (ColorSpaceConversionOp/Operation value is Convert or ConvertIgnore), unless ICCProfileSequence value is one of “OneStageActualPDFX , ” “TwoStageReferencePDFX,” or “TwoStageActualPDFX.” (then required profiles are in PDF/X job file). This item is optional for tagging or untagging (ColorSpaceConversionOp/Operation value is Tag, Untag or ReTag).

The ResourceUsage attribute of the FileSpec must be either “ReferenceOutputProfile” or “ActualOutputProfile”. Only one of these FileSpec elements present in a given instance.

In a use case in which a Reference Output simulation and actual output target are required, multiple instances of the ColorSpaceConversion process are chained each with its own ColorSpaceConversionParams resource. In each instance of the ColorSpaceConversionParams resource the rendering intent attributes in ColorSpaceConversionOp will pertain to the particular source and destination of that conversion process. For example, when converting from the original color space (the native color space of the source data) to the Reference Output simulation color space, then SourceRenderingIntent (if present) pertains to interpreting the original color space and RenderingIntent pertains to color-rendering into the Reference Output simulation color space.
ISSUE: Is this Description of the merged FileSpec OK?
Note: In order to provide different ICC profiles for the front and back of media sheets, partition the ColorCorrectionParams resource with PartIDKey=“Side” with the Side=“Front” partition having the FileSpec for the front of sheets and the Side=“Back” parition having the FileSpec for the back of sheets (see section 3.9.2).

	FileSpec ?
Deprecated in JDF 1.2
	refelement
	A FileSpec resource pointing to an ICC profile that describes the characterization of the final output target device. This item is required when converting, but optional for tagging or untagging. The ResourceUsage attribute of the FileSpec must be “FinalTargetDevice”. Deprecated in JDF/1.2, use FileSpec in combination with ICCProfileSequence.

	FileSpec ?

Deprecated in JDF 1.1
	refelement

	A FileSpec resource pointing to an ICC profile that describes the assumed characterization of CMYK, RGB and Gray colorspaces. The ResourceUsage attribute of the FileSpec must be “WorkingColorSpace”.

	ColorSpaceConversionOp *
Modified in JDF 1.2
	refelement
	List of ColorSpaceConversionOp elements, each of which identifies a type of object, defines the source colorspace for that type of object, and specifies the behavior of the conversion operation for that type of object.

	
	
	

	
	
	

	
	
	

	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

7.2.27 ComChannel

A communication channel to a person or company such as an email address, phone number, or fax number.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Contact, Person
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ChannelType
	enumeration
	Type of the communication channel. Possible values are:

Phone – Telephone number.
Email – E-mail address.
Fax – Fax machine.
WWW – WWW home page or form.
JMF – JMF messaging channel.

	Locator
	string
	Locator of this type of channel in a form such as a phone number or an email address.

7.2.28 Company

Specifies contacts to a company including detailed information about contact persons and addresses. This structure can be used in many situations where addresses or contact persons are needed. Examples of contacts are customer, supplier, company, and addressees. The structure is derived from the vCard format. It comprises the organization name and organizational units (ORG) of the organizational properties defined in the vCard format. The corresponding XML types of the vCard are quoted in the table.

Resource Properties

Resource class:
Parameter

Resource referenced by:
 Contact
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	OrganizationName
	string
	Name of the organization or company (vCard: ORG:orgnam. For example: ABC, Inc.).

	Contact *

Deprecated in JDF 1.1
	refelement
	A contact of the company.

	OrganizationalUnit *
	telem
	Describes the organizational unit (vCard: ORG:orgunit. For example, if two elements are present: 1. “North American Division” and 2. “Marketing”).

7.2.29 Component

Component is used to describe the various versions of semi-finished goods in the press and postpress area, such as a pile of folded sheets that have been collected and must then be joined and trimmed. Nearly every postpress process has a Component resource as an input as well as an output. Typically the first components in the process chain are some printed sheets or ribbons, while the last component is a book or a brochure. Component resources are grouped by kind in much the same way that nodes are classified as Combined, Process, or Product. The five categories of Component resources are: Ribbon, Sheet, Block, PartialProduct, and FinalProduct. These categories are defined in greater detail below:

Ribbon
Part of the web that enters the folder, divider etc. In case the web is not slit, the web and the ribbon are identical.

Sheet
This source type is appropriate if a flat sheet, e.g., a postcard to be glued in, is used as an input component. "Flat" in this case means that the sheet has not been folded or cut before the operation.

Block
This source type is appropriate if a folded sheet, a cut portion of the sheet, or a cut and folded portion of a sheet is used as an input component.

PartialProduct
This source type is appropriate if a partial product should be used as an input component.

FinalProduct
This source type is appropriate if this Component is the final product.

Terms and Definitions for Components

The descriptions of Component-specific attributes use some terms whose meaning depends on the culture in which they are used. For example, different cultures mean different things when they refer to the “front” side of a magazine. Other terms, such as binding, are defined by the production process and therefore do not depend on the culture.

Whenever possible, this specification endeavors to use culturally independent terms. In cases where this is not possible, Western style (left-to-right writing) is assumed. Please note that these terms may have a different meaning in other cultures, e.g., those writing from right to left.

[image: image80.wmf]Product front edge

Product top

edge

Product bottom

edge

Binding edge

(spine)

Book-like partial product viewed from first page

(front side)

Product front side

Product front edge

Binding edge

(spine)

Calendar-like partial product viewed from first page

(front side)

Product front side

Figure 7.6 Terms and definitions for components

The table below describes the terms used to define the components.

Table 7‑3 Terms and definitions for components

	Edge
	Description

	Binding edge
	The edge on which the (partial) product is glued or stitched. This edge is also often called working edge or spine.

	Product front edge
	The side, where you open the (partial) product. This edge is opposite to the binding edge.

	Registered edge
	A side on which a collection of sheets or partial products is aligned during a production step. All production steps require two registered edges, which must not be opposite to each other. The two registered edges define the coordinate system used within the production step. When there is a binding edge, this is one of the registered edges.

Resource Properties

Resource class:
Quantity
Resource referenced by:
-

Example Partition:
RibbonName, SheetName, SignatureName, WebName
Input of processes:
Many
Output of processes:
Many
Resource Structure

	Name
	Data Type
	Description

	ComponentType
	enumeration
	Specifies the category of the component. Possible values are:

Ribbon

Sheet

Block

PartialProduct

FinalProduct

	Dimensions ?
	shape
	The dimensions of the component. These dimensions differ from the original size of the original product. For example, the dimensions of a folded sheet may not be equal to the dimensions of the sheet before it was folded. The dimension is always the bounding box around the Component. Default = 0 0 0, which specifies unknown. In this case a portrait orientation (Y>X) is assumed

Note: It is crucial for postpress to specify the dimensions unless they really are unknown.

	IsWaste ?
	boolean
	If true, the component waste may be used to set up a machine.

Default = false

	MaxHeat ?
	double
	Maximum temperature the Component can resist (in degrees centigrade). Default = no restriction in terms of heat, e.g., fusers in electrophotographic process or shrink wrapping.

	Overfold ?

New in JDF 1.1
	double
	Expansion of the overfold of a Component. This attribute may be needed for the Inserting or other postpress processes.

Default = 0

	OverfoldSide ?

New in JDF 1.1
	enumeration
	Specifies the longer side of a folded component. One of “Front” or “Back”. Default = Front

	ProductType ?
	NMTOKEN
	Type of product that this component specifies. Possible values include:

BackCover

Book

BookBlock

BookCase
Box – Convenience packaging that is not envisioned to be protection for shipping.

Brochure

BusinessCard

Carton – Protection packaging for shipping.

Cover

FrontCover

Jacket – Hard cover case jacket.

Label

Poster

Default = unknown

	ReaderPageCount ?

New in JDF 1.1
	integer
	Total Amount of individual reader pages that this Component contains. Count of –1 means “unknown.”

Default = -1, i.e., unknown.

	SheetPart ?
	rectangle
	Only useful when ComponentType = Block and when SourceSheet is present. Part of the Sheet in SurfaceContentsBox coordinates used in this Component.

	SourceRibbon ?
	string
	Only required when ComponentType = Ribbon. RibbonName of the ribbon used in this Component.

	SourceSheet ?
	string
	Only required when ComponentType = Sheet or Block. SheetName of the sheet used in this Component.

	SourceWeb ?
	string
	Only required when ComponentType = Ribbon. WebName of the ribbon used in this Component.

	SurfaceCount ?

New in JDF 1.1
	integer
	Total Amount of individual surfaces that this Component contains. Count of –1 means “unknown.”

Default =-1, i.e., unknown

	Transformation ?

Deprecated in JDF 1.1
	matrix
	Matrix describing the transformation of the orientation of a component for the process using this resource as input. This is needed to convert the coordinate system of the component to the coordinate system of the process. When this attribute is not present, the identity matrix (1 0 0 1 0 0) is assumed.

In version 1.1 and beyond, use ResourceLink::Transformation or ResourceLink::Orientation.

	Bundle ?

New in JDF 1.1
	refelement
	Description of a bundle of Components if the Component represents multiple individual items. If no Bundle is present, the Component represents an individual item. Note that it is essential to keep a reference of the child Components that comprise a Component, as this information is useful to postpress processes.

	Disjointing ?
	refelement
	A stack of components can be processed using physical separators. This is useful in operations such as feeding.

Default = no physical separators

	Sheet ?
	refelement
	The Sheet resource that describes the details of this Component if ComponentType = Sheet or Block.

7.2.30 Contact

Modified in JDF 1.2
[Added 1 new value, Approver, to ContactTypes.]
Element describing a contact to a person or address.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ApprovalParams, , ArtDeliveryIntent, DeliveryIntent, DeliveryParams, DropIntent
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ContactTypes
Modified in JDF 1.2
	NMTOKENS
	Classification of the contact. Possible values include:
Administrator – Person to contact for queries concerning the execution of the job.

Accounting – Address of where to send to the bill.
Approver - Person who is to approve this job. New in JDF 1.2

Billing – Contact information that refers to a payment method, e.g., credit card.

Customer – The end customer.

Delivery – Delivery address for all products of this job.

Owner – The owner of a resource.

Pickup – The pickup address for all products of this job.

Supplier – Address of a supplier of needed goods.

SurplusReturn – Return delivery or pickup address for surplus products of this job.
ArtReturn – Return delivery or pickup address for artwork of this job.

	Address ?
	refelement
	Element describing the address.

	ComChannel *
	refelement
	Communication channels to the contact.

	Company ?

New in JDF 1.1
	refelement
	Company that this Contact is associated with.

	Person ?
	refelement
	Name of the contact person.

7.2.31 ContactCopyParams

New in JDF 1.1

Element describing the parameters of 6.3.3

 REF _Ref6265535 \h
 * MERGEFORMAT ContactCopying.
Resource Properties

Resource class:
Parameter

Resource referenced by:
ContactCopying.
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ContactScreen ?
	boolean
	True, if a halftone screen on film should be used to produce halftones.

Default="false".

	Cycle ?
	integer
	Number of exposure light units to be used. The amount depends on the subject to be exposed.

	Diffusion ?
	enumeration
	The diffusion foil setting. Possible values are:

On

Off

	PolarityChange ?
	boolean
	True, if the copy should change polarity w.r.t. the original image. Default=”true”.

	RepeatStep ?
	XYPair
	Number of copies in each direction for a Step/Repeat camera. Default = 1 1

	Vacuum ?
	double
	Amount of vacuum pressure to be used. Measured in bars.

	ScreeningParams ?
	refelement
	Properties of the halftone screen on film. Ignored if ContactScreen =”false”.

7.2.32 Conventional​Printing​Params

[Added ContinuousFed value to PrintingType.]
This resource defines the attributes and elements of the ConventionalPrinting process. The specific parameters of individual printer modules are modeled by using the standard partitioning methods. These methods are described in Section 3.9.2.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
BlockName, FountainNumber, RibbonName, Separation, SheetName, Side, SignatureName, WebName
Input of processes:
ConventionalPrinting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DirectProof ?
	boolean
	If true, the proof is directly produced and subsequently an approval may be given by a person such as the customer, foreman, or floor manager shortly after the first final-quality printed sheet is printed. The approval is not required for setup, but it is required for the actual print run. If the ConventionalPrinting process is waiting for a DirectProof, its Status is switched to Stopped with the StatusDetails = WaitForApproval. Default = false

	Drying ?
	enumeration
	The way in which ink is dried after a print run. Possible values are:

UV – Ultraviolet dryer

Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.

Off – Default value.

	FirstSurface ?
	enumeration
	Printing order of the surfaces on the sheet. Possible values are:

Either – Default value. The printer may choose.

Front

Back

	FountainSolution ?
	enumeration
	State of the fountain solution module in the printing units. Possible values are:

On

Off

If not specified use the system specified setting, which may be either On or Off.

	MediaLocation ?
	string
	Identifies the location of the Media. The value identifies a physical location on the press, such as unwinder 1, unwinder 2, and unwinder 3.

If the media resource is partitioned by Location (see also Section 3.9.2.2 Locations of Physical Resources) there should be a match between one Location partition key and this MediaLocation value.

	ModuleAvailableIndex ?

New in JDF 1.1
	IntegerRange​List
	Zero-based list of print modules that are available for printing. In some cases modules are not available because the print module is replaced with in-line tooling, e.g. a perforating unit. Default = 0~-1, i.e., all modules are used for printing. The list is based on all modules of the printer and is not influenced by the value of ModuleIndex.

	ModuleDrying ?
	enumeration
	The way in which ink is dried in individual modules. Possible values are:

UV – Ultraviolet dryer

Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.

Off – The default.

	ModuleIndex ?
	IntegerRange​List
	Zero-based, ordered list of print modules that are used. The list is based on all modules of the printer and is not influenced by the value of ModuleAvailableIndex. Defaults to system specified.

	PerfectingModule ?

New in JDF 1.1
	integer
	Index of the perfecting module if WorkStyle = Perfecting and multiple perfecting modules are installed. Default = 0, i.e., the first installed perfecting module.

	Powder ?
	double
	Quantity of powder (in %).

	PrintingType
Modified in JDF 1.2
	enumeration
	Type of printing machine. Possible values are:

ContinuousFed - connected sheets including fan fold New in JDF 1.2
SheetFed - separate cut sheets
WebFed

The principal difference between SheetFed and WebFed is the shape of the paper each is equipped to accept. Presses that execute WebFed processes use substrates that are continuous and cut after printing is accomplished. Most newspapers are printed on web-fed presses. SheetFed printing, on the other hand, accepts precut substrates.

	SheetLay ?
	enumeration
	Lay of input media. Reference edge of where paper is placed in feeder. Possible values are:
Left

Right

Center

Default is the system specified value.

	Speed ?
	number
	Maximum print speed in sheets/hour (sheet fed) or meters/hour (web fed). Defaults to device specific full speed.

	WorkStyle ?
	enumeration
	The direction in which to turn. Possible values are:

Simplex – No turning
WorkAndBack – This WorkStyle describes the printing on both sides of the substrate with a different plate (set) in the second run. After the first run the side lays are altered but the front lays stay as they were. Lays can be turned by hand or using a pile reverser. Two-plate sets are necessary for WorkAndBack.
Perfecting – Many sheetfed printing presses have perfecting cylinder(s) built in. The leading edge of the print sheet changes as the sheet is turned by the perfecting cylinder, but the side lays remain unaltered. In this regard, this WorkStyle is similar to WorkAndTumble, but Perfecting is an in-line operation during the press run. Therefore, an additional plate (set) is required during this press run.
WorkAndTurn – Refers to the turning of the first-run sheet for subsequent perfecting. The front lays remain unchanged but the side lays must be altered. The alteration can be made by hand or using a pile turner. The plate (set) stay(s) in the machine and, during each run, half of the surface is imaged.
WorkAndTumble – The WorkAndTumble method is also used for perfecting. The leading edge of the print sheet changes as the sheet is turned, but the side lays remain unaltered. Tumbling happens after the first press run and the plate (set) is used again in the second press run, imaging the other sheet surface.
WorkAndTwist – Done between two press runs. The palette is twisted 180 degree before the second run is performed so that the front lay and the side lay both change. The surface to be imaged is the same at both runs. Each run prints only part of the surface. The plate (set) stay in the machine. This WorkStyle is used for saving plate or film material. It is no longer a common WorkStyle.

	Ink ?
	refelement
	Kind of varnishing. Defines the varnish to be used for coatings on printed sides. Coatings are applied after printing all the colors. Other coating sequences must use the partition mechanism of this parameter resource. Selective varnishing has to use a separate separation for the respective varnish.

Note: The color inks are direct input resources of the ConventionalPrinting process.

7.2.33 CostCenter

This resource describes an individual area of a company that has separated accounting.

Resource Properties

Resource class:
ResourceElement

Resource referenced by:
Device, Employee
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	CostCenterID
	string
	Identification of the cost center

	Name ?
	string
	Name of the cost center.

7.2.34 CoverApplicationParams

Modified in JDF 1.2
[Changed CoverOffset to be optional. Added ReferenceEdge attribute.]
New in JDF 1.1
CoverApplicationParams define the parameters for applying a cover to a book block.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
CoverApplication
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	CoverOffset ?
Modified in JDF 1.2
	XYPair
	Position of the cover in relation to the book block given in the cover-sheet coordinate system. If not present, the implied default is specified by the system.

	GlueApplication *
	refelement
	Describes where and how to apply glue to the book block.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be glued for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the CoverApplication process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be glued. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	Score *
	element
	Describes where and how to score the cover.

Structure of Score Subelement

	Name
	Data Type
	Description

	Offset
	double
	Position of scoring given in the operation coordinate system.

	Side
	enumeration
	Specifies the side from which the scoring tool works. Possible values are:

FromInside – The default.

FromOutside

[image: image81.jpg]Book block

4 CenterLine

[
Q
9
@

il
I
11 Positive

score offset

'
|
"
Negative 1 1 Origin of
score offset | | operation
Origin of 1 1 coordinate
cover sheet 1 1 system
coordinate "
system Ll U
Scored from
Block /_ inside X
Ay

Scored from
outside

Cover offset

Figure 7.7 Parameters and coordinate system for cover application

7.2.35 CreasingParams

New in JDF 1.1
CreasingParams define the parameters for creasing or grooving a sheet .

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
 BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes:
Creasing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Crease *
	element
	definition of one or more Crease lines.

Crease

Crease defines an individual crease line on a Component.

	Name
	Data Type
	Description

	StartPosition
	XYPair
	Starting position of the tool.

	WorkingPath
	XYPair
	Relative working path of the tool. Since the tools can only work parallel to the edges, one coordinate must be zero.

	WorkingDirection
	enumeration
	Direction from which the tool is working. Possible values are:

Top – from above

Bottom – from below

7.2.36 CutBlock

Defines a cut block on a sheet. It is possible to define a block that contains a matrix of elements of equal size. In this scenario, the intermediate cut dimension is calculated from the information about element size, block size and the number of elements in both directions. Each cut block has its own coordinate system, which is defined by the BlockTrf attribute.
Resource Properties

Resource class:
Parameter

Resource referenced by:
CuttingParams
Example Partition:
-

Input of processes:
-
Output of processes:
-
Resource Structure

	Name
	Data Type
	Description

	BlockElementSize ?
	XYPair
	Element dimension in X and Y direction. Default = BlockSize

	BlockElementType ?
	enumeration
	Element type. Possible values are:

CutElement – Cutting element.

PunchElement – Punching element.

Default = system specified

	BlockName
	NMTOKEN
	Name of the block. Used for reference by the CutMark resource. Note that CutBlock resources are not partitioned although they are nested. The semantics of nested CutBlocks is different.

	BlockSize
	XYPair
	Size of the block.

	BlockSubdivision ?
	XYPair
	Number of elements in X and Y direction. Default = (1,1,) i.e., no subdivision.

	BlockTrf
	matrix
	Block transformation matrix. Defines the position and orientation of the block relative to the Component coordinate system.

Default = identity

	BlockType
	enumeration
	Block type. Possible values are:

CutBlock – Block to be cut.

SaveBlock – Protected block, cut only via outer contour.

TempBlock – Auxiliary block that is not taken into account during cutting.

MarkBlock – Contains no elements, only marks.

7.2.37 CutMark

This resource, along with CutBlock, provides the means to position cut marks on the sheet. After printing, these marks can be used to adapt the theoretical block positions (as specified in CutBlock) to the real position of the corresponding blocks on the printed sheet.
Resource Properties

Resource class:
Parameter

Resource referenced by:
CuttingParams, Surface
Example Partition:
-
Input of processes:
-
Output of processes:
-
Resource Structure

	Name
	Data Type
	Description

	Blocks ?

Modified in JDF 1.1
	NMTOKENS
	Values of the BlockName partition attributes of the blocks defined by the CutMark resource.

	MarkType
	enumeration
	Mark type. Possible values are:

CrossCutMark

TopVerticalCutMark

BottomVerticalCutMark

LeftHorizontalCutMark

RightHorizontalCutMark

LowerLeftCutMark

UpperLeftCutMark

LowerRightCutMark

UpperRightCutMark

	Position
	XYPair
	Position of the logical center of the cut mark in the coordinates of the MarkObject that contains this mark.

Note: The logical center of the cut mark does not always directly specify the center of the visible cut mark symbol.

[image: image82.wmf]Position of symbol

Centered at logical position

CrossCutMark

Symbol

Name

Slightly above logical position

TopVerticalCutMark

BottomVerticalCutMark

Slightly below logical position

Slightly to the left of logical position

RightHorizonalCutMark

LeftHorizonalCutMark

Slightly to the right of logical position

LowerLeftCutMark

Corner at logical position

UpperLeftCutMark

Corner at logical position

LowerRightCutMark

Corner at logical position

Corner at logical position

UpperRightCutMark

Figure 7.8 Cut mark types

7.2.38 CuttingParams

New in JDF 1.1
This resource describes the parameters of a Cutting process that uses nested CutBlocks as input.
Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes:
Cutting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	CutBlock *
	refelement
	One or several CutBlocks can be used to find the Cutting sequence. Only one of CutBlock or Cut may be specified.

	CutMark *
	refelement
	CutMark resources can be used to adapt the theoretical cut positions to the real positions of the corresponding blocks on the Component to be cut.

	Cut *
	element
	Cut elements describe an individual cut. Only one of CutBlock or Cut may be specified.

Structure of the Cut Subelement

Cut describes one straight cut with an arbitrary tool.

	Name
	Data Type
	Description

	StartPosition
	XYPair
	Starting position of the tool.

	WorkingPath
	XYPair
	Relative working path of the tool. Since the tools can only work parallel to the edges, one coordinate must be zero.

	WorkingDirection
	enumeration
	Direction from which the tool is working. Possible values are:

Top – from above

Bottom – from below

7.2.39 DBMergeParams

This resource specifies the parameters of the DBTemplateMerging process.

Resource Properties

Resource class:

Parameter

Resource references:
-

Resource inheritance:
-

Example Partition:
-

Input of processes:
DBTemplateMerging
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	SplitDocuments ?
	integer
	Indicates how often to split documents to create a new file.

	FileSpec ?
	refelement
	URL of the generated destination file. This is most often a printable file type, such as PDF of PPML. If FileSpec is not specified, DBMergeParams must be a Pipe resource.

7.2.40 DBRules

This resource specifies the rules that should be applied to convert a database record into a graphic element. It is described by a text element with a human-readable description of the selection rules. For example:

insert the “Age” field behind the birthday;

if income>100,000 use Porsche.gif, else use bicycle.jpeg for image #2.
The internal representation of the mapping of database fields to graphic content within the document template is implementation-dependent. It can vary from fully variable, multi-page, automated document layout to simply inserting some line-feed characters between database records in an address field. Therefore, DBRules is defined as a simple human-readable text element.

Resource Properties

Resource class:
Parameter

Resource references:
-

Resource inheritance:
-

Example Partition:
-
Input of processes:
DBDocTemplateLayout, Inserting, Collecting, Gathering
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Comment +
	telem
	Human-readable description of the database rules that map database fields to image or text content.

7.2.41 DBSchema

This resource specifies the formal structure of a database record, regardless of type. It is encoded as a text element with a human-readable description of the database schema.

Resource Properties

Resource class:
Parameter

Resource references:
-

Resource inheritance:
-

Example Partition:
-

Input of processes:
DBDocTemplateLayout, Verification
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DBSchemaType
	enumeration
	Database type. Possible values are:

CommaDelimited

SQL

XML

	Comment +
	telem
	Human-readable description of the database schema.

7.2.42 DBSelection

This resource specifies a selection of records from a database.

Resource Properties

Resource class:
Parameter

Resource references:
-

Resource inheritance:
-

Example Partition:
-

Input of processes:
DBTemplateMerging, Inserting, Collecting, Gathering, Verification
Output of processes:
Verification
Resource Structure

	Name
	Data Type
	Description

	DataBase
	URL
	URL of the database

	Records ?
	IntegerRangeList
	The indices of the database records.

	Select ?
	string
	Database selection criteria in the native language of the database, e.g., SQL.

7.2.43 DeliveryParams

Provides information needed by a Delivery process. A Delivery process consists of sending a quantity of a product to a specific location at, in some cases, a required date and time.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Delivery
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Earliest ?
	dateTime
	Specifies the earliest time after which the delivery may be made.

	Method ?
	string
	Identifies a required delivery method, such as ExpressMail or InterofficeMail.

	Pickup ?
	boolean
	If true, the merchandise is picked up. If false, the merchandise is delivered.

Default = false

	Required ?
	dateTime
	Specifies the time by which the delivery must be made.

	Company ?

Deprecated in JDF 1.1
	refelement
	Address and further information of the addressee.

	Contact *

New in JDF 1.1
	refelement
	Address and further information of the Contact responsible for this delivery.

	Drop +
	element
	All locations where the product will be delivered.

Structure of the Drop Subelement

	Name
	Data Type
	Description

	Earliest ?
	dateTime
	Specified the earliest time after which the delivery may be made. Default = Earliest in the root DeliveryParams.

	Method ?
	string
	Identifies a required delivery method, such as ExpressMail or InterofficeMail. Default = Method in the root DeliveryParams.

	Pickup ?
	boolean
	If true, the merchandise is picked up. If false, the merchandise is delivered. Default = Pickup in the root DeliveryParams.

	Required ?
	dateTime
	Specifies the time by which the delivery must be made. Default = Required in the root DeliveryParams.

	Company ?

Deprecated in JDF 1.1
	refelement
	Address and further information of the addressee. Defaults to the value of Company specified in the root DeliveryParams resource.

	Contact *

New in JDF 1.1
	refelement
	Address and further information of the Contact responsible for this delivery.

	DropItem +
	element
	A Drop may consist of multiple products, which are represented by their respective Component resources. Each DropItem describes an individual resource that is part of this Drop.

Structure of the DropItem Subelement

	Name
	Data Type
	Description

	Amount ?
	integer
	Specifies the number of Components ordered. If Amount is not specified, defaults to the total amount of the Component that is referenced by rRef.

	Unit ?
	string
	Unit of measurement for the Amount specified in ComponentLink. Defaults to the value of Unit defined in the Component resource linked by rRef.

	Component
	refelement
	Description of the individual item.

7.2.44 DensityMeasuringField
This resource contains information about a density measuring field.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorControlStrip, Surface
Example Partition:
-
Input of processes:
Any printing process
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Center
	XYPair
	Position of the center of the density measuring field in the coordinates of the MarkObject that contains this mark. If the measuring field is defined within a ColorControlStrip, Center refers to the rectangle defined by Center and Size of the ColorControlStrip.

	Density

Modified in JDF 1.1A
	NumberList
	Density value for each process color measured with filter.

The data type was modified to NumberList in JDF 1.1A in order to accommodate density values >1.0.

	Diameter
	double
	Diameter of measuring field.

	DotGain
	double
	Percentage of dot gain.

	Percentage
	double
	Film percentage or equivalent.

	Screen
	string
	Description of the screen.

	Separation
	string
	Reference to separation.

	Setup ?
	string
	Description of measurement setup.

	ToleranceCyan
	XYPair
	Upper and lower cyan tolerance (in density units).

	ToleranceMagenta
	XYPair
	Upper and lower magenta tolerance (in density units).

	ToleranceYellow
	XYPair
	Upper and lower yellow tolerance (in density units).

	ToleranceBlack
	XYPair
	Upper and lower black tolerance (in density units).

	ToleranceDotGain
	XYPair
	Upper and lower tolerance (in percentage).

	Color​Measurement​Conditions ?

New in JDF 1.1
	refelement
	Detailed description of the measurement conditions for color measurements.

7.2.45 DevelopingParams

New in JDF 1.1
DevelopingParams specifies information about the chemical and physical properties of the developing and fixing process for film and plates. Includes details of preheating, postbaking and postexposure.
Preheating is necessary for negative working plates. It hardens the exposed areas of the plate to make it durable for the following developing process. The stability and uniformity of the preheat temperature influence the evenness of tints and the run length of the plate on press.

Postbaking is an optional process of heating that is applied to most polymer plates to enhance the run length of the plate. A factor 5 to 10 can be gained compared to plates that are not postbaked.

Postexposure is an optional exposure process for photopolymer plates to enhance the run length of the plate. A factor of 5 to 10 can be gained compared with plates that are not postexposed.

Note: Postbaking and postexposure are mutually exclusive.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
ContactCopying, FilmToPlateCopying, ImageSetting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	PreHeatTemp ?
	number
	Temperature of the preheating process in °C. Default = 0, i.e., no preheating.

	PreHeatTime ?
	duration
	Duration of the preheating process. Default = 0M, i.e., no preheating.

	PostBakeTemp ?
	number
	Temperature of the post baking process in °C. Default = 0, i.e., no post process baking.

	PostBakeTime ?
	duration
	Duration of the post baking process. Default = 0M, i.e., no post process baking.

	PostExposeTime ?
	duration
	Duration of the post exposing process. Default = 0M, i.e., no post process baking.

Note: Only one of PostBakeTime and PostExposeTime may be non-zero.

7.2.46 Device

Information about a specific device. This optionally includes information about the devices capabilities. For more information, see Section 3.7.1.3 Implementation Resources and 4.8 Describing Device Capabilities with JDF.

Resource Properties

Resource class:
Implementation

Resource referenced by:
-

Example Partition:
-
Input of processes:
any process

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DeviceFamily?

Deprecated in JDF 1.1
	string
	Manufacturer family type ID. DeviceFamily is replaced by the appropriate ModelXXX attributes in this list.

	DeviceID
	string
	Name of the device. This is a unique name within the workflow. Must be the same over time for a specific device instance, i.e., must survive reboots. Equivalent to the UPnP:UDN [upnp].

	DeviceType ?
	string
	Manufacturer type ID, including a revision stamp.

	Directory ?

New in JDF 1.1
	URL
	Defines a directory where the URLs that are associated with this Device can be located. If Directory is not specified, all URLs must be completely specified.

	FriendlyName ?

New in JDF 1.1
	string
	Short user-friendly title

	JDFVersions ?

New in JDF 1.1
	string
	Whitespace separated list of supported JDF versions that this device supports, e.g, “1.0 1.1” specifies that both the 1.0 and 1.1 version are supported.

	JMFSenderID ?

New in JDF 1.1
	string
	ID of the controller will process JMF messages for the device. This corresponds to the SenderID attribute that must be specified for the device in JMF messages.

	JMFURL ?

New in JDF 1.1
	URL
	URL of the device port that will accept JMF messages.

	Manufacturer ?

New in JDF 1.1
	string
	Manufacturer name

	ManufacturerURL ?

New in JDF 1.1
	string
	Web site for manufacturer

	ModelDescription ?

New in JDF 1.1
	string
	Long description for end user

	ModelName ?

New in JDF 1.1
	string
	Model name

	ModelNumber ?

New in JDF 1.1
	string
	Model number

	ModelURL ?

New in JDF 1.1
	string
	Web site for model.

	SerialNumber ?

New in JDF 1.1
	string
	Serial number of the device.

	PresentationURL ?

New in JDF 1.1
	string
	URL to presentation for device It is a URL to a device-provided UI for user configuration, status, etc. Thus, if the device has an embedded Web server, this is a URL to the configuration page hosted on that Web server.

	UPC ?

New in JDF 1.1
	string
	Universal Product Code for the device. A 12 -digit, all-numeric code that identifies the consumer package. Managed by the Uniform Code

	CostCenter ?
	element
	MIS cost center ID.

	DeviceCap *

New in JDF 1.1
	element
	Description of the capabilities of the device. The DeviceCap elements are combined with a logical OR, i.e., if a JDF resides within any parameter space defined by a DeviceCap, the device can process the job. For details see 7.3 Device Capability Definitions.

	IconList ?

New in JDF 1.1
	element
	List of locations of icons that can be used to represent the device.

Structure of the IconList Subelement

New in JDF 1.1
The IconList is a list of individual icon descriptions.

	Name
	Data Type
	Description

	Icon +
	refelement
	Individual icon description.

Structure of the Icon Subelement

New in JDF 1.1
An Icon represents a device in the user interface.

	Name
	Data Type
	Description

	Size
	XYPair
	Height and width of the icon.

	BitDepth
	integer
	Bit depth of one color

	IconUsage ?
	enumerations
	Definition of the Status of the device that this Icon represents. Any combination of:

Unknown – No link to the device exists

Idle

Down

Setup

Running

Cleanup

Stopped
Defaults to all of the above. The meaning of the individual enumerations is described in the DeviceInfo message element. See 5.5.1.3 KnownDevices

	FileSpec
	element
	Details of the file containing the icon data.

7.2.47 DeviceNSpace
Modified in JDF 1.2
[Elevated DeviceNSpace from a subelement of ColorantControl to top level so it can be referenced from several resources, clarified the usage of DeviceNSpace, clarified SeparationSpec, changed SeparationSpec * to a refelement.]
DeviceNSpace may be used in several ways.

For example – defining the specific colorants of a DeviceN space:

ColorantControl::ColorPool::ColorantNameSet matches ColorantControl::DeviceNSpace::Name and a
ColorantControl::ColorPool::Color resource (with correct Name of colorant and other defining attributes) exists for each colorant of the DeviceNSpace as given in
ColorantControl::DeviceNSpace::SeparationSpec::Name

For example – defining a single colorant in terms of its values in a DeviceN space:
ColorantControl::ColorantParams names a colorant (perhaps a Pantone spot color).

ColorantControl::DeviceNSpace names a DeviceN color space,
which then the

 ColorantControl::ColorPool::ColorantNameSet matches and then the corresponding

ColorantControl::ColorPool::Color::DeviceNColor::ColorList attribute gives the set of DeviceNSpace colorant percent values necessary to construct the
ColorantControl::ColorantParams colorant (also named ColorantControl::ColorPool::Color::Name) in using DeviceNSpace colorants.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorantControl, ColorSpaceConversionOp
Example Partition:
-
Input of Processes:
-
Output of processes:
-
Resource Structure
	Name
	Data Type
	Description

	Name ?
	string
	Color space name, such as HexaChrome or HiFi.

	N
	integer
	The number of colors that define the color space.

	SeparationSpec *
Modified in JDF 1.2
	refelement
	Ordered list of colorant names that define the DeviceN colorspace. Note that these colorants must be specified in the ColorantParams element of the ColorantControl or be implied by ProcessColorModel . In other words, they must be real physical colorants.

	ColorPool ?

New in JDF 1.2
	refelement
	Pool of Color elements that each define a numeric value for a colorant named in DeviceNSpace. For example, an Lab value for a colorant in the DeviceNSpace can be specified in a Color element.

7.2.48 DigitalPrintingParams

Modified in JDF 1.2
[Added 4 attributes: NonPrintableMarginBottom, NonPrintableMarginLeft, NonPrintableMarginRight, and NonPrintableMarginTop, added ContinuousFed value to PrintingType.]
[Added 1 new value, MyMailbox, to OutputBin and clarified other values.]
This resource contains attributes and elements used in executing the DigitalPrinting process. The PrintingType attribute in this resource defines two types of printing: SheetFed and WebFed. The principal difference between them is the shape of the paper each is equipped to accept. Presses that execute WebFed processes use substrates that are continuous and cut after printing is accomplished. Most newspapers are printed on web-fed presses. SheetFed printing, on the other hand, accepts precut substrates.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
BlockName, DocRunIndex, DocSheetIndex, PartVersion, Run, RunIndex, RunTag, SheetIndex, Separation, SheetName, Side, SignatureName, DocIndex
Input of processes:
DigitalPrinting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Collate ?

New in JDF 1.1
	enumeration
	Determines the sequencing of the sheets in the document and the documents in the job when multiple copies of a document or a job are requested as output. Document copies can be requested by specifying RunList:DocCopies and job copies can be requested by specifying the output Component Amount.

None – Do not collate sheets in the document or document(s) in the job.

Sheet – Collate the sheets in each document; do not collate the documents in the job. The result of Sheet and SheetAndSet is the same when there is one document in the set. The result of Sheet and SheetSetAndJob is the same when there is one document in the set and one set in the job.

SheetAndSet – Collate the sheets in the document and collate the documents in the set. Do not collate the sets in the job. The result of SheetAndSet and SheetSetAndJob is the same when there is one set in the job.

SheetSetAndJob – Collate the sheets in the document and collate the documents in the set and collate the sets in the job.

SystemSpecified – Collate as defined by system

Default = SystemSpecified

The following example consists of 2 documents, A and B, each having 2 sheets, A1, A2 and B1, B2. The number of document copies requested is 1 for both documents and the number of job copies requested is 3 (Component Amount=3). The job contains no document set boundaries.

If Collate=None, the sheet order will be:

A1A1A1 A2A2A2 B1B1B1 B2B2B2

If Collate=Sheet, the sheet order will be:

A1A2 A1A2 A1A2 B1B2 B1B2 B1B2

If Collate=SheetAndSet or SheetSetAndJob, the sheet order will be:

A1A2 B1B2 A1A2 B1B2 A1A2 B1B2

	ManualFeed ?

New in JDF 1.1
	boolean
	Indicates whether the media will be fed manually. Default = false

	NonPrintableMarginBottom ?
New in JDF 1.2
	number
	The width in points of the bottom margin with respect idealized process coordinate system that the Digital Printing process must not print in. The edges of the Media and the axes of the idealized process coordinate system remain co-incident, independent of the value supplied. The purpose of this value is to specify a smaller width of the bottom margin than that of the system specified default. If this value is greater than the default for the Device, the Device will ignore this value for the bottom margin (so the Device does not need to perform additional masking).

	NonPrintableMarginLeft ?
New in JDF 1.2
	number
	Same as NonPrintableMarginBottom except for the left margin.

	NonPrintableMarginRight ?
New in JDF 1.2
	number
	Same as NonPrintableMarginBottom except for the right margin.

	NonPrintableMarginTop ?
New in JDF 1.2
	number
	Same as NonPrintableMarginBottom except for the top margin.

	OutputBin ?

Modified in JDF 1.2
	NMTOKEN
	Specifies the bin to which the finished document should be output. Possible values include:

Top – The bin that, when facing the device, can best be identified as ‘top’. Same as Upper.
Middle – The bin that, when facing the device, can best be identified as ‘middle’.

Bottom – The bin that, when facing the device, can best be identified as ‘bottom’. Same as Lower.
Side – The bin that, when facing the device, can best be identified as ‘side’.

Left – The bin that, when facing the device, can best be identified as ‘left’.

Right – The bin that, when facing the device, can best be identified as ‘right’.

Center – The bin that, when facing the device, can best be identified as ‘center’.

Rear – The bin that, when facing the device, can best be identified as ‘rear’.

FaceUp – The bin that can best be identified as ‘face up’ with respect to the device.

FaceDown –The bin that can best be identified as ‘face down’ with respect to the device.

FitMedia – Requests the device to select a bin based on the size of the media.

LargeCapacity – The bin that can best be identified as the ‘large capacity’ bin (in terms of the number of sheets) with respect to the device. Same as Main.
Booklet – The bin where the Device places booklets. New in JDF 1.2
Mailbox-N – The job will be output to the bin that is best identified as ‘Mailbox-1’, ‘Mailbox-2’…etc.
MyMailbox – The job will be output to the bin that is best identified as ‘MyMailbox’, New in JDF 1.2
Stacker-N –The job will be output to the bin that is best identified as ‘Stacker-1’, ‘Stacker-2’ …etc.

Tray-N – The job will be output to the tray that is best identified as ‘Tray-1’, ‘Tray-2’ … etc.

SystemSpecified – The job will be output to the tray that is defined by the system. The default.

	PageDelivery ?

New in JDF 1.1
	enumeration
	Indicates how pages are to be delivered to the output bin or finisher. Possible values are:

FanFold – The output is alternating face-up, face down.

SameOrderFaceUp – Order as defined by the RunList, with the “front” sides of the media up.

SameOrderFaceDown – Order as defined by the RunList, with the “front” sides of the media up.

ReverseOrderFaceUp – Order reversed, as defined by the RunList, with the “front” sides of the media up.

ReverseOrderFaceDown – Order reversed, as defined by the RunList, with the “front” sides of the media down.

SystemSpecified – Order and face-up/face-down as defined by the system.

Default = SystemSpecified

	PrintingType ?

Modified in JDF 1.1
Modified in JDF 1.2
	enumeration
	Type of printing machine. Possible values are:

ContinuousFed - connected sheets including fan fold New in JDF 1.2
SheetFed - separate cut sheets
WebFed

SystemSpecified

Default = SystemSpecified

	PrintQuality ?

Deprecated in JDF 1.1
	enumeration
	Indicates how pages are to be delivered to the output bin or finisher. Possible values are:

High – Highest quality available on the printer.
Normal – The default quality provided by the printer.

Draft – Lowest quality available on the printer

Default = SystemSpecified

Replaced by InterpretingParams:PrintQuality

	SheetLay ?
	enumeration
	Lay of input media. Reference edge of where paper is placed in feeder. Possible values are:
Left

Right

Center

SystemSpecified = The device-specific machine default

Default = SystemSpecified

	Component ?

New in JDF 1.1
	refelement
	Describes the preprocessed media to be used. For any given partition, only one of Media or Component may be specified.

	Disjointing ?

New in JDF 1.1
	refelement
	Describes how individual components are separated from one another in the output bin.

	Media ?

New in JDF 1.1
	refelement
	Describes the media to be used. For any given partition, only one of Media or Component may be specified.

	MediaSource ?

Deprecated in JDF 1.1
	refelement
	Describes the media to be used. For any given partition, only one of MediaSource or Component may be specified.

7.2.49 Disjointing

[Clarified OffsetDirection 1 ISSUE, 1 ISSUE (Finishing WG)]
The Disjointing resource describes how individual components are separated from one another on a stack.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Component, DigitalPrintingParams GatheringParams
Example Partition:
-

Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Number ?
	integer
	Number of sheets that make up one component. Default = -1, i.e. unknown

	Offset ?
	XYPair
	Offset dimension in X- and Y-dimensions that separates the components. Default = system specified.

	OffsetAmount ?
	integer
	The number of components that are shifted in OffsetDirection simultaneously. Default = 1

	OffsetDirection ?
Clarified in JDF 1.2
	enumeration
	Offset-shift action for the first component. A component can be offset to one of two positions, Left or Right. Possible values are:

Alternate – The position of the first component is opposite to the position of the previous component and subsequent components are each offset to alternating positions. For example, if the last item in the stack was positioned to the right then the subsequent items will be positioned to the left, right, left, right, etc.
Left – Offset consecutive components sideways to the left, next to the right.
None – Do not offset consecutive components. The position of all components is the same as the position of the previous component. The default.

Right – Offset consecutive components sideways to the right, next to the left.
Straight – Same as None.
SystemSpecified – Offset consecutive components to a system specified position, which may be None.

	Overfold ?

Deprecated in JDF 1.1
	double
	Expansion of the overfold of a sheet. This attribute may be needed for the Inserting or other postpress processes.

Moved to Component.

	IdentificationField *

Modified in JDF 1.1
	element
	Marks that identify the range of sheets to be used in a process. A scanner will scan the sheets and detect a component boundary by scanning a mark, such as a bar code, that matches the description in the IdentificationField element.

	InsertSheet ?
	refelement
	Some kind of physical marker (such as a paper strip or a yellow paper sheet) that separates the components.

Default = no physical marker

7.2.50 DividingParams

Deprecated in JDF 1.1.
This resource contains attributes and elements used in executing the Dividing process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
RibbonName, SheetName, SignatureName, WebName
Input of processes:

Dividing

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DividePositions
	NumberList
	Array containing the cross cut positions in y-direction (direction of web traveling).

7.2.51 Embossing​Params

New in JDF 1.1

This resource contains attributes and elements used in executing the Embossing process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes:
Embossing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Emboss *
	refelement
	One Emboss element is specified for each impression.

Structure of the Emboss Subelement
	Name
	Data Type
	Description

	Direction
	enumeration
	The direction of the image. Possible values are:

Both – Both debossing and embossing in one stamp.

Raised – Embossing,

Depressed – Debossing

	EdgeAngle ?
	number
	The angle of a beveled edge in degrees. Typical values are an angle of: 30, 40, 45, 50 or 60 degrees. For EdgeAngle to exist, EdgeShape = Beveled must be specified.

	EdgeShape ?
	enumeration
	The transition between the embossed surface and the surrounding media may be rounded or beveled (angled). Possible values are:

Rounded – The default.
Beveled

	EmbossingType
	enumeration
	Possible values include

BlindEmbossing – Embossed forms that are not inked or foiled. The color of the image is the same as the paper.

EmbossedFinish – The overall design or pattern impressed in laminated paper when passed between metal rolls engraved with the desired pattern. Produced on a special embossing to create finishes such as linen.

FoilEmbossing – Combines embossing with foil stamping in one single impression.

FoilStamping – Using a heated die to place a metallic or pigmented image from a coated foil on the paper.

RegisteredEmbossing – Creates an embossed image that exactly registers to a printed image.

	Height ?
	number
	The height of the levels. This value specifies the vertical distance between the highest and lowest point of the stamp, regardless of the value of Direction.

	ImageSize ?
	XYPair
	The size of the bounding box of one single image.

	Level ?
	enumeration​
	The level of embossing. Possible values are:

SingleLevel
MultiLevel

Sculpted

	Position ?
	XYPair
	Position of the lower left corner of the bounding box of the embossed image in the coordinate system of the Component.

7.2.52 Employee

Information about a specific device or machine operator (see Section 3.7.1.3 Implementation Resources). Employee is also used to describe the contact person who is responsible for executing a node, as defined in the NodeInfo field of a JDF node.

Resource Properties

Resource class:
Implementation

Resource referenced by:
-

Example Partition:
-
Input of processes:
Any process

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	PersonalID ?
	string
	ID of the relevant MIS employee.

	Shift ?
	string
	Defines the shift to which the employee belongs.

	CostCenter ?
	element
	MIS cost center ID.

	Person ?
	refelement
	Describes the employee. If no Person element is specified, the Employee resource represents any employee who fulfills the selection criteria.

7.2.53 EndSheetGluingParams

This resource describes the attributes and elements used in executing the EndSheetGluing process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
EndSheetGluing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	EndSheet (Front)
	element
	Information about the front-end sheet. The Side attribute of this element must be Front.

	EndSheet (Back)
	element
	Information about the back-end sheet. The Side attribute of this element must be Back.

Structure of EndSheetGluingParams Elements

EndSheet

	Name
	Data Type
	Description

	Offset
	XYPair
	Offset of end sheet in X and Y direction.

	Side
	enumeration
	Location of the end sheet. Possible values are:

Front

Back

	GlueLine
	element
	Description of the glue line.

[image: image83.wmf]Y

X

Back end

sheet

Binding

edge

Front end sheet

Y offset

Block

Glue line

start position

Glue line

working length

X offset

Figure 7.9 Parameters and coordinate system used for end-sheet gluing

The process coordinate system is defined as follows: The y-axis is aligned with the binding edge of the book block. It increases from the registered edge to the edge opposite to the registered edge. The x-axis is aligned with the registered edge. It increases from the binding edge to the edge opposite the binding edge, i.e., the product front edge.

7.2.54 ExposedMedia

Clarified in JDF 1.2
[added 2 clarifications]
This resource represents a processed Media-based handling resource such as film, plate, or paper proof. It is also used as an input resource for the Scanning process.

Resource Properties

Resource class:
Handling

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, Separation, SheetName, Side, SignatureName, TileID, WebName
Input of processes:
ContactCopying, ConventionalPrinting, PreviewGeneration, DigitalPrinting, Scanning
Output of processes:
ContactCopying, ImageSetting, FilmToPlateCopying, Proofing
Resource Structure

	Name
	Data Type
	Description

	ColorType ?
Clarified in JDF 1.2
	enumeration
	Possible values are:

Color

GrayScale – Generic single color, multi-level. Clarified in JDF 1.2
Monochrome – Generic single color, bi-level, e.g., Black and white. Clarified in JDF 1.2

	Polarity ?
	boolean
	False if the media contains a negative image. Default = true

	ProofQuality ?
	enumeration
	This attribute is present if the ExposedMedia resource describes a proof. Possible values are:

None – Not a proof or the quality is unknown. Default value.

Halftone – The halftones are emulated.

Contone – No halftones, but exact color.

Conceptual – Color does not match precisely.

	ProofType ?
	enumeration
	None – Not a proof or the type is unknown. Default value.

Page – Page proof

Imposition – Imposition proof.

	PunchType ?
	string
	Name of the registration punch scheme. Possible values include, but are not limited to:

Bacher

Stoesser

Default = no punch holes.

	Resolution ?
	XYPair
	Resolution of the output.

	FileSpec ?
	refelement
	A FileSpec resource pointing to an ICC profile that describes the output process for which this media was exposed. The ResourceUsage attribute of the FileSpec must be “OutputProfile”.

	Media
	refelement
	Describes media specifics such as size and type.

	ScreeningParams ?
	refelement
	Used to describe the screening in case of rasterized media

7.2.55 FileSpec

Specification of a file or a set of files.
Resource Properties

Resource class:
Parameter

Resource referenced by:
DBMergeParams, LayoutElement, PDLResourceAlias, ScanParams
Example Partition:
Separation
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Application ?
	string
	Creator application, such as Photoshop.

	AppOS ?
	enumeration
	Operating system of the application that created the file. Possible values are:

Unknown – Default value
Mac

Windows

Linux

Solaris

IRIX

DG_UX

HP_UX

	AppVersion ?
	string
	Version of the value of the Application attribute.

	CheckSum ?

New in JDF 1.1

Modified in JDF 1.1A
	hexBinary
	Checksum of the file being referenced using the RSA MD5 algorithm. In JDF 1.1a, the term RSA MD was completed to RSA MD5. The data type was modified to hexBinary to accommodate the 128 bit output of the MD5 algorithm.

	Compression ?
	enumeration
	Indicates how the file is compressed. Possible values are:

None – The file is not compressed. Default value.

Deflate – The file is compressed using ZIP public domain compression (RFC 1951)

Gzip – GNU zip compression technology (RFC 1952)

Compress – UNIX compression (RFC 1977)

	Disposition ?
	enumeration
	Indicates what the device should do with the file when the process that uses this resource as an input resource completes. Possible values are:

Unlink – The device should release the file.

Delete – The device should attempt to delete the file.

Retain – The device should do nothing with the file. Default value.

	DocumentNaturalLang ?
	language
	The natural language of the document this FileSpec refers to.

	FileFormat ?
	string
	A formatting string used with the Template attribute to define a sequence of filenames in a batch process.
If neither URL nor UID are present, both FileFormat and FileTemplate must be present, unless the resource is a pipe. For more information, see the text following this table.

	FileSize ?
	integer
	Size of the file in Byte.

	FileTemplate ?
	string
	A template, used with FileFormat, to define a sequence of filenames in a batch process. If neither URL nor UID is present, both FileFormat and FileTemplate must be present, unless the resource is a pipe.

	FileVersion ?

New in JDF 1.1
	string
	Version of the file referenced by this FileSpec.

	MimeType ?
	string
	Mime type of the file.

	OSVersion ?
	string
	Version of the operating system.

	PageOrder ?
	enumeration
	Indicates whether the pages in the file are in reverse order. Possible values are:

Ascending – The first page in the file is the lowest numbered page.

Descending – The first page in the file is the highest numbered page.

	ResourceUsage ?
	NMTOKEN
	If an element uses more than one FileSpec subelement, this attribute is used to refer from the parent element to a certain child element of this type, for example, see ColorSpaceConversionParams.

	UID ?

New in JDF 1.1
	string
	Unique internal ID of the referenced file. This attribute is dependent on the type of file that is referenced:

PDF: Variable unique identifier in the ID field of the PDF file’s trailer.

ICC Profile: Profile ID in byte 84-99 of the ICC profile header.

Others – Format specific.

	URL ?
	URL
	Location of the file. If URL is not present, and neither FileFormat nor FileTemplate are present, the referencing resource must be a pipe.

	UserFileName ?
	string
	A user-friendly name which may be used to identify the file.

	FileAlias *
	element
	Defines a set of mappings between file names that may occur in the document and URLs (which may refer to external files or parts of a MIME message).

Structure of FileAlias Subelement

	Name
	Data Type
	Description

	Alias
	string
	The filename which is expected to occur in the file.

	Disposition
	enumeration
	Indicates what the device should do with the file referenced by this alias when the process that uses this resource as an input resource completes. Possible values are:

Unlink – The device should release the file.

Delete – The device should attempt to delete the file.

Retain – The device should do nothing with the file.

	MimeType ?
	string
	Mime type of the file.

	URL
	URL
	The URL which identifies the file the alias refers to.

Usage of Format and Template

The function defined when using the attributes FileFormat and FileTemplate is drawn from the same root as the standard C print function and, therefore, overtly resembles the model of that function. FileFormat is the first argument and FileTemplate is a comma-separated list of the additional arguments. FileTemplate may contain the following operators : +,-,*,/,%,(,) which are evaluated using standard C-operator precedence and the variables defined in the following table:

Table 7‑4 Predefined variables used in FileTemplate

	Name
	Description

	element
	Integer iterator over all elements in a given page. Restarts at 0 for each page.

	i
	Integer iterator over all files produced by this process. 0-based numbering.

	page
	Integer iterator over the page number of a document. This is equivalent to r for the case that each run contains exactly one page.

	r
	Integer iterator over all RunList partitions with a partition key of “Run” in an input RunList.

	ri
	Integer iterator over all indices in an input Run of a RunList. This index is equivalent to looping over a RunIndex.

	sep
	Separation as defined in the separation PartIDKey of a partitioned resource.

	surf
	Surface string, “Front” or “Back”

	SheetName
	SheetName string of a partitioned resource.

	SignatureName
	SignatureName string of a partitioned resource.

	TileX
	X coordinate of a Tile

	TileY
	Y coordinate of a Tile

	PartVersion
	PartVersion string of a partitioned resource.

	jobPartID
	JobPartID string

	jobID
	Job ID string

	jobName
	DescriptiveName of the Node that is being processed.

	Time
	Current Time in ISO 8601 format.

	Date
	Current Date in ISO 8601 format.

	CustomerID
	CustomerID

Example:

<FileSpec FileFormat = “file://here/next/%s/%4.i/m%4.i.pdf” FileTemplate = “JobID,i/100,i%100”/>

with JobID = “j001” and a RunList defining 2023 created files will iterate all created files and place them into:

“file://here/next/j001/0000/m0000.pdf”

…

“file://here/next/j001/0020/m0023.pdf”
7.2.56 FitPolicy

New in JDF 1.1
Clarified in JDF 1.2
[Clarified the RotateOrthogonal value of the RotatePolicy attribute]
This resource specifies how to fit content into a receiving container, e.g., a RunList entry into a PlacedObject, or image onto media.

Resource Properties

Resource class:
Parameter

Resource referenced by:
InterpretingParams, LayoutPreparation​Params
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ClipOffset ?
	XYPair
	Defines the offset (position) of the imaged area in the non-rotated source image when SizePolicy is ClipToMaxPage. The values 0.0 0.0 mean that the imaged area starts at the lower left point of the job. If absent, the imaged area is taken from the center of the image source. If FitPolicy is defined in the context of a PageCell ClipOffset is ignored when PageCell::ImageShift is specified.

	GutterPolicy ?

	enumeration
	Allows printing of NUp grids even if the media size does not match the requirements of the data. One of:

Distribute: The gutters may grow or shrink to the value specified in MinGutter.

Fixed: The gutters are fixed. The default.

	MinGutter ?
	XYPair
	Minimum width in points of the horizontal and vertical gutters formed between rows and columns of pages of a multi-up sheet layout.

The first value specifies the width of all horizontal gutters and the second value specifies the minimum width of all vertical gutters.

If not specified, the gutter may be reduced to 0.

	RotatePolicy ?
Clarified in JDF 1.2
	enumeration
	Specifies the policy for the device to automatically rotate the image to optimize the fit of the image to the container.

NoRotate – The default

RotateOrthogonal – Rotate by 90° in either direction, i.e., rotate if necessary to fit.
RotateClockwise – Rotate clockwise by 90°.

RotateCounterClockwise – Rotate counter-clockwise by 90°.

	SizePolicy ?

Modified in JDF 1.1A
	enumeration
	Allows printing even if the container size does not match the requirements of the data.

ClipToMaxPage – The page contents should be clipped to the size of the container. The printed area is either centered in the source image, if no Clip​Offset key is given, or from that position which is determined by Clip​Offset.

Abort – Emit an error and abort printing. Default value.

FitToPage – The page contents should be scaled up or down to fit the media. The aspect ratio is maintained.

ReduceToFit – The page contents should be scaled down but not scaled up to fit the media. The aspect ratio is maintained.

Tile – the page contents should be split into several tiles, each printed on its own surface.

7.2.57
Fold

New in JDF 1.1
Fold describes an individual folding operation of the Component.

Resource Properties

Resource class:
Parameter

Resource referenced by:
FoldingIntent, FoldingParams
Example Partition:
-

Input of processes:
-
Output of processes:
-

Resource Structure
	Name
	Data Type
	Description

	From
	enumeration
	Edge from which the page is folded. Possible values are:

Front

Left

	To
	enumeration
	Direction in which it is folded. Possible values are:

Up – upwards

Down – downwards

	Travel
	double
	Distance of the reference edge relative to From

7.2.58 FoldingParams
Modified in JDF 1.2
[Add ReferenceEdge attribute, ISSUE (Digital Printing), ISSUE (Finishing, DigitalPrinting WGs), 2 ISSUEs (Finishing WG), ISSUE: Need a real z-fold.]
This resource describes the folding parameters, including the sequence of folding steps. It is also possible to execute the predefined steps of the folding catalog. After each folding step of a folding procedure, the origin of the coordinate system is moved to the lower left corner of the intermediate folding product. The process coordinate system is defined as follows when the ReferenceEdge attribute is not present:
A.
The specification of reference edges (Front, Rear, Left, and Right) for the description of an operation (such as the positioning of a tool) is done by means of determined names. These names are case-sensitive. They must be written exactly as shown in Figure 7.9, below.
B.
When the ReferenceEdge attribute is present, then the process coordinate system is defined relative to the layout coordinate system: Left is defined to be along the sheet layout Y-axis, Bottom is defined to be along the document content X-axis, Right is opposite Left, and Top is opposite Bottom. To fold parallel to the left edge of a portrait document after folding, the ReferenceEdge value must be Left. For details on coordinate systems, see 2.5.3 Coordinate Systems of Resources and Processes. ISSUE (Finishing, DigitalPrinting WGs): In a combined process is the coordinate system relative to the document before or after folding? What does portrait mean before folding?

[image: image84.wmf]Y

X

Sheet lay

 Front

Rear

Right

Left

Figure 7.10 Names of the reference edges of a sheet in the FoldingParams resource

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
BlockName, RibbonName, SheetName, SignatureName, WebName
Input of processes:
Folding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DescriptionType
	enumeration
	How the folding operations are described. Possible values are:
FoldProc – Detailed description of each individual fold.
FoldCatalog – Selection of fold procedure from FoldCatalog.

	FoldCatalog ?
	string
	Description of the type of fold according to the folding catalog in the format “Fx-y” as shown in
[image: image85.jpg]F4-1 2x1 F6-1 3x1 3x1 F6-3 3x1 F64 3x1
1 5 2 1 2 G
112 /3 11/3 TRl /4 1172 M/3 1173
F6-5 3x1 F8-1 4x1 F8-2 4x1 F8-3 4x1 F8-4 ax1
21 12 12 oIS 13 2
I
l U
i
1213 11/3 M2 11/4 112 41/4 T1/4 1174 11/4 1174 11/2 11/4
F8-5 4x1 F8-6 4x1 F8-7 22 F10-1 5x1 F10-2 5x1
12 3 2 3 1 1 1234 23 41
i 2 .
T1/4 11/4 11/4 13/4 11/4 11/4 112 41172 /5 1175 175 11/5 14/5 11/5 11/5 11/5
F10-3 5x1 F12-1 6x1 F12:2 6x1 F12:3 6x1 F124 6x1
tusi2 1izis 1o, 128 123

12/5 12/5 11/5

113 11/3 11/6

11/3 11/3 11/6

11/2 11/6 11/6

11/2 11/6 11/6

F12-5 6x1
S

F12-6 6x1

12345

11/2 11/3 11/6

11/6 11/6 11/6 11/6 11/6

T1/3 11/3 +11/2

F12-8 3x2

F12-9 3x2
1

12/3 11/3 +11/2

11/3 11/3+11/2

F12-10 3x2

T

12/3 11/3 +11/2

F12-11 3x2
1

F12-12 2x3
1

F12-13 2x3

F12-14 2x3

T1/3 +11/2 11/3

11/2 +12/3 11/3

T1/2 +11/3 11/3

3
2

T2 +11/3 113

F14-1 7x1
123456

F16-1 8x1
128

F16-2 8x1

F16-3 8x1
123

F16-4 8x1
12l

AN2Es

M7 417 117
USRI

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

F16-5 8x1
1234567

F16-6 4x2

F16-7 4x2

F16-8 4x2

F16-9

11/8 11/8 11/8 11/8

1172+ 11/2+ 11/4

TH2 14112

1178 11/8 11/8 T2+ 1172+ 1174 TM/2+ 4172+ 41/4
F16-10 4x2 F16-11 4x2 F16-12 4x2 F16-13 2x4 F18-1 o
1 2 1 2 3 1 2 3 i g 12345678

3

=, = . :

11/2 11/4+ 11/2

11/4 11/4 11/4+11/2

11/4 11/4 11/4 +11/2

11/2+11/2 11/4

11/9 11/9 11/9 11/9
11/9 11/9 11/9 11/9

Figure 7.11
.
Required when DescriptionType = FoldCatalog.

	FoldSheetIn ?

Deprecated in JDF 1.1
	XYPair
	Input sheet format. If the specified size does not match the size of the X and Y dimensions of the input Component, all coordinates of the folding procedure are scaled accordingly. The scaling factors in X and Y direction may differ.

Required when DescriptionType = FoldProc.

Implementation note: This attribute should always match the Size attribute of the input component.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be folded for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the Folding process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be glued. Possible values are:

Top ISSUE (Coordinate System WG): How relate to Figure above?
Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A above, unless used in a combined process, when the default is as defined in B above. The default.
ReferenceEdge must not be present if SheetLay is present.
ISSUE (Finishing, DigitalPrinting WGs): What edge does ReferenceEdge refer to when folding? Is seems like the reference edge should be before folding.

	SheetLay ?
	enumeration
	Lay of input media. Location of the guide that the physical media rests against. Possible values are:
Left – The default.

Right
SheetLay must not be present if ReferenceEdge is present.

	Fold *

New in JDF 1.1
Modified in JDF 1.2
	refelement
	This describes the folding operations in the sequence in which they should be carried out.

At least one Fold is required when DescriptionType = FoldProc. It is recommended to specify a set of subsequent Fold operations as multiple Fold elements in one Folding procedure, rather than specifying a Combined process that combines multiple Folding processes.

	FoldOperation *

Deprecated in JDF 1.1
	element
	This describes the folding operations in the sequence in which they should be carried out. Replaced by Fold * in JDF 1.1.

[image: image86.jpg]F4-1 2x1 F6-1 3x1 3x1 F6-3 3x1 F64 3x1
1 5 2 1 2 G
112 /3 11/3 TRl /4 1172 M/3 1173
F6-5 3x1 F8-1 4x1 F8-2 4x1 F8-3 4x1 F8-4 ax1
21 12 12 oIS 13 2
I
l U
i
1213 11/3 M2 11/4 112 41/4 T1/4 1174 11/4 1174 11/2 11/4
F8-5 4x1 F8-6 4x1 F8-7 22 F10-1 5x1 F10-2 5x1
12 3 2 3 1 1 1234 23 41
i 2 .
T1/4 11/4 11/4 13/4 11/4 11/4 112 41172 /5 1175 175 11/5 14/5 11/5 11/5 11/5
F10-3 5x1 F12-1 6x1 F12:2 6x1 F12:3 6x1 F124 6x1
tusi2 1izis 1o, 128 123

12/5 12/5 11/5

113 11/3 11/6

11/3 11/3 11/6

11/2 11/6 11/6

11/2 11/6 11/6

F12-5 6x1
S

F12-6 6x1

12345

11/2 11/3 11/6

11/6 11/6 11/6 11/6 11/6

T1/3 11/3 +11/2

F12-8 3x2

F12-9 3x2
1

12/3 11/3 +11/2

11/3 11/3+11/2

F12-10 3x2

T

12/3 11/3 +11/2

F12-11 3x2
1

F12-12 2x3
1

F12-13 2x3

F12-14 2x3

T1/3 +11/2 11/3

11/2 +12/3 11/3

T1/2 +11/3 11/3

3
2

T2 +11/3 113

F14-1 7x1
123456

F16-1 8x1
128

F16-2 8x1

F16-3 8x1
123

F16-4 8x1
12l

AN2Es

M7 417 117
USRI

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

11/2 11/4 11/8

F16-5 8x1
1234567

F16-6 4x2

F16-7 4x2

F16-8 4x2

F16-9

11/8 11/8 11/8 11/8

1172+ 11/2+ 11/4

TH2 14112

1178 11/8 11/8 T2+ 1172+ 1174 TM/2+ 4172+ 41/4
F16-10 4x2 F16-11 4x2 F16-12 4x2 F16-13 2x4 F18-1 o
1 2 1 2 3 1 2 3 i g 12345678

3

=, = . :

11/2 11/4+ 11/2

11/4 11/4 11/4+11/2

11/4 11/4 11/4 +11/2

11/2+11/2 11/4

11/9 11/9 11/9 11/9
11/9 11/9 11/9 11/9

Figure 7.11 Fold Catalog part 1

[image: image87.jpg]ox1 F183 ox1 F184 oxi F185 33 F186 33
‘i

341 1243 1 234 2 12
| 4 5
| 3 4
12/3 11/3 11/9 11/9 11/3 11/3 12/9 11/9 11/3 11/3 11/9 11/9 T3 11/3+11/3 1173 11/3 11/3+12/3 11/3
F18-7 33 F18-8 3x3 F20-1 5x2 F20-2 5x2 F24-1 6x2
1 2 1 2 1 32 1 3 4 ¥ 2 4
----- : - P n, L,
4 H
/3 11/3+ 11/3 11/3 /3 1113+ 1213 1173 12/5 125 1/5 1172 /5 14/5 11/5 11/5+ 1172 /3 11/3+ 1172+ 11/6
F24-2 6x2 F24-3 6x2 F24-4 6x2 F24-5 6x2 F24-6 6x2
124 Iols: i 123 12345
3 Ha —a e He
/3 11/3+ 1172+ 11/6 1113 14/3 11/6 +11/2 11/3 41/3 41/6 +11/2 /3 11/3 41/6+11/2 11/6 11/6 11/6 11/6 11/6
+ 1172
F24-7 6x2 F24-8 3x4 F24-9 3x4 F24-10 3x4 F28-1 7x2
1 3 4 1 2 2 1 3 2 1 56
| 4 4
2 3 3 =
T3+ 1112+ 11/3 11/6 /3 1413+ 1112 41/4 12/3 11/3+ 1112 41/4 /3 11/3+ 1112 41/4 M7 W7 107 107
7 417+ 172
F32-1 16x1 F322 8x2 F32-3 8x2 F324 4x4 F325 4x4
1 234 1 24 1 d 13
i i H-
i s 2
1112 11/4 11/8 11116 1112 L1/4+ 1172+ 11/8 1112 1174+ 1172+ 11/8 1112+ 1112+ T1/4+ 11/4 1112+ 1112+ L1/4+ 11/4
F32-6 4x4 F32-7 4x4 F32-8 4x4 F32-9 4x4 F36-1 92
s 12 3 12 14 1234
} 0 T o P . i
2 i —3 2 Hs
T2+ 1112+ 114+ 114 | 1174 1174 114+ 1112 11/4 1112 41/4+11/2 11/4 1112+ 1172 11/4+ 11/4 /3 41/3 11/9 11/9
+ 112
F36-2 F40-1 5x4 F48-1 6x4 F48-2 4x6 F64-1 8xd
1 LA 1 1 & B
T a,
3
2
/3 1113+ 1113 1173 115 14/5 11/5 11/5 /3 11/3+ 11/4 11/4 1114 11/4 11/4 =
+ 16 + T2 1114 M/4+11/6 + T3 113 11/6 AN e
+ 11/4 11/8
F64-2 8x4
, ., Legend: Example: F32-3 8x2
5
s — Foldup - F32-3: Signature with 32 pages
L Fold down - 8x2 : Split: 8 sheet parts lengthwise 2 sheet parts cross

1174 11/4 1174 - 1 1/2: Fold up with 1/2 of the open sheet format length

Finished format

+11/4 174 11/4+11/8 = folded sheet - 1 1/4: Fold d(_)wn ‘with 1/4 of the open sheet format length
) . - + : Fold direction change: 90
1,2,3... Folds in numeric - 1 1/2: Fold up with 1/2 of the open sheet format
order -+ : Fold direction change: 90°
L lay - 1 1/8: Fold down with 1/8 of the open sheet format length

green: open sheet length
red :open sheet width

Figure 7.12 Fold Catalog part 2
ISSUE: Need a real z-fold in the Catalog as F6-6 in which the “Finished format folded sheet” is equal to half of the paper and the other half is folded in half as follows:

[image: image88.wmf]

In the case where you want to perform a z fold that can be included in a book where you

c

an pull it out, specify FoldCatalog="F6

-

6" and ReferenceEdge="Right" to get the desired

z fold as follows:

 2 1

 1/2 1/4

Add a new value F6

-

6 to the FoldCatalog that uses the default (not present)

ReferenceEdge and will result as follows:

 1 2

 1/4 1/2

7.2.59 FontParams

This resource describes how fonts must be handled when converting PostScript files to PDF.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName

Input of processes:
PSToPDFConversion
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AlwaysEmbed ?
	NMTOKENS
	One or more names of fonts that are always to be embedded in the PDF file. Each name must be the PostScript language name of the font. An entry that occurs in both the AlwaysEmbed and NeverEmbed lists constitutes an error.

Default = an empty list.

	CannotEmbedFontPolicy ?
	enumeration
	Determines what occurs when a font cannot be embedded. Possible values are:

Error – Log an error and abort the process if any font can not be found or embedded.

Warning – Warn and continue if any font cannot be found or embedded. The default.

OK – Continue without warning or error if any font can not be found or embedded.

	EmbedAllFonts ?
	boolean
	If true, specifies that all fonts, except those in the NeverEmbed list, are to be embedded in the PDF file. Default = false

	MaxSubsetPct ?
	integer
	The maximum percentage of glyphs in a font that can be used before the entire font is embedded instead of a subset. This value is only used if SubsetFonts = true.

	NeverEmbed ?
	NMTOKENS
	One or more names of fonts that are never to be embedded in the PDF file. Each name must be the PostScript language name of the font. An entry that occurs in both the AlwaysEmbed and NeverEmbed lists constitutes an error.

	SubsetFonts?
	boolean
	If true, font subsetting is enabled. If false, it is not. Font subsetting embeds only those glyphs that are used, instead of the entire font. This reduces the size of a PDF file that contains embedded fonts. If font subsetting is enabled, the decision whether to embed the entire font or a subset is determined by number of glyphs in the font that are used, and the value of MaxSubsetPct.

Note: Embedded instances of multiple master fonts are always subsetted, regardless of the setting of SubsetFonts. The AlwaysEmbed and NeverEmbed fonts lists are restored to their default values between each job.

7.2.60 FontPolicy

This resource defines the policies that devices must follow when font errors occur while PDL files are being processed. When fonts are referenced by PDL files but are not provided, devices may provide one of the following two fallback behaviors:

1. The device may provide a standard default font which is substituted whenever a font cannot be found.

2. The device may provide an emulation of the missing font.

If neither fallback behavior is requested, i.e., both UseDefaultFont and UseFontEmulation are false, then the job will fail if a referenced font is not provided. FontPolicy allows jobs to specify whether or not either of these fallback behaviors should be employed when missing fonts occur.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
IDPrinting Interpreting, SoftProofing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	PreferredFont
	NMTOKEN
	The name of a font to be used as the default font for this job. It is not an error if the device cannot use the specified font as its default font.

	UseDefaultFont
	boolean
	If true, the device must resort to a default font if a font cannot be found. This is the normal behavior of the PostScript interpreter, which defaults to courier when a font cannot be found.

	UseFontEmulation
	boolean
	If true, the device must emulate a required font if a font cannot be found.

7.2.61 FormatConversionParams

New in JDF 1.1

This resource defines the parameters needed for generic FormatConversion of digital files.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag
Input of processes:
FormatConversion
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	FileSpec ?
	refelement
	The format of the original file is specified in a FileSpec with ResourceUsage = InputFormat. No URL should be specified, because the list of files is given by the input RunList of the FormatConversion process.

	FileSpec ?
	refelement
	The format of the original file is specified in a FileSpec with ResourceUsage = OutputFormat. No URL should be specified, because the list of files is given by the output RunList of the FormatConversion process.

7.2.62 GatheringParams

This resource contains the attributes of the Gathering process.

[image: image89.wmf]Direction of

travel

Gathering channel

Target or operation

coordinate system

Source or component

coordinate system

X

Y

X

Y

Figure 7.13 Coordinate system used for gathering

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Input of processes:
Gathering
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Disjointing ?
	element
	Description of the separation properties between individual components on a gathered pile. Default = no physical separation.

7.2.63 GlueApplication

New in JDF 1.1

This resource specifies glue application in hard and soft cover book production.

Resource Properties

Resource class:

Parameter

Resource referenced by:
CoverApplicationParams, SpineTapingParams
Input of processes:
-
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	GluingTechnique
	enumeration
	Type or technique of gluing application. Possible values are:

SpineGluing

SideGluingFront

SideGluingBack

	GlueLine
	refelement
	Structure of the glue line.

[image: image90.wmf]Block

Side gluing on

back side

Side gluing on

front side

Spine gluing

Front side

Back side

X

X

X

Y

Y

Y

Start

position

Glue

line

Figure 7.14 Parameters and coordinate system for glue application

7.2.64 GluingParams

New in JDF 1.1
Modified in JDF 1.2
[Added ReferenceEdge attribute.]
GluingParams define the parameters applying a generic line of glue to a component.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Gluing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Glue *
	element
	Definition of one or more Glue line applications.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be glued for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the Gluing process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be glued. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

Properties of the Glue Element

The Glue element describes how to apply a line of glue.
	Name
	Data Type
	Description

	WorkingDirection
	enumeration
	Direction from which the tool is working. Possible values are:

Top – from above

Bottom – from below

	GlueApplication
	element
	Description of the glue application.

7.2.65 GlueLine
This resource provides the information to determine where and how to apply glue.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Case​Making​Params; EndSheetGluingParams, FoldingParams, CoverApplicationParams, InsertingParams, SpineTapingParams, ThreadSewingParams
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AreaGlue ?

New in JDF 1.1
	boolean
	Specifies that this GlueLine should cover the complete width of the Component it is applied to. Default=false.

	GlueBrand ?
	string
	Glue brand. Default = empty string, i.e., system specified

	GlueLineWidth ?
	double
	Width of the glue line. Default = equipment-specific setting

Note: In extreme cases the glue line could cover the input component over the hole width.

	GluingPattern ?
	XYPair
	Glue line pattern defined by the length of a glue line segment (X element) and glue line gap (Y element). A solid line is expressed by the pattern (1 0), the default.

	GlueType ?
	enumeration
	Glue type. Possible values are:

ColdGlue – Any type of glue that needs no heat treatment.
Hotmelt – Hotmelt EVA (Ethyl-Vinyl-Acetat-Copolymere)
PUR – Polyurethane

Default = equipment specific setting

	MeltingTemperature ?
	integer
	Required temperature for melting the glue (in degrees centigrade).

Used only when GlueType = Hotmelt or GlueType = PUR.

Default = equipment-specific setting

	StartPosition
	XYPair
	Start position of glue line. The start position is given in the coordinate system of the mother sheet. Default = (0 0)

	WorkingPath
	XYPair
	Relative working path of the gluing tool. Default = equipment-specific setting.

7.2.66 HeadBand​Application​Params

New in JDF 1.1
This resource specifies how to apply headbands in hard cover book production.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-

Input of processes:
HeadBandApplication
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BottomBrand ?
	string
	Bottom head band brand. If not specified, defaults to TopBrand.

	BottomColor ?
	NamedColor
	Color of the bottom head band. If not specified, defaults to TopColor.

	BottomLength ?
	double
	Length of the carrier material of the bottom head band along binding edge. If not specified, both head bands are on one carrier.

	TopBrand ?
	string
	Top head band brand. Default =system specified.

	TopColor ?
	NamedColor
	Color of the top head band. Default =system specified.

	TopLength ?
	double
	Length of carrier material of the top head band along binding edge. If not specified, both head bands are on one carrier which has the length of the book block.

	StripMaterial ?
	enumeration
	Strip material. Possible values are:

Calico

Cardboard

CrepePaper

Gauze

Paper

PaperlinedMules

Tape

Default =system specified.

	Width ?
	number
	Width of the head bands and carrier.

	GlueLine *
	refelement
	The carrier may be applied to the bookblock with glue. The coordinate system for the GlueLine is defined in the Section 7.2.53

7.2.67 Hole

The Hole element describes an individual hole.

Resource Properties

Resource class:
Parameter
Resource referenced by:
HoleLine, HoleMakingIntent, HoleMakingParams
Example Partition:
-

Input of processes:
-
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Center
	XYPair
	Position of the center of the hole relative to the Component coordinate system. For more information, see Section 6.5.45.2.

	Extent
	XYPair
	Size (Bounding Box) of the hole in points. If Shape is Round, only the first entry of Extent is evaluated and defines the hole diameter.

	Shape

Modified in JDF 1.1
	enumeration
	Shape of the hole. Possible values are:

Elliptic

Round
Rectangular

7.2.68 HoleLine

New in JDF 1.1
Modified in JDF 1.2
Line Hole Punching generates a series of holes with identical distance (pitch) running parallel to the edge of a web, which is mainly used to transport paper through continuous-feed printers and finishing devices (form processing). The final product typically is a web with two lines of holes, one at each edge of the web. The parameters for one line of Holes are specified in the HoleLine element. The distance between holes within each line of holes is identical (constant pitch).

Resource Properties

Resource class:
Parameter

Resource referenced by:
HoleMakingIntent, HoleMakingParams
Example Partition:
-

Input of processes:
-
Output of processes:
-

However, sometimes Line Hole Punching is performed for multiple webs before dividing the web after the HoleMaking process as illustrated below:

The parameters of the HoleLine element are:

Resource Structure

	Name
	Data Type
	Description

	Pitch
	number
	Center-hole to center-hole distance within a line of holes.

	Hole
Modified in JDF 1.2
	refelement
	Size and position of the first hole in the HoleLine.

7.2.69 HoleMakingParams

Modified in JDF 1.2
[Changed HoleType attribute to be optional. Added SystemSpecified as a value for HoleType.]
This resource specifies where to make a hole of what shape in components. This information is used by the HoleMaking process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
SheetName

Input of processes:
HoleMaking,
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Center ?

Modified in JDF 1.1
	XYPair
	Position of the center of the hole pattern relative to the Component coordinate system if HoleType is not equal Explicit. If not specified, it defaults to the value implied by HoleType.

	CenterReference ?

New in JDF 1.1
	enumeration
	Defines the reference coordinate system for Center. One of:

TrailingEdge – Physical coordinate system of the component. The default.

RegistrationMark – The center is relative to a registration mark.

	Extent ?

	XYPair
	Size (Bounding Box) of the hole in pt if HoleType is not equal Explicit. If Shape is Round, only the first entry of Extent is evaluated and defines the hole diameter. If not specified, it defaults to the value implied by HoleType.

	HoleReferenceEdge ?

New in JDF 1.1
	enumeration
	The edge of the media relative to where the holes should be punched. Use with HoleType. Possible values are:

Left

Right

Top

Bottom
Pattern – Specifies that the reference edge implied by the value of HoleType in Appendix L JDF/CIP4 Hole Pattern Catalog is used. The default if HoleType is Explicit, otherwise Left.

	HoleType ?
Modified in JDF 1.2
	enumerations
	Predefined hole pattern. Multiple hole patterns are allowed, e.g., 3-hole ring binding and 4-hole ring binding holes on one piece of media. For details of the hole types, refer to Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values are:

	
	
	R2-generic

R2m-DIN

R2m-ISO

R2i-US-a

R2i-US-b

R3-generic

R3i-US

R4-generic

R4m-DIN-A4

R4m-DIN-A5

R4m-swedish

R4i-US

R5-generic

R5i-US-a

R5i-US-b

R5i-US-c

R6-generic

R6m-4h2s
	R6m-DIN-A5

R7-generic

R7i-US-a

R7i-US-b

R7i-US-c

R11m-7h4s

P12m-rect-0t

P16_9i-rect-0t

W2_1i-round-0t

W2_1i-square-0t

W3_1i-square-0t

C9.5m-round-0t

Explicit – Holes are defined in an array of Hole or HoleLine elements.
SystemSpecified - This value should be used with care and only if it is known that the system will perform the desired result. The default. New in JDF 1.2

	
	
	The following values are deprecated from JDF 1.0

2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5

	Shape ?

Modified in JDF 1.1
	enumeration
	Shape of the holes if HoleType is not equal Explicit.. Possible values are:
Elliptic

Round
Rectangular

If not specified, it defaults to the value implied by HoleType.

	Hole *
	element
	Description of individual Hole elements.

	HoleLine *

New in JDF 1.1
	element
	Description of HoleLine elements.

	RegisterMark ?

New in JDF 1.1
	refelement
	Reference to the registration mark that defines the coordinate system.

7.2.70 IdentificationField
This resource contains information about a mark on a document, such as a bar code, used for OCR-based verification purposes or document separation.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Disjointing, Sheet, Surface, any physical resource
Example Partition:
-
Input of processes:
Verification, Inserting, Collecting, Gathering,
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BoundingBox ?
	rectangle
	Box that provides the boundaries in the coordinate system of the mark that indicates where the component is to be placed. If no BoundingBox is defined, the complete visible surface must be scanned for an appropriate bar code.

	Encoding
	enumeration
	Encoding of the information. Possible values are:

ASCII – Plain-text font.

BarCode1D – One-dimensional bar code.

BarCode2D – Two-dimensional bar code.

	EncodingDetails
	NMTOKEN
	Details about the encoding type. An example is the bar code scheme. Possible values are:

Code39

Interleave25

Plessey

EAN

	Format ?
	string
	Regular expression
 that defines the expected format of the expression, such as the number of digits, alphanumeric, or numeric. Note that this field may also be used to define constant fields, such as the end of document markers or packaging labels.

Default is that any expression is valid (Format = “*”).

	Orientation ?
	matrix
	Orientation of the contents within the field. The coordinate system is defined in the system of the sheet or component where the IdentificationField resides.
Default = identity matrix.

	Position ?
	enumeration
	Position with respect to the instance document or physical resource to which the IdentificationField resource refers. Possible values are:

Header – Sheet before the document.

Trailer – Sheet after the document.

Page – A page of the document.

Top – The top of the resource.
Bottom – The bottom of the resource.
Left – The left side of the resource.
Right – The right side of the resource.
Front – The front side of the resource.
Back – The back side of the resource.
Any: the default.

	Page ?
	integer
	If Position = Page, this refers to the page where the IdentificationField can be found. Negative values denote an offset relative to the last page in a stack of pages.

	Purpose ?
	enumeration
	Purpose defines the usage of the field. Possible values are:

Label – The default, used to mark a product or component.

Separation – used to separate documents.

Verification – used for verification of documents.

	Value ?

New in JDF 1.1
	string
	Fixed value of the IdentificationField, e.g., on a label.

7.2.71 IDPrintingParams

Deprecated in JDF 1.1
This resource contains the parameters needed to control the IDPrinting process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
DocIndex, DocRunIndex, DocSheetIndex, PartVersion, Run, RunIndex, RunTag, SheetIndex, SheetName, Side
Input of processes:
IDPrinting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AttributesNaturalLang ?
	language
	Language selected for communicating attributes.

Default = US English

	IDPAttributeFidelity ?
	boolean
	Indicates whether or not the device must reject the job if there are attribute values or elements that it does not support.

Default = false

	IPPJobPriority ?
	integer
	The scheduling priority for the job where 100 is the highest and 1 is the lowest. Amongst the jobs that can be printed, all higher priority jobs must be printed before any lower priority ones.

Default = 50

	IPPVersion ?
	XYPair
	A pair of numbers indicating the version of the IPP protocol to use when communicating to IPP devices. The X value is the major version number.

Default = system specified

	OutputBin ?
	NMTOKEN
	Specifies the bin to which the finished document should be output. Possible values are:

Top – The bin that, when facing the device, can best be identified as "top”.

Middle – The bin that, when facing the device, can best be identified as “middle”.

Bottom – The bin that, when facing the device, can best be identified as “bottom”.

Side – The bin that, when facing the device, can best be identified as “side”.

Left – The bin that, when facing the device, can best be identified as “left”.

Right – The bin that, when facing the device, can best be identified as “right”.

Center – The bin that, when facing the device, can best be identified as “center”.

Rear – The bin that, when facing the device, can best be identified as “rear”.

FaceUp – The bin that can best be identified as “face up” with respect to the device.

FaceDown –The bin that can best be identified as “face down” with respect to the device.

FitMedia – Requests the device to select a bin based on the size of the media.
LargeCapacity – The bin that can best be identified as the “large capacity” bin (in terms of the number of sheets) with respect to the device.

Mailbox-N – The job will be output to the bin that is best identified as “Mailbox-1”, “Mailbox-2”…etc.

Stacker-N –The job will be output to the bin that is best identified as “Stacker-1’, ‘Stacker-2” …etc.

Tray-N – The job will be output to the tray that is best identified as “Tray-1”, “Tray-2” … etc.

SystemSpecified - The job will be output to the tray that is best identified as “SystemSpecified”

Default = SystemSpecified

	PageDelivery ?
	enumeration
	Indicates how pages are to be delivered to the output bin or finisher. Possible values are:

SameOrderFaceUp – Order as defined by the RunList, with the “front” sides of the media up.

SameOrderFaceDown – Order as defined by the RunList, with the “front” sides of the media up.

ReverseOrderFaceUp – Order reversed, as defined by the RunList, with the “front” sides of the media up.

ReverseOrderFaceDown – Order reversed, as defined by the RunList, with the “front” sides of the media down.

SystemSpecified – Order and face-up/face-down as defined by the system.

Default = SystemSpecified

	PrintQuality ?
	enumeration
	Indicates how pages are to be delivered to the output bin or finisher. Possible values are:

High – Highest quality available on the printer.
Normal – The default quality provided by the printer.

Draft – Lowest quality available on the printer

SystemSpecified – System specified default print quality.
Default = SystemSpecified

	SheetCollate ?
	boolean
	Determines whether the sequencing of the pages in the output of the job.

If true, pages for each copy of the document are sequenced together, followed by the pages for the next copy.

If false, all copies of the first page are sequenced, followed by the second and subsequent pages.

SheetCollate describes the order of the final pages, but does not prescribe the order in which they are produced.

Default = system specified.

	Cover *
	element
	0, 1 or 2 Cover elements.

Default = no cover

	IDPFinishing ?
	refelement
	This element provides the details of how media for each instance document should be finished.

Default = system specified

	IDPLayout ?
	refelement
	This element provides the details of how page contents will be imaged onto media.

Default = system specified

	JobSheet *
	element
	A set of sheets which must be produced with the job.

Default = no job sheets produced

	MediaIntent ?
	refelement
	A MediaIntent element. This element is ignored if a MediaSource resource is present and can be honored for the IDPrinting process. If MediaSource is absent or cannot be honored, this element describes the intended media for the job to allow the device to select from among the available media.

	MediaSource?
	refelement
	Describes the source and physical orientation of the media to be used.

Structure of the Cover Subelement

Deprecated in JDF 1.1
This element describes the cover requested for the job. Covers may be applied to the whole job, or to each instance document in the job. Note that front and back covers may be specified.

	Name
	Data Type
	Description

	BackSide ?
	boolean
	The next page from the RunList is imaged onto the back of this cover. This would be the inside of a Front cover and outside of a Back cover. Default = false

	CoverType ?
	enumeration
	Specifies whether this Cover element specifies the front or back cover.

Front – The front cover.

Back – The back cover.

Default = Front

	FrontSide ?
	boolean
	The next page from the RunList is imaged onto the front of this cover. This would be the outside of a Front cover and inside of a Back cover. Default = false

	IDPFinishing?
	refelement
	An IDPFinishing element that describes the finishing options for the cover.

	IDPLayout ?
	element
	This element provides the details of how page contents will be imaged onto the cover.

	MediaIntent ?
	refelement
	A MediaIntent element. This element describes the media to be used for the job. This element is ignored if a MediaSource resource is present and can be honored for the IDPrinting process.

If MediaSource is absent or cannot be honored, this element describes the intended media for the job to allow the device to select from among the available media.

	MediaSource?
	refelement
	Describes the source and physical orientation of the media to be used.

Properties of the IDPFinishing Subelement

Deprecated in JDF 1.1
IDPFinishing elements describe finishing operations that should be applied to sets of pages that are output by the IDPrinting process. The finishings are applied to the entire job when there are no instance documents. Otherwise, each instance document is finished separately. Operation-specific subelements may also be present when a device provides controls for a finishing operation. Additional subelements are expected to be defined over time. Also, more detail will be added to the currently defined elements.

	Name
	Data Type
	Description

	Finishings ?
	IntegerList
	A set of finishing operations to apply to the job. The operations are encoded as an enumeration:

Possible values are:

3 – (none) Perform no finishing

4 – (staple) Bind the document(s) with one or more staples. The exact number and placement of the staples is site-defined.

5 – (punch) This value indicates that holes are required in the finished document. The exact number and placement of the holes is site-defined The punch specification may be satisfied (in a site- and implementation-specific manner) either by drilling/punching, or by substituting predrilled media.

6 – (cover) This value is specified when it is desired to select a non-printed (or preprinted) cover for the document. This does not supplant the specification of a printed cover (on cover stock medium) by the document itself.

7 – (bind) This value indicates that a binding is to be applied to the document; the type and placement of the binding is site-defined.

8 – (saddle-stitch) Bind the document(s) with one or more staples (wire stitches) along the middle fold. The exact number and placement of the staples and the middle fold is implementation and/or site-defined.

9 – (edge-stitch) Bind the document(s) with one or more staples (wire stitches) along one edge. The exact number and placement of the staples is implementation and/or site-defined.

10 – (fold) Fold the document(s) with one or more folds. The exact number and orientations of the folds is implementation and/or site-defined.

11 – (trim) Trim the document(s) on one or more edges. The exact number of edges and the amount to be trimmed is implementation and/or site-defined.

12 – (bale) Bale the document(s). The type of baling is implementation and/or site-defined.

13 – (booklet-maker) Deliver the document(s) to the signature booklet maker. This value is a short cut for specifying a job that is to be folded, trimmed and then saddle-stitched.

14 – (jog-offset) Shift each copy of an output document from the previous copy by a small amount which is device dependent. This value has no effect on the "job-sheet." This value should not have an effect if each copy of the job consists of one sheet.

50 – (bind-left) Bind the document(s) along the left edge. The type of the binding is site-defined.

51 – (bind-top) Bind the document(s) along the top edge. The type of the binding is site-defined.

52 – (bind-right) Bind the document(s) along the right edge. The type of the binding is site-defined.

53 – (bind-bottom) Bind the document(s) along the bottom edge. The type of the binding is site-defined.

	IDPFolding ?
	refelement
	Provides details of how to fold the set of pages (or document). When this element is present, Finishings is ignored.

	IDPHoleMaking ?
	refelement
	Provides details of how to punch holes in the set of pages (or document). When this element is present, Finishings is ignored.

	IDPStitching ?
	refelement
	Provides details of how to stitch the set of pages (or document). When this element is present, Finishings is ignored.

	IDPTrimming ?
	refelement
	Provides details of how to trim the set of pages (or document). When this element is present, Finishings is ignored.

Structure of IDPFolding Subelement

Deprecated in JDF 1.1
This element describes the folding requested for a set of pages in the document.

	Name
	Data Type
	Description

	FoldingParams ?
	Refelement
	Describes the details of how to fold the media.

Structure of IDPHoleMaking Subelement

Deprecated in JDF 1.1
This element describes the hole making requested for a set of pages in the document.

	Name
	Data Type
	Description

	HoleMakingParams ?
	refelement
	Describes the details of the holes to be punched into the Media.

Structure of the IDPLayout Subelement

Deprecated in JDF 1.1
	Name
	Data Type
	Description

	Border ?
	number
	A real number that indicates the width of a border, in points, which will be drawn around the page images on the media.

Default = 0, i.e., no border will be drawn.

	FinishedPageOrientation ?
	enumeration
	Indicates the desired orientation of the finished page. This value is used with PresentationDirection to determine how pages will be imaged onto the media. Possible values are:

Portrait – The short edges of the media are the top and bottom.

Landscape – The long edges of the media are the top and bottom.

Default = Portrait.

	ForceFrontSide ?
	NumberRangeList
	A set of numbers which identify a set of pages in the RunList that should always be imaged on the front side of a piece of media.

	ImageShift ?
	element
	Element which describes how page images should be placed onto the media. When NumberUp is present and is not “1,1”, NumberUp is applied before the ImageShift, and all contents for each surface are shifted the same amount.

	NumberUp ?
	XYPair
	The number of pages to impose onto a single side of media. The way in which the pages are to be imaged onto the media is determined by the values of FinishedPageOrientation and PresentationDirection. FinishedPageOrientation indicates how the page will be oriented, and PresentationDirection indicates how page images will be distributed, given that orientation.

	PresentationDirection ?
	enumeration
	Indicates the order in which the requested NumberUp pages will be imaged onto the media. The value of FinishedPageOrientation is used to define “top”, “left”, “right” and “bottom” for the media. Possible values are:

 ToBottomToRight – Pages are imaged in successive columns, from left to right, starting at the top of each column.

 ToBottomToLeft – Pages are imaged in successive columns, from right to left, starting at the top of each column.

ToTopToRight – Pages are imaged in successive columns, from left to right, starting at the bottom of each column.

ToTopToLeft – Pages are imaged in successive columns, from right to left, starting at the bottom of each column.

ToRightToBottom – Pages are imaged in successive rows, from top to bottom, starting at the left of each row.

ToRightToTop – Pages are imaged in successive rows, from bottom to top, starting at the left of each row.

ToLeftToBottom – Pages are imaged in successive rows, from top to bottom, starting at the right of each row.

ToLeftToTop – Pages are imaged in successive rows, from bottom to top, starting at the right of each row.

Default = SystemSpecified

	Rotate ?
	number
	A number of degrees which the page contents are to be rotated prior to being imaged onto page contents. A positive value is taken to mean an counter-clockwise rotation. The page contents will be scaled to fit the printable area of the media after the rotation.

Note: Text will be reflowed in cases where the PDL for the page allows reflow by the device.

Default = 0

	Sides ?
	enumeration
	Indicates how pages should be imposed onto sides of the medium. Possible values are:

OneSided – Page contents will only be imaged on one side of the media. The default.

TwoSidedLongEdge – Impose pages upon the front and back sides of media sheets so that the orientation of the pages on each side is appropriate for binding along the long edge. Equivalent to “work-and-turn”.

TwoSidedShortEdge – Impose pages upon the front and back sides of media sheets so that the orientation of the pages on each side is appropriate for binding along the short edge. Equivalent to “work-and-tumble”.

Structure of IDPStitching Subelement

Deprecated in JDF 1.1
This element describes the stitching requested for a set of pages in the document.

	Name
	Data Type
	Description

	StitchingPosition ?
	enumeration
	Specifies the location for stitching. All locations are interpreted as if the document were a portrait document. Ignored if StitchingParams is present. Possible values are:

None – The document is not to be stitched.

TopLeft – Bind the document with one or more staples in the top left corner.

BottomLeft – Bind the document with one or more staples in the Bottom left corner.

TopRight – Bind the document with one or more staples in the top right corner.
BottomRight – Bind the document with one or more staples in the bottom right corner.

LeftEdge – Bind the document with one or more staples across the left edge.

TopEdge – Bind the document with one or more staples across the top edge.

RightEdge – Bind the document with one or more staples across the right edge.

BottomEdge – Bind the document with one or more staples across the bottom edge.

DualLeftEdge – Bind the document with two staples across the left edge.

DualTopEdge – Bind the document with two staples across the top edge.

DualRightEdge – Bind the document with two staples across the right edge.

DualBottomEdge – Bind the document with two staples across the bottom edge.

	StitchingReferenceEdge ?
	enumeration
	The edge of the output media relative to which the stapling or stitching must be applied. If StitchingParams is present, StitchingReferenceEdge defines the BindingEdge. Possible values are:

Bottom – The bottom edge coincides with the x-axis of the coordinate system.

Top – The top edge is opposite and parallel to the bottom edge.

Left – The left edge coincides with the y-axis of the coordinate system.

Right – The right edge is opposite and parallel to the left edge.

	Stitching​Params ?
	refelement
	A StitchingParams element which provides detailed control of the stitching. StitchingReferenceEdge must be present if StitchingParams is provided.

Structure of IDPTrimming Subelement

Deprecated in JDF 1.1
This element describes the trimming requested for a set of pages in the document.

	Name
	Data Type
	Description

	TrimmingParams ?
	Refelement
	Describes the details of how to trim the media.

Structure of the ImageShift Subelement

Deprecated in JDF 1.1
ImageShift elements describe how page contents will be imaged onto media. All attributes refer to positioning along the “X” or “Y” axis. The “X” dimension is the first number of the Media Dimension attribute; “Y” is the second number.

	Name
	Data Type
	Description

	PositionX ?
	enumeration
	Indicates how page images should be positioned horizontally on the surface. Shifts are applied after positioning. Values are:

Center – Center the page images horizontally on the surface without regard to limitations of the printable area.

Left – Position the left edge of the page images so they is coincident with the left edge of the printable area of the surface.

None – Place the page images wherever the print data specifies (the default).

Right – Position the right edge of the page images so they is coincident with the right edge of the printable area of the surface.

	PositionY ?
	enumeration
	Indicates how page images should be positioned vertically on the surface. Shifts are applied after positioning. Values are:

Bottom – Position the bottom edge of the page images so they is coincident with the bottom edge of the printable area of the surface.

Center – Center the page images horizontally on the surface without regard to limitations of the printable area.

None – Place the page images wherever the print data specifies (the default).

Top – Position the top edge of the page images so they is coincident with the top edge of the printable area of the surface.

	ShiftX ?
	integer
	The image is to be shifted along the x axis on both sides of the media.

	ShiftY ?
	integer
	The image is to be shifted along the y axis on both sides of the media.

	ShiftXSide1 ?
	integer
	The image is to be shifted along the x axis on the front side of the media.

	ShiftXSide2 ?
	integer
	The image is to be shifted along the x axis on the back side of the media.

	ShiftYSide1 ?
	integer
	The image is to be shifted along the y axis on the front side of the media.

	ShiftYSide2 ?
	integer
	The image is to be shifted along the y axis on the back side of the media.

Structure of the JobSheet Subelement

Deprecated in JDF 1.1

This element describes a job sheet which may be produced along with the job. Job sheets include separators, sheets, and error sheets. The information provided on the sheet depends on the type of sheet. In addition, any sheet type may include an optional message as a comment subelement for the sheet element. Such a message comment must have a Name attribute with the value ‘SheetMessage’.

	Name
	Data Type
	Description

	SheetFormat ?
	NMTOKEN
	Identifies the format of the JobSheet. The default is ‘Standard’, but site-specific values may be defined.

	SheetOccurrence
	enumeration
	Indicates when the sheet is to be produced and inserted into the set of output pages. Possible values are:

Always – Valid for ErrorSheet or AccountingSheet. The sheet is always produced at the end of the job.

End – Valid for JobSheet or SeparatorSheet. The sheet is produced at the end of the job (for JobSheet) or at the end of each copy of each instance document (for SeparatorSheet).

OnError – Valid for ErrorSheet. The sheet is produced at the end of the job when an error or warning occurs.

Slip – Valid for SeparatorSheet. The sheet is produced between each copy of each instance document.

Start – Valid for JobSheet or SeparatorSheet. The sheet is produced at the start of the job (for JobSheet) or at the start of each copy of each instance document (for SeparatorSheet).

Both – Valid for JobSheet or SeparatorSheet. The sheet is produced at the beginning and end of the job (for JobSheets) or at the beginning and end of each copy of each instance document (for SeparatorSheets).

None – Valid for any SheetType.

	SheetType
	enumeration
	Identifies the type of sheet. Possible values are:

AccountingSheet – A sheet that reports accounting information for the job.

ErrorSheet – A sheet that reports errors for the job.

JobSheet – A sheet that delimits the job.

SeparatorSheet – A sheet that delimits one copy (set) of the job.

	IDPFinishing ?

	refelement
	An IDPFinishing element that describes the finishing options for the job sheet.

	IDPLayout ?

	element
	This element provides the details of how page contents will be imaged onto the job sheet.

	MediaIntent ?

	refelement
	A MediaIntent element. This element describes the media to be used for the job sheets. This element is ignored if a MediaSource resource is present and can be honored. If MediaSource is absent or cannot be honored, this element describes the intended media for the job sheets to allow the device to select from among the available media.

	MediaSource?
	refelement
	Describes the source and physical orientation of the media to be used.

Overriding IDPrintingParams using Partitioning

IDPrintingParams may be overridden using partitioning mechanisms as described in 3.9.2 Description of Partitionable Resources. Overrides may apply to a set of instance documents, set of copies of instance documents, or to a set of pages, output surfaces, sheets of media in a personalized printing job, or header or trailer insert sheets added by a RunList. Note: If more than one override refers to the same content, the lowest level override takes precedence. The following list defines partitioning precedence, from lowest to highest, i.e., the lower entries in the list take precedence:

Job level partitioning (lowest priority):

PartVersion, Run, SheetName, Side, RunTag
Page level partitioning:

RunIndex

SheetIndex

Instance document level partitioning (highest priority):

DocCopies

DocIndex

DocSheetIndex

DocRunIndex

Note: It is strongly discouraged to mix page level partitions and instance document level partitions. Cover elements in IDPrintingParams are counted when calculating DocSheetIndex or DocRunIndex.

Example of a partitioned IDPrinting Node

The following example shows how partitioning can be used to describe a fairly complex example. Three color models (ColorantControl partitions) are applied to a set of sheets using the DocSheetIndex key;

1.) DeviceN: DocSheetIndex = “0” defines the cover;

2.) DeviceCMYK: DocSheetIndex = “1” defines the first sheet (non cover);

3.) DeviceGray: DocSheetIndex = “2~-1” defines all other sheets;

The cover is selected from a different input tray using the Location key. The same key is used to describe the Media in each tray.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="HDM20010402140111" Type="IDPrinting" JobID="HDM20010402140111" Status="Waiting" Version="1.0">

 <ResourcePool>

 <Media ID="Link0003" Class="Consumable" Locked="false" Status="Available" Dimension="700 900" MediaType="Paper" PartIDKeys="Location">

 <Media Weight="90" Location="Tray 1"/>

 <Media Weight="120" Location="Tray 2"/>

 </Media>

 <RunList ID="Link0004" Class="Parameter" Locked="false" Status="Available" PartIDKeys="Run">

 <RunList Run="Run0005" Pages="0">

 <LayoutElement>

 <FileSpec URL="Cover.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Run="Run0006" Pages="0~7">

 <LayoutElement>

 <FileSpec URL="File2.pdf"/>

 </LayoutElement>

 </RunList>

 </RunList>

 <IDPrintingParams ID="Link0008" Class="Parameter" rRefs="Link0003" Locked="false" Status="Available">

 <IDPLayout NumberUp="2 2"/>

 <MediaSource MediaLocation="Tray 1">

 <MediaRef rRef="Link0003"/>

 </MediaSource>

 <Cover CoverType="Front" FrontSide="true">

 <IDPLayout NumberUp="1 1"/>

 <MediaSource MediaLocation="Tray 2">

 <MediaRef rRef="Link0003"/>

 </MediaSource>

 </Cover>

 </IDPrintingParams>

 <ColorantControl ID="Link0009" Class="Parameter" Locked="false" Status="Available" PartIDKeys="DocSheetIndex">

 <ColorantControl DocSheetIndex="0" ProcessColorModel="DeviceN"/>

 <ColorantControl DocSheetIndex="1" ProcessColorModel="DeviceCMYK"/>

 <ColorantControl DocSheetIndex="2~-1" ProcessColorModel="DeviceGray"/>

 </ColorantControl>

 </ResourcePool>

 <ResourceLinkPool>

 <MediaLink rRef="Link0003" Usage="Input"/>

 <RunListLink rRef="Link0004" Usage="Input"/>

 <IDPrintingParamsLink rRef="Link0008" Usage="Input"/>

 <ColorantControlLink rRef="Link0009" Usage="Input"/>

 </ResourceLinkPool>

</JDF>

7.2.72 Image​Compression​Params

Clarified in JDF 1.2
[added 3 clarifications to ImageType attribute]
This resource provides information describing how images are to be compressed in PDF files.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Sheet
Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
ImageReplacement, Preflight
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ImageCompression *
	element
	Specifies how images are to be compressed.

Structure of ImageCompression Subelement

	Name
	Data Type
	Description

	AntiAliasImages ?
	boolean
	If true, anti-aliasing is permitted on images. If false, anti-aliasing is not permitted.

Anti-aliasing increases the number of bits per component in downsampled images to preserve some of the information that is otherwise lost by downsampling. Anti-aliasing is only performed if the image is actually downsampled and if ImageDepth has a value greater than the number of bits per color component in the input image.

Default = false

	AutoFilterImages ?

Modified in JDF1.1A
	boolean
	Used only if EncodeImages is true. This attribute is not used if ImageType = monochrome.

If true, the DCTEncode filter is applied to photos and the FlateEncode filter is applied to screen shots. If false, the ImageFilter compression method is applied to all images. This parameter is ignored for monochrome images.

Default = true

	ConvertImagesToIndexed ?
	boolean
	If true, the application converts images that use fewer than 257 colors to an indexed colorspace for compactness. This attribute is used only when ImageType = color.

	DCTQuality ?
	number
	A value between 0 and 1 that indicates “how much” the process should compress images when using a DCTEncode filter. 0.0 means “do as loss-less compression as possible.” 1.0 means “do the maximum compression possible.” Default = 0

	DownsampleImages ?

Modified in JDF1.1A
	boolean
	If true, sampled color images are downsampled using the resolution specified by ImageResolution. If false, downsampling is not carried out and the image resolution in the PDF file is the same as that in the source file. Defaults = false

	EncodeColorImages ?

Deprecated in JDF 1.1
	boolean
	If true, color images are encoded using the compression filter specified by the value of the ImageFilter key. If false, no compression filters are applied to color sampled images. Default = false

	EncodeImages ?

New in JDF 1.1

Modified in JDF1.1A
	boolean
	If true, images are encoded using the compression filter specified by the value of the ImageFilter key. If false, no compression filters are applied to sampled images. Default = false

	ImageDepth ?
	integer
	Specifies the number of bits per component in the downsampled image when DownsampleImages = true. Default = -1, which forces the downsampled image to have the same number of bits per sample as the original image.

	ImageDownsampleThreshold ?
	number
	Sets the image downsample threshold for images. This is the ratio of image resolution to output resolution above which downsampling may be performed. Allowable values must be between 1.0 through 10.0, inclusive. If the threshold is set out of range, the value reverts to a default of 2.0. The following short examples provide a hypothetical configuration:

To use ImageDownsampleThreshold, set the following attributes to the values indicated:

ImageResolution = 72

ImageDownsampleThreshold = 1.5

The input image would not be downsampled unless it has a resolution greater than trunc ((72 * 1.5) + .5) = 108dpi

	ImageDownsampleType ?
	enumeration
	Downsampling algorithm for images. Possible values are:

Average – The program averages groups of samples to get the new downsampled value.

Bicubic – The program uses bicubic interpolation on a group of samples to get a new downsampled value.

Subsample – The program picks the middle sample from a group of samples to get the new downsampled value.

	ImageFilter ?
	enumeration
	Specifies the compression filter to be used for images. Ignored if AutoFilterImages = true or if EncodeImages = false. Possible values are:

CCITTFaxEncode – Used to select CCITT Group 3 or 4 facsimile encoding. Used only if ImageType = monochrome.

DCTEncode – Used to select JPEG compression.

FlateEncode – Used to select ZIP compression.

If DCTEncode is specified, it is only used if the output image has 8 bits per color component, i.e., if ImageDepth is 8, or if it is –1 and the original image has 8 bits per color component. Otherwise, FlateEncode is used regardless of the value of ImageFilter.

	ImageResolution ?
	number
	Specifies the minimum resolution for downsampled color images in dots per inch. This value is used only when DownsampleImages is true. The application downsamples to that actual resolution. The legal values are from 9.0 to 2400.0, inclusive.

	ImageType
Clarified in JDF 1.2
	enumeration
	Specifies the kind of images that are to be manipulated. Possible values are:

Color – multi-color, multi-level
Grayscale – single color, multi-level
Monochrome – single color, bi-level, e.g., Black and white.

7.2.73 Image​Replacement​Params

This resource specifies parameters required to control image replacement within production workflows.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
ImageReplacement
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ImagePreScanStrategy ?
New in JDF 1.2
	NMTOKEN
	Specifies the image pre-scanning strategy to be used on the input document data before starting the RIPing process. Possible values are:

NoPreScan – do no pre-scan the document looking for references to images.
PreScan – pre-scan the document looking for references to images and making sure the data is accessible now so that the RIP will not encounter a fault later.
PreScanAndGather – pre-scan the document looking for references to images and copy the data to a temporary place so that the RIP will be able to access the data with a predictable and small well-bounded delay later.

SystemSpecified – the default which may include a pre-scan and may include copying the image data as well.

	ImageReplacementStrategy
	enumeration
	Identifies how externally referenced images will be handled within the associated process. Possible values are:

Omit – Complete process maintaining only references to external data.

Proxy – Complete process using available proxy images.

Replace – Replace external references with image data during processing.

AttemptReplacement – Attempt to replace external references with image data during processing. If replacement fails, complete the process using available proxy images.

	MaxResolution ?

Deprecated in JDF 1.1
	double
	Reduces the resolution of images with a resolution higher than MaxResolution.
Default = 0, which means “do not downsample.”

Replaced with a link to ImageCompressionParams in the process.

	MinResolution ?

	double
	Specifies the minimum resolution that an image must have in order to be embedded.

Default = 0, which means “don’t care”

	ResolutionReductionStrategy ?

Deprecated in JDF 1.1
	enumeration
	Identifies the mechanism used for reducing the image resolution. Possible values are:

Downsample – Default value.

Subsample

Bicubic

Replaced with a link to ImageCompressionParams in the process.

	IgnoreExtensions ?
	NMTOKENS
	Identifies a set of filename extensions that will be trimmed during searches for high-resolution images. These extensions are what will be stripped from the end of an image name to find a base name. The leading dot “.” is included. Examples include:

.lay
.e
.samp

Default = an empty list

	MaxSearchRecursion ?
	integer
	Identifies how many levels of recursion in the search path will be traversed while trying to locate images. A value of 0 indicates that no recursion is desired.

	FileSpec +

New in JDF 1.1
	refelement
	Specification of the paths to search when trying to locate the referenced data. The ResourceUsage attribute must be “SearchPath”. Filespec replaces the SearchPath text element.

	SearchPath +

Deprecated in JDF 1.1
	telem
	String that identifies the paths to search when trying to locate the referenced data.

7.2.74 ImageSetterParams

This resource specifies the settings for the imagesetter. A number of settings are OEM-specific, while others are so widely used they may be supported between vendors. Both filmsetter settings and platesetter settings are described with this resource.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-

Input of processes:
ImageSetting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AdvanceDistance ?
	double
	Additional media advancement beyond the media dimensions on a roll-fed device.

	BurnOutArea ?

New in JDF 1.1

	XYPair
	Size of the burnout area. The area defined by BurnOutArea is exposed, regardless of the size of the image. Default = 0 0, i.e., only the area defined by the image is exposed.

	CenterAcross ?
	enumeration
	This attribute specifies the axis around which a device may center an image, if the device is capable of doing so. Possible values are:

None – Default value.

FeedDirection – Image is centered around the feed-direction axis.
MediaWidth – Image is centered around the media-width axis.
Both – Image is centered around both axes.

	CutMedia ?
	boolean
	Indicates whether or not to cut the media (roll-fed). Default = system specified.

	MirrorAround ?
	enumeration
	This attribute specifies the axis around which a device may mirror an image, if the device is capable of doing so. Possible values are:

None – Used if the device is incapable of mirroring an image. Default value.

FeedDirection – Image is mirrored around the feed-direction axis.
MediaWidth – Image is mirrored around the media-width axis.
Both – Image is mirrored around both possible axes.

	Polarity ?
	enumeration
	Some devices can invert the image (in hardware). Possible values are:

Positive – Default value.

Negative

	Punch ?
	boolean
	If true, indicates that the device may create registration punch holes. Default = false

	PunchType ?
	string
	Name of the registration punch scheme, e.g., Bacher.

	Resolution ?
	XYPair
	Resolution of the output

	RollCut ?
	double
	Length of media to be cut off of a roll in points.

	TransferCurve ?
	TransferFunction
	Area coverage correction of the device.

	Media ?

New in JDF 1.1
	refelement
	Describes the media to be used.

7.2.75 Ink

Clarified in JDF 1.2
[clarified ColorName and 1 value: ISO of Family]
Resource describing what kind of ink or other colorant (such as toner or varnish) is to be used during printing or varnishing. The default unit of measurement for Ink is Unit = “g” (gram).

Resource Properties

Resource class:
Consumable

Resource referenced by:
Conventional​Printing​Params
Example Partition:
FountainNumber, Separation, SheetName, Side, SignatureName, WebName
Input of processes:
ConventionalPrinting, DigitalPrinting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ColorName ?
Clarified in JDF 1.2
	string
	Link to a definition of the color specifics. The value of ColorName color should match the Name attribute of a Color defined in a ColorPool resource that is linked to the process that is using the Ink resource. Instead of linking the ColorPool resource directly, the ColorPool resource may be referenced by another resource that is linked to the process.
NOTE that a ColorName attribute is used differently in other resources where it refers to a NamedColor as defined in appendix ##ref A.NamedColor.

	Family ?
	NMTOKEN
	Ink family. Possible values include:

HKS

Pantone

TOYO

ISO - ISO 2846-1 (used by SWOP) Clarified in JDF 1.2

EURO

InkJet

It is also possible to specify liquids that are similar to ink. Possible values of this type include:

Varnish

Silicon

Toner

	InkName ?

Modified in JDF 1.1
	string
	The name of ink is dependent on its Family. For example, the InkName 138 CVC is a member of the Pantone Family.

	SpecialInk ?
	NMTOKEN
	Specific ink attributes. Possible values include:

Metallic

	SpecificYield ?
	double
	Weight per area at total coverage in g/m2.

7.2.76 InkZoneCalculationParams

This resource specifies the parameters for the InkZoneCalculation process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
TileID, WebName
Input of processes:
InkZoneCalculation
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	FountainPositions ?
	NumberList
	Even number of positions. Each pair specifies the begin and end of the ink slides belonging to a certain fountain. The positions are in coordinates of the printable width along the cylinder axis. The first pair is associated to the first fountain position (corresponds to the partition FountainNumber = 0), the second to the second position (FountainNumber = 1), etc.

	PrintableArea ?
	rectangle
	Position and size of the printable area of the print cylinder in the coordinates of the Preview resource.

The Partition TileID must be used for each plate together with this attribute in case of multiple plates per cylinder. Multiple plates per cylinder may be used in web printing.

Default = the complete image

	ZoneHeight ?
	double
	The width of one zone in the feed direction of the printing machine being used.

	ZoneWidth
	double
	The width of one zone of the printing machine being used. Typically, the width of a zone is the width of an ink slide.

	Zones
	integer
	The number of ink zones of the press.

	ZonesY ?
	integer
	Number of ink zones in feed direction of the press.

Default = 0, which means not required.

7.2.77 InkZoneProfile

This resource specifies ink zone settings that are specific to the geometry of the printing device being used. InkZoneProfiles are independent of the device details.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
FountainNumber, Separation, SheetName, Side, SignatureName, WebName
Input of processes:
ConventionalPrinting
Output of processes:
InkZoneCalculation
Resource Structure

	Name
	Data Type
	Description

	ZoneHeight ?
	double
	The width of one zone in the Y-Direction of the printing machine being used.

	ZoneSettingsX
	NumberList
	Each entry of the ZoneSettingsX attribute is the value of one ink zone. The first entry is the first zone, and the number of entries equals the number of zones of the printing device being used. Allowed values are in the range [0..1] where 0 is no ink and 1 is 100% coverage.

	ZoneSettingsY ?
	NumberList
	Each entry of the ZoneSettingsY attribute is the value of one ink zone in Y-Direction. The first entry is the first zone and the number of entries equals the number of zones of the printing device being used. Allowed values are in the range [0..1] where 0 is no ink and 1 is 100% coverage.

	ZoneWidth
	double
	The width of one zone of the printing machine being used.

7.2.78 InsertingParams

This resource specifies the parameters for the Inserting process. Figure 7.13 shows the various components involved in an inserting process, and how they interact.

[image: image91.jpg]_Child™

A
b i component
Glue line segment (The rotation of the Child
component is defined by
Glue line gap ResourceLink::Transformation)
Start Position =5
of glue line \} e | _“Mother”
SoleTos - component
Origin of
“mother” —
Component
coordinate
system Sheet Offset
>

Figure 7.15 Parameters and Coordinate system used for Inserting
The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge and increases from the registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the registered edge. It increases from the binding edge to the edge opposite the binding edge, which is the product front edge.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Inserting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	SheetOffset

Deprecated in JDF 1.1
	XYPair
	Offset between the sheet to be inserted and the “mother” sheet. SheetOffset is implied by the Transformation matrix in ResourceLink:Transformation of the child’s ComponentLink.

	Location
	enumeration
	Where to place the “child” sheet. Possible values are:

Front

Back

OverfoldLeft

OverfoldRight

	GlueLine *
	element
	Array of all GlueLine elements. The coordinate system is defined by the mother Component.

7.2.79 InsertSheet

Modified in JDF 1.2
[Added 1 new value: Duplicate, to SheetFormat. Added 3 new values: InterleavedBefore, SlipCopy, and SlipSet to SheetUsage. 1 ISSUE]
InsertSheet resources define device generated images and sheets which may be produced along with the job. InsertSheets include separators sheets, error sheets, accounting sheets, and job sheets. The information provided on the sheet depends on the type of sheet. In some cases, an Imposition process may encounter RunList elements that do not provide enough pages to complete a Layout resource or its children. InsertSheet resources are used to provide a standard way of completing such Layout resources. InsertSheet resources may also be used to start new Sheet resources, e.g., to ensure that a new chapter starts on a right-hand page. In addition, InsertSheet may specify whether new media should be inserted, once the current Sheet, Signature, instance document, or job is completed.

InsertSheets may be used at the beginning or end of RunLists with a SheetUsage attribute of Header or Trailer. When an InsertSheet appears both in a RunList and in a Layout and/or Sheet, the following precedence applies:

1. The InsertSheet with Usage FillSurface from the RunList is applied first.

2. The InsertSheet with Usage FillSheet from the RunList is applied.

3. The InsertSheet with Usage FillSignature from the RunList is applied.

4. After completely processing the RunList InsertSheets once, apply the Surface, Sheet, and Signature InsertSheets.

If the InsertSheet’s RunList does not supply enough content to fill a Sheet, Signature, or Surface, the RunList will be reapplied until no PlacedObject slots remain to be filled. When an InsertSheet is used in a RunList of a process that does not use a Layout or LayoutPreparation​Params resource, i.e., that process has not been combined with Imposition or LayoutPreparation, only Usage Header or Trailer are valid.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Disjointing, Layout, LayoutPreparation​Params, RunList, Sheet

Example Partition:
-
Input of processes:
-
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	IncludeInBundeItem ?
New in JDF 1.2
	enumeration
	Specifies whether the insert sheet is to be included in a bundle item for purposes of finishing the insert sheet with other sheet. Possible values are:

After - the InsertSheet is to be included in the BundleItem that occurs after the InsertSheet.
Before - the InsertSheet is to be included in the BundleItem that occurs before the InsertSheet.
None - the InsertSheet is to be all alone in a new BundleItem.
ISSUE: OK to add IncludeInBundleItem.

	IsWaste ?
	boolean
	Specifies whether the InsertSheet is waste that should be removed from the document before further processing. Default = true, i.e., the InsertSheet is to be discarded when finishing the document.

	MarkList ?

New in JDF 1.1
	NMTOKENS
	List of marks that should be marked on this InsertSheet. Ignored if a Sheet is specified in this InsertSheet. Values include:

CIELABMeasuringField
ColorControlStrip
ColorRegisterMark
CutMark
DensityMeasuringField
IdentificationField
JobField

PaperPathRegisterMark
RegisterMark
ScavengerArea

	SheetFormat ?

 Modified in JDF 1.2
	NMTOKEN
	Identifies that device-dependent information is to be included on the InsertSheet. Possible values include:

Blank

Brief
Duplicate - Valid for SheetUsage = Interleaved or InterleavedBefore. Specifies that the interleaved sheet is to contain the same (duplicate) content as the previous (Interleaved) or following (InterleavedBefore) sheet. If there is content on both sides of the previous or following sheet (duplex), then the InsertSheet has both sides duplicated. New in JDF 1.2
Full

Standard

SystemSpecified
Default = SystemSpecified

	SheetType

New in JDF 1.1
	enumeration
	Identifies the type of sheet. Possible values are:

AccountingSheet – A sheet that reports accounting information for the job.

ErrorSheet – A sheet that reports errors for the job.

FillSheet – A sheet that fills ContentObjects with no matching entry in the content RunList.

InsertSheet – A sheet that is inserted to the job, e.g. a preprinted cover .

JobSheet – A sheet that delimits the job.

SeparatorSheet – A sheet that delimits pages, sections, copies or instance documents of the job.

	SheetUsage

Modified in JDF 1.2
	enumeration
	Indicates where this InsertSheet is to be produced and inserted into the set of output pages. Possible values are:

FillForceBack - Valid for SheetType = FillSheet. Contents of the RunList of the InsertSheet are used to fill the current sheet before forcing the next page of the content Runlist to the back side of the next sheet if not already on a back surface.

FillForceFront - Valid for SheetType = FillSheet. Contents of the RunList of the InsertSheet are used to fill the current sheet before forcing the next page of the content Runlist to the front side of the next sheet if not already on a front surface.

FillSheet – Valid for SheetType = FillSheet. Contents from the RunList of the InsertSheet are used to fill the current sheet.
FillSignature – Valid for SheetType = FillSheet. Contents from the RunList of the InsertSheet are used to fill the current signature.
FillSurface – Valid for SheetType = FillSheet. Contents from the RunList of the InsertSheet are used to fill the current surface.

Header – Valid for SheetType = InsertSheet, JobSheet, SeparatorSheet. The sheet is produced at the begin of the job (for JobSheet) or at the begin of each copy of each instance document (for SeparatorSheet) or is prepended before the current sheet, signature, layout, or RunList as defined by its context. Contents for the Sheet are drawn from the RunList included in this InsertSheet resource, if one is included. If a RunList is not included, the inserted sheet filled with system specified content defined by SheetType.

Interleaved – Valid for SeparatorSheet. The sheet is produced after each page. Used e.g. to insert sheets under transparencies. Contents for the Sheet are drawn from the RunList included in this InsertSheet resource, if one is included. If a RunList is not included, the inserted sheet filled with system specified content defined by SheetType = SeparatorSheet.

InterleavedBefore – Valid for SeparatorSheet. The sheet is produced before each page. Used e.g. to insert sheets before transparencies. Contents for the Sheet are drawn from the RunList included in this InsertSheet resource, if one is included. If a RunList is not included, the inserted sheet filled with system specified content defined by SheetType = SeparatorSheet. New in JDF 1.2
OnError – Valid for SheetType = ErrorSheet. The sheet is produced at the end of the job when an error or warning occurs.

Slip – Valid for SeparatorSheet. The sheet is produced between each copy of each instance document. Contents for the Sheet are drawn from the RunList included in this InsertSheet resource, if one is included. If a RunList is not included, the inserted sheet filled with system specified content defined by SheetType = SeparatorSheet.
SlipCopy – Valid for SeparatorSheet. The sheet is produced between each copy of the job, which is defined to be when the complete RunList has been consumed. Contents for the Sheet are drawn from the RunList included in this InsertSheet resource, if one is included. If a RunList is not included, the inserted sheet filled with system specified content defined by SheetType = SeparatorSheet. New in JDF 1.2
SlipSet – Valid for SeparatorSheet. The sheet is produced between each set of documents, where a set is defined to be when endOfSet=true. Contents for the Sheet are drawn from the RunList included in this InsertSheet resource, if one is included. If a RunList is not included, the inserted sheet filled with system specified content defined by SheetType = SeparatorSheet. New in JDF 1.2
Trailer – Valid for SheetType = AccountingSheet, ErrorSheet, InsertSheet, JobSheet, SeparatorSheet. The sheet is produced at the end of the job (for AccountingSheet, ErrorSheet, JobSheet) or at the end of each copy of each instance document (for SeparatorSheet) or is appended after the current sheet, signature, layout, or RunList as defined by its context. Contents for the Sheet are drawn from the RunList included in this InsertSheet resource, if one is included. If a RunList is not included, the inserted sheet filled with system specified content defined by SheetType.

	Usage ?

Deprecated in JDF 1.1
	enumeration
	Replaced by SheetUsage.

	RunList ?
	refelement
	A RunList that provides the content for the InsertSheet. Any InsertSheet resources referenced by this RunList are ignored.

	Sheet ?
	refelement
	Details of the Sheet that will be inserted. Contents for this Sheet are drawn from the RunList included in this InsertSheet, if any. If not specified, the system specified insert sheets are used. Any InsertSheet resources referenced by this Sheet are ignored.

7.2.80 InterpretedPDLData

Represents the results of the PDL Interpretation process. The details of this resource are not specified, as it is assumed to be implementation dependent.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-

Input of processes:
Rendering
Output of processes:
Interpreting
7.2.81 InterpretingParams

Modified in JDF 1.2
[Added Economy and Fine values to PrintQuality, 2 ISSUES]
The InterpretingParams resource contains the parameters needed to interpret PDL pages. The resource itself is a generic resource that contains attributes that are relevant to all PDLs. PDL-specific instances of InterpretingParams resources may be included as subelements of this generic resource. This specification defines one additional PDL-specific resource instance: PDFInterpretingParams.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
Interpreting
Output of processes:
-

Structure of the InterpretingParams Resource

	Name
	Data Type
	Description

	Center ?

	boolean
	Indicates whether or not the page image should be centered within the imagable area of the media. Default = false. Center is ignored if FitPolicy::SizePolicy=ClipToMaxPage and clipping is required.

	FitToPage ?

Deprecated in JDF 1.1
	boolean
	Specifies whether the page contents should be scaled to fit the media. In JDF/1.1 use FitPolicy.
Default = false

	MirrorAround ?
	enumeration
	This attribute specifies the axis around which a RIP may mirror an image. Note: This is mirroring in the RIP and not in the hardware of the output device. Possible values are:

None – Default value.

FeedDirection – Image is mirrored around the feed-direction axis.
MediaWidth – Image is mirrored around the media-width axis.
Both – Image is mirrored around both possible axes.

	Polarity ?
	enumeration
	The image must be RIPped in the polarity specified. Note that this is a polarity change in the RIP and not a polarity change in the hardware of the output device. Possible values are:

Positive – Default value.

Negative

	Poster ?
	XYPair
	Specifies whether the page contents should be expanded such that each page covers X by Y pieces of media.

Default = 1 1

	PosterOverlap ?
	XYPair
	This pair of real numbers identifies the amounts of overlap in points, that must be calculated for the poster tiles across the horizontal and vertical axes, respectively.

Default = 0 0

	PrintQuality ?

New in JDF 1.1
Modified in JDF 1.2
	enumeration
ISSUE: Change to NMTOKEN?
	Generic switch for setting the quality of an otherwise inaccessible device. Possible values are:

Draft – A lower quality than Normal.

Economy – A quality that is lower than Draft. If only one value is implemented with a quality lower than Normal, the Draft value must be supported. New in JDF 1.2
Fine – A quality that is higher than High. If only one value is implemented with a quality higher than Normal, the High value must be supported. New in JDF 1.2
High – A higher quality than Normal.
Normal – An intermediate quality. ISSUE: OK to change the default to system specified, rather than Normal?

	Scaling ?
	XYPair
	A pair of positive real values that indicates the scaling factor for the page contents. Values between 0 and 1 specify that the contents are to be reduced, while values greater than 1 specify that the contents are to be expanded. This attribute is ignored if FitToPage = true or if Poster is present and has a value other than “1 1”. Any scaling defined in FitPolicy must be applied after the scaling defined by this attribute.

Default = 1. 1

	ScalingOrigin ?
	XYPair
	A pair of real values that identify the point in the unscaled page that is to become the origin of the new, scaled page image. This point is defined in the coordinate system of the unscaled page.

Default = 0 0

	ObjectResolution *
	refelement
	Indicates the resolution at which the PDL contents will be interpreted in DPI. These elements may be different from the ObjectResolution elements provided in the RenderingParams resource.

Default = system specified

	FitPolicy ?

New in JDF 1.1
	refelement
	Allows printing even if the media size does not match the requirements of the data. This replaces the deprecated FitToPage attribute. This FitPolicy element must be ignored in a combined process with LayoutPreparation.

	Media ?

New in JDF 1.1

	refelement
	This resource provides a description of the physical media which will be marked. The physical characteristics of the media may affect decisions made during Interpreting.

	PDFInterpreting​Params ?

New in JDF 1.1
	refelement
	Details of interpreting for PDF. Note that this is a subelement in JDF 1.1, and not an instance as in JDF 1.0.

Structure of PDFInterpretingParams Subelement

New in JDF 1.1
	Name
	Data Type
	Description

	EmitPDFBG ?
	boolean
	Indicates whether BlackGeneration functions should be emitted.

Default = true

	EmitPDFHalftones ?
	boolean
	Indicates whether Halftones should be emitted.

Default = true

	EmitPDFTransfers ?
	boolean
	Indicates whether Transfer functions should be emitted

Default = true

	EmitPDFUCR ?
	boolean
	Indicates whether UnderColorRemoval functions should be emitted.

Default = true

	HonorPDFOverprint ?
	boolean
	Indicates whether or not overprint settings in the file will be honored. If true, the setting for overprint will be honored. If false, it is expected that the device does not directly support overprint and that the PDF is preprocessed to simulate the effect of the overprint settings.

Default = true

	ICCColorAsDeviceColor ?
	boolean
	Indicates whether colors specified by ICC colorspaces should be treated as device colorants.

Default = false

	PrintPDFAnnotations ?
	boolean
	Indicates whether the contents of annotations on PDF pages should be included in the output. This only refers to annotations that are set to print in the PDF file.

Default = false

	TransparencyRenderingQuality ?
	number
	Possible values are 0 to 1. 0 represents the lowest allowable quality. 1 represents the highest desired quality.

Default = use device settings

7.2.82 JacketingParams

New in JDF 1.1

Description of the setup of the jacketing machinery. Jacket height and width (1 and 3 in the figure below) are specified within the Component that describes the jacket.

[image: image92.jpg]Book block

ook case

X X

Origin of the jacket coordinate system Origin of the process coordinate system

FoldingWidth

Figure 7.16 Parameters and Coordinate System for Jacketing

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Jacketing
Resource Structure

	Name
	Data Type
	Description

	FoldingWidth
	number
	Definition of the dimension of the folding width of the front cover fold (see “2”in the picture above). All other measurements are implied by the dimensions of the book.

7.2.83 JobField

New in JDF 1.1
Modified in JDF 1.2
[Added Warnings value to ShowList]
A JobField is a Mark object that specifies the details of a job.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Surface
Example Partition:
-
Input of processes:
-
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ShowList
Modified in JDF 1.2
	NMTOKENS
	List of elements to display in the JobField. Values include:

DeviceID – ID of the device. This is a unique name within the workflow.

EndTime – Actual EndTime of the job.

Error – Errors that happened during the job.

FriendlyName – FriendlyName of the device.

JobName – DescriptiveName of the node that is executing.

JobRecipientName – Name of the recipient of the job

JobSubmitterName – Name of the submitter of the job

StartTime – Actual StartTime of the job.

MediaBrand – Brand of the media that is being printed.

MediaType – DescriptiveName of the media that is being printed.

Operator – Name of the Operator.

OperatorText – Message to the Operator as defined in OperatorText
Resolution – Output resolution.

ResolutionX – Output resolution in X direction.

ResolutionY – Output resolution in Y direction.

ScreeningFamily – Name of the screening family of the output.

UserText – User defined text as defined in UserText.
Warnings – Warnings that happened during the job. Warnings don’t lose information in the resulting job, while errors do. New in JDF 1.2

	OperatorText ?
	string
	Text to the operator.

	UserText ?
	string
	User defined text to output with JobField.

	DeviceMark ?
	refelement
	DeviceMark defines the formatting parameters for the mark. If not specified, the DeviceMark settings defined in LayoutPreparationParams or in the Layout tree are assumed.

7.2.84 LabelingParams

New in JDF 1.1
LabelingParams defines the details of the Labeling process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Labeling
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Application ?
	NMTOKEN
	Application method of the label. Includes:

Loose – Loosely laid onto the component.

Staple – Stapled onto the component.

SelfAdhesive – Self adhesive label

Glue – Glued onto the component.

Any – The default.

	CTM ?
	matrix
	Position and orientation of the label lower left corner relative to the lower left corner of the component surface as defined by Position. Default = device dependent

	Position ?
	enumeration
	Position of the label on the bundle. One of:

Top

Bottom

Left

Right

Front

Back

An – The default.

7.2.85 LaminatingParams

New in JDF 1.1
This resource specifies the parameters needed for laminating.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
SheetName, Side
Input of processes:
HoleMaking.

Laminating

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AdhesiveType ?
	string
	Type of adhesive used. Default = the empty string, i.e., no adhesive is used. Valid only when LaminatingMethod = DispersionGlue.

	GapList ?
	NumberList
	List of non laminated gap positions in the X direction of the laminating tool in the coordinate system of the Component. The zero-based even entries define the absolute position of the start of a gap, and the odd entries define the end of a gap. If not specified, the complete area defined by LaminatingBox is laminated.

	HardenerType ?
	string
	Type of hardener used. Default = the empty string, i.e., no hardener is used. Valid only when LaminatingMethod = DispersionGlue.

	LaminatingBox
	rectangle
	Area on the Component to be laminated.

	LaminatingMethod ?
	enumeration
	Laminating technology that is applied. One of:

CompoundFoil
DispersionGlue
Unknown

	Temperature ?
	number
	Temperature used in the lamination process in ° Centigrade. Default =system specified.

7.2.86 Layout

Represents the root of the layout structure. Layout is used both for fixed-layout and for automated printing.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
It is strongly discouraged to partition the Layout tree, including Sheet and Surface.
Input of processes:
ConventionalPrinting, DigitalPrinting, Imposition, InkZoneCalculation, Proofing, SoftProofing
Output of processes:
LayoutPreparation
Resource Structure

	Name
	Data Type
	Description

	Automated ?
	boolean
	If true, the Imposition process is expected to perform automated page consumption. Automated page consumption is equivalent to the PrintLayout functionality provided in PJTF.

Default = false

	MaxDocOrd ?

New in JDF 1.1
	integer
	Zero based maximum number of instance documents that are consumed from a RunList each time the Layout is executed, assuming the Imposition process is automated. Default = 1.

	MaxOrd ?
	integer
	Zero based maximum number of placed objects that are consumed from a RunList each time the Layout is executed, assuming the Imposition process is automated. Default = –1, i.e., it is unknown and must be calculated from the Ord values of the ContentObject s in the Layout.

	MaxSetOrd ?

New in JDF 1.1
	integer
	Zero based maximum number of document sets that are consumed from a RunList each time the Layout is executed, assuming the Imposition process is automated. Default = 1.

	Name ?

New in JDF 1.1
	string
	Unique name of the Layout. Name is used for external reference to a Layout.

	InsertSheet *

	refelement
	Additional sheets that should be inserted before and/or after a document.

	LayerList ?

New in JDF 1.1
	element
	List of LayerDetails elements.

	Media ?

New in JDF 1.1
	refelement
	Describes the media to be used.

	MediaSource ?

Deprecated in JDF 1.1
	refelement
	Describes the media to be used. Replaced by Media in JDF 1.1.

	Signature *
	element
	The signatures that are defined by the layout.

	TransferCurvePool ?

New in JDF 1.1
	refelement
	Describes the relationship of transfer curves and coordinate systems within the various processes.

Structure of LayerList Subelement

New in JDF 1.1
This element provides a container for an ordered list of LayerDetails elements. The individual elements are referenced by their zero based index in the LayerList.

	Name
	Data Type
	Description

	LayerDetails *
	refelement
	Details of the individual layers.

Structure of LayerDetails Subelement

New in JDF 1.1
This element provides a container for LayerDetails elements.

	Name
	Data Type
	Description

	Name ?
	string
	Unique name of the layer.

Structure of Signature Subelement

This element groups individual Sheet resources into one Signature subelement.

	Name
	Data Type
	Description

	Name ?
	string
	Unique name of the signature. Name is used for external reference to a signature, as in a Part element.

	InsertSheet *
	refelement
	Specifies how to complete a signature in an automated printing environment.

	Media?

New in JDF 1.1
	refelement
	Describes the media to be used.

	MediaSource ?

Deprecated in JDF 1.1
	refelement
	Describes the media to be used. Replaced by Media in JDF 1.1.

	Sheet *
	refelement
	Sheet resources that comprise the signature.

7.2.87 LayoutElement

Modified in JDF 1.2
[Changed SeparationSpec * to a refelement for consistency, 1 ISSUE]
This resource is needed for LayoutElementProduction. It describes some text, an image, one or more pages, or anything else that is used in the production of the layout of a product.

Resource Properties

Resource class:
Parameter

Resource referenced by:
RunList, Surface
Example Partition:
PageNumber
Input of processes:
DBDocTemplateLayout, DBTemplateMerging, LayoutElementProduction
Output of processes:
DBDocTemplateLayout, LayoutElementProduction
Resource Structure

	Name
	Data Type
	Description

	ClipPath ?
	path
	Path that describes the outline of the LayoutElement in the coordinate space of the LayoutElement of ElementType Page that results from the LayoutElementProduction process.

Default = no clip path

	ElementType ?
	enumeration
	Describes the content type for this LayoutElement. Possible values are:

Text – Formatted or unformatted text.

Image – Bitmap image.

Graphic – Line art.

Reservation – Empty element. Content for this area of the page may be provided by a subsequent process.

Composed – Combination of elements that define an element that is not bound to a document page.

Page – Representation of one document page.

Document – An ordered set of one or more pages.

MultiDocument – An ordered set of one or more Documents including document breaks, e.g., PPML, PPML/VDX, mime multipart/related.

Surface – Representation of an imposed surface.

Tile – Representation of the contents of one tile.

Unknown – Unknown element type or any of the above. The default.

	HasBleeds ?
	boolean
	If true, the file has bleeds. Default = false.

	IgnorePDLCopies ?

New in JDF 1.1
	boolean
	If true, any PDL defined copy count must be ignored.

Default = false.

	IgnorePDLImposition ?

New in JDF 1.1
	boolean
	If true, any PDL defined imposition definition must be ignored. Examples are PDF with embedded PJTF or PPML with a PRINT_LAYOUT. If IgnorePDLImposition=false, and JDF also defines imposition, the imposed sheets of the PDL are treated as pages in the context of JDF imposition. The front and back surfaces of the pdl and JDF imposition should be matched. Note that it is strongly discouraged to specify imposition both in the PDL and JDF and that this may result in undesired behavior.

Default = true.

	IsPrintable ?
	boolean
	If true, the file is a PDL file and can be printed. Possible files types include PCL, PDF or PostScript files. Application files such as MS Word have IsPrintable=”false”.

Default = true.

	IsTrapped ?
	boolean
	If true, the file has been trapped.

Default = false.

	SourceBleedBox ?
	rectangle
	A rectangle that describes the bleed area of the element to be included. This rectangle is expressed in the default user space.

Default uses element’s defined bleed box (or no bleed box if element does not supply a bleed box)

	SourceClipBox ?
	rectangle
	A rectangle that defines the region of the element to be included. This rectangle is expressed in the default user space of the source document page.

Default = use element’s defined clip box (or no clip box if element does not supply a clip box)

	SourceTrimBox ?
	rectangle
	A rectangle that describes the intended trimmed size of the element to be included. This rectangle is expressed in the default user space.

Default uses element’s defined trim box (or no trim box if element does not supply a trim box)

	Template ?
	boolean
	Template is false when this layout element is self-contained. This attribute is true if the LayoutElement represents a template that must be completed with information from a database.

Default = false

	FileSpec
	refelement
	URL + metadata about the physical characteristics of a file representing the LayoutElement.

	SeparationSpec *
Modified in JDF 1.2
	refelement
	List of used separation names.

7.2.88 LayoutPreparation​Params

New in JDF 1.1
Modified in JDF 1.2
[added 1 attribute: ImagePreScanStrategy, clarified 1 attribute: HorizontalCreep]
This resource provides the parameters of the LayoutPreparation process, which provides the details of how page contents will be imaged onto media. This resource has a provision for specifying either a multi-up grid of content page cells or an imposition layout of finished pages.

A multi-up grid of pages can be step and repeated across, down, or through a stack of sheets in any axis order. Note: For all resources, the coordinate system for all parameters is defined with respect to the process coordinate system as defined in Section 2.5.3 Coordinate Systems of Resources and Processes.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
DocIndex, DocRunIndex, RunIndex, SetIndex, SheetName-

Input of processes:
LayoutPreparation
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BackMarkList ?
	NMTOKENS
	List of marks that should be marked on each back surface. The appearance of the marks are defined by the process implementation. Values include:

CIELABMeasuringField:

ColorControlStrip:

ColorRegisterMark:

CutMark:

DensityMeasuringField:

IdentificationField:

JobField

PaperPathRegisterMark:

RegisterMark:

ScavengerArea:

	CreepValue ?
	XYPair
	This parameter determines a user defined values for horizontal and vertical creep compensation. The number specifies the distance in points by which the respective gutter that creeps either increments or decrements in width from one sheet to the next for a given sequence of sheets related to the same bound component.

If the value of a component of this attribute is positive, it specifies the amount in points by which the width of creeping gutters are incremented. If the value of a component of this attribute is negative then it specifies the amount in points by which the width of creeping gutters are decremented.

An explicit value of "0" means that the creep compensation value for the respective axis is system specified, for example, it may be calculated based on the information taken from Media.

If the CreepValue attribute is not present its value defaults to 0.

NOTE: Creep is disabled for the respective axis when the HorizontalCreep and VerticalCreep attributes respectively are not present in which case the appropriate component of CreepValue must be ignored.

	FinishingOrder ?
	enumeration
	Specifies the order of operations for finishing a bound booklet created from multiple imposed sheets.

The LayoutPreparation process needs this information in order to completely determine content page distribution onto the sequence of sheets comprising the pages of a single booklet under consideration of the values of the PageDistributionScheme and FoldCatalog attributes.

Possible values are:

FoldGather – The sheets of a document are first folded according to the value of the FoldCatalog attribute and then gathered on a pile. Usually applies to finishing of perfect bound documents.

FoldCollect – The sheets of a document are first folded according to the value of the FoldCatalog attribute, and then collected on a saddle. Usually applies to finishing of both perfect bound and saddle-stitched booklets.

Gather – The sheets of a document are gathered on a pile. No folding is assumed.

GatherFold – The sheets of a document are first gathered on a pile, then folded according to the value of the FoldCatalog attribute. Usually applies to finishing of both perfect bound and saddle-stitched booklets. The default.

	FoldCatalog ?
	string
	Description of the type of fold that will be applied to all printed sheets according to the folding catalog in the format “Fx-y” as shown in Figure 7.11 Fold Catalog part 1 and Figure 7.12 Fold Catalog part 2.

The LayoutPreparation process uses the fold description specified by this attribute in the determination of the proper distribution of pages onto the surfaces of the sheets in the context of the values of both the PageDistributionScheme and FinishingOrder attributes.

If not present, no folding other than the folding that is implied by PageDistributionScheme=Saddle is assumed.

	FrontMarkList ?
	NMTOKENS
	List of marks that should be marked on each front surface. The appearance of the marks are defined by the process implementation. Values include:

CIELABMeasuringField:

ColorControlStrip:

ColorRegisterMark:

CutMark:

DensityMeasuringField:

IdentificationField:

JobField

PaperPathRegisterMark:

RegisterMark:

ScavengerArea:

	Gutter ?

Modified in JDF 1.1A
	XYPair
	Width in points of the horizontal and vertical gutters formed between rows and columns of pages of a multi-up sheet layout.

The first value specifies the width of all horizontal gutters and the second value specifies the width of all vertical gutters.

If no gutters are defined because either the NumberUp attribute is not present, or its explicit values are equal to one, this attribute must be ignored.

In the case where a gutter is identified as creeping by either the VerticalCreep or HorizontalCreep attributes, then the value of Gutter specifies the initial gutter width where the gutter width may increment or decrement depending upon the explicit or implied value of the CreepValue attribute.
If not present, the Default=”0.0 0.0” which means that the pages of a multi-up grid of pages must touch.

The Gutter is applied in addition to any Border specified in the PageCell.

	HorizontalCreep ?
Clarified in JDF 1.2
	IntegerList
	Specifies which horizontal gutters creep.

The allowed values are zero based indexes that reference horizontal gutters formed by multiple rows of pages in a multi-up page layout specified by the first value of the NumberUp attribute.

The value for an entry in this list must be between zero and 1 less then the first value of the NumberUp attribute.
If not specified then no horizontal gutters will creep.

	NumberUp ?
	XYPair
	Specifies a regular, multi-up grid of PageCells into which content pages are mapped.

The first value specifies the number of rows of page cells and the second value specifies the number of columns of page cells in the multi-up grid.

The relative positioning of the page cells within the multi-up grid are defined by the explicit or implied values of the Gutter, HorizontalCreep, VerticalCreep, and CreepValue attributes.

The distribution of content pages from the content RunList into the page cells is defined by the explicit or implied values of the PageDistributionScheme, PresentationDirection, Sides, FinishingOrder and FoldCatalog attributes and the implicit number of sheets comprising the bound component.

	PageDistributionScheme ?
	NMTOKEN
	This attribute specifies how pages are to be distributed onto a multi-up grid of finished PageCells defined by the values of the NumberUp attribute. Possible values include:

Saddle – Distribute pages onto a sequence of one or more imposition layouts in proper order for saddle stitch binding. For this page distribution scheme, creep should only be applied to odd numbered vertical gutters where any even numbered gutters will automatically creep in the opposite direction.

Perfect – Distribute pages onto a sequence of one or more signatures in proper order for perfect binding. For this page distribution scheme, creep is usually not used.
Sequential – The pages are distributed onto the multi-up layout according to the value of the PresentationDirection attribute. The default.

Note: Page distribution ordering for both Saddle and Perfect also depends upon the implied number of sheets per finished Component and how the imposed sheets are to be folded during finishing as well as the order of gathering and folding. Refer to the FoldCatalog and FinishingOrder attributes.

Note: The NumberUp attribute must always specify a multi-up layout appropriate for a given page distribution ordering and FoldCatalog. Setting this attribute does not imply the multi-up grid dimensions are appropriate for the selected page distribution scheme.

Note: In all cases, the order of content pages as represented by the content RunList must be either in reader order or in an order appropriate for multi-up saddle stitching. Refer to the PageOrder attribute.

	PageOrder ?
	NMTOKEN
	The assumed ordering of the content pages in the RunList.

Booklet – The pages are preordered in the RunList and must be processed exactly in the order as specified by Presentation​Direction. NumberUp must still be set to the appropriate value and is not implied by specifying PageOrder=Booklet. PageOrder= Booklet must not be used in conjunction with FoldCatalog.

Reader – The pages are in reader order in the RunList.

The default.

	Presentation​Direction ?
	enumeration
	Indicates the order in which content pages will be distributed into the page cells of the NumberUp layout.

If PageDistributionScheme=”Saddle”, Presentation​Direction applies to sets of two adjacent pages. This allows positioning of multiple page pairs for SaddleStitching onto one sheet.

Possible values are:

FoldCatalog – Pages are imaged so that the result is compatible with a finished product produced from the folding catalog as specified in FoldCatalog.

SystemSpecified – Pages are imaged onto the NumberUp layout as determined by the device.

XYZ: Permutations of the letters XYZ and xyz so that exactly one of upper or lower case of x y and z define the order in which content pages are flowed along each axis with respect to the coordinate system of the front side of the sheet.

X Specifies flowing left to right across a sheet surface.

x Specifies flowing right to left across a sheet surface.

Y Specifies flowing bottom to top vertically across a sheet surface.

y Specifies flowing top to bottom vertically across a sheet surface.

Z Specifies flowing bottom of stack to top of stack through the stack.

z Specifies flowing top of stack to bottom of stack through the stack.

If not present, the default value is SystemSpecified:

The following table specifies how cells are ordered on simplex 4-up depending on XYZ.

	
	
	XyZ

1 2 5 6

3 4 7 8
	Zxy

4 2 3 1

8 6 7 5
	xyz

2 1 6 5

4 3 8 7
	XYZ

3 4 7 8

1 2 5 6

	Rotate ?
	enumeration
	Orthogonal rotation including the implied translation to be applied to the grid of PageCells on the entire surface relative to the process coordinate system. One of:
Rotate0

Rotate90 – 90° counterclockwise rotation
Rotate180 – 180° rotation
Rotate270 – 90°clockwise rotation

For details of orthogonal rotations, refer to Table 2‑3. If a RotatePolicy value other than “NoRotate” is specified in FitPolicy, the value specified in Rotate may be modified accordingly.

Note: A rotation of the grid also rotates the gutters, i.e., it is applied after all other parameters have been evaluated and applied.
Default = Rotate0

	Sides ?
	enumeration
	Indicates whether the content layout should be imaged on one or both sides of the media. When a different value for the Sides attribute is encountered, it must force a new sheet. However, when the same value for the Sides attribute is restated for consecutive pages, it is the same as if that re-statement was not present.

 Possible values are:

OneSidedBackFlipX– Page content is imaged on the back side of media so that the corresponding page cells back up to a blank front cell when flipping around the X axis. Equivalent to ‘WorkAndTumble’ with a blank front side.

OneSidedBackFlipY– Page content is imaged on the back side of media so that the corresponding page cells back up to a blank front cell when flipping around the Y axis. Equivalent to ‘WorkAndTurn’ with a blank front side.

OneSidedFront – Page content is imaged on the front side of media. The default.

TwoSidedFlipX – Page content is imaged on both the front and back sides of media sheets so that the corresponding page cells back up to each other when flipping around the X axis. Equivalent to ‘WorkAndTumble’.

TwoSidedFlipY– Page content is imaged on both the front and back sides of media sheets so that the corresponding page cells back up to each other when flipping around the Y axis. Equivalent to ‘WorkAndTurn’.

	StackDepth ?
	integer
	The number of sheets in a stack that are processed when imposing down the Z access.

If not specified, the entire job defines one stack.

	StepDocs ?
	IntegerList
	A list of two integers that species the number of instance documents to impose on one sheet. The first value specifies the repeats along the X axis, the second value specifies the repeats along the Y axis. Default=”1 1”. Each entry of NumberUp must be an integer multiple of StepRepeat * StepDocs. Positive values define grouped step and repeat whereas negative values define alternating step and repeat. The following examples have NumberUp=”4 4” and StepRepeat=”2 2” and StepDocs=:

	
	
	“2 1”

A1 A1 B1 B1

A1 A1 B1 B1

A2 A2 B2 B2

A2 A2 B2 B2
	“1 2”

A1 A1 A2 A2

A1 A1 A2 A2

B1 B1 B2 B2

B1 B1 B2 B2

	StepRepeat ?
	IntegerList
	A list of three integers that specifies the number of identical pages to impose. The first value specifies the repeats along the X axis, the second value specifies the repeats along the Y axis and the 3rd value specifies the repeats down the stack – the Z axis. Default=”1 1 1”. Each entry of NumberUp must be an integer multiple of StepRepeat * StepDocs. Positive values define grouped step and repeat whereas negative values define alternating step and repeat. Note that negative values are illegal for the 3rd component, since the total depth of the stack may be unknown. The following examples have NumberUp=”4 4” and StepRepeat=:

	
	
	“2 2 1”

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4
	“-2 2 1”

1 2 1 2

1 2 1 2

3 4 3 4

3 4 3 4
	“-2 –2 1”

1 2 1 2

3 4 3 4

1 2 1 2

3 4 3 4
	“2 –2 1”

1 1 2 2

3 3 4 4

1 1 2 2

3 3 4 4
	“1 4 1”

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

	SurfaceContentsBox ?

Modified in JDF 1.1A
	rectangle
	This box, specified in surface-coordinate space, defines the area into which PageCells are distributed. The lower left corner of the rectangle specified by the value of this attribute establishes the coordinate system into which the content is mapped onto the surface. Note: SurfaceContentsBox does not imply clipping. Clipping is defined by PageCell::ClipBox.
If SurfaceContentsBox is not specified, a device may supply a SurfaceContentsBox that corresponds to the imagable area for the Media used by the device. Otherwise a rectangle with the origin at “0 0” and the dimensions of the Media defined in this resource is assumed. If no Media Dimension can be determined, the SurfaceContentsBox is assumed to have its origin at the lower left corner and be unbounded in X and Y.

	VerticalCreep ?
	IntegerList
	Specifies which vertical gutters creep.

The allowed values are zero-based indexes that reference vertical gutters formed by multiple columns of pages in a multi-up page layout specified by the second value of the NumberUp attribute.

The value for an entry in this list must be between zero and 1 less then the second value of the NumberUp attribute. An index value outside of this range is ignored.

If not specified then no vertical gutters will creep.

	ImageShift ?
	element
	Details how to place the grid of PageCells onto the media. The coordinate system is defined so that the “X” dimension is the first number of the Media Dimension attribute; “Y” is the second number. ImageShift must be applied before any transformations of the grid of PageCells as specified by Rotate or FitPolicy.

	InsertSheet *
	refelement
	Additional sheets to be inserted before, after, or within a job.

	DeviceMark ?
	refelement
	Details how device dependent marks should be generated. If not specified, the marks are device dependent.

	FitPolicy ?
	refelement
	Details how to fit the grid of PageCells onto the media.

	JobField *
	refelement
	Specific information about this kind of mark object.

	Media ?
	refelement
	Specific information about the media.

	PageCell ?

Modified in JDF 1.1A
	refelement
	PageCell elements describe how page contents will be imaged onto individual page cells. Only one page cell size may be specified and is applied to all cells on both Surfaces of a Sheet.

Structure of the PageCell Subelement

PageCell elements describe how page contents will be imaged onto individual page cells. Only one page cell size may be specified and is applied to all cells on both Surfaces of a Sheet.

	Name
	Data Type
	Description

	Border ?

Modified in JDF 1.1A
	number
	A number indicating the width in points of a drawn border line, that appears around the trim region specified by the explicit or implied value of TrimSize. A value of 0 specifies no border.

If this attribute is not present, its default value is 0.

If the value of this attribute is non zero and positive, then a border of that specified width will be drawn to the outside of the page cell whose inside dimension is the same as the explicit or implied value of the TrimSize attribute. The border marks must not overwrite the page contents of the trimmed page. Note that when the page cells are distributed evenly over the area of the SurfaceContentsBox, the page cells position and/or size may be adjusted to accommodate the border.

If the value of this attribute is non zero and negative, then a border of a width specified by this attribute's absolute value will be drawn to the inside of the page cell whose outside dimension is the same as the explicit or implied value of the TrimSize attribute. The border marks may overwrite the page contents of the trimmed page.

The rectangle defined by the inside edge of the border defines a ClipBox beyond which no content will be imaged.

	ClipBox ?

	rectangle
	Defines a rectangle with an origin relative to the lower left corner of the page cell rectangle defined by the explicit or implied value of the TrimSize attribute. Page content data imaged outside of the region defined by this rectangle will be clipped. If ClipBox is larger than TrimSize, it is used to specify a bleed region. If not specified, its default value is “0 0 X Y” where X and Y are the explicit or implied values of TrimSize.

	MarkList ?
	NMTOKENS
	List of Marks that should be marked on each PageCell. The appearance of the marks are defined by the process implementation. Values include:

CIELABMeasuringField
ColorControlStrip
ColorRegisterMark
CutMark

DensityMeasuringField
IdentificationField
JobField

PaperPathRegisterMark
RegisterMark
ScavengerArea

	Rotate ?
	enumeration
	Orthogonal rotation to be applied to the contents in the PageCells. One of:

Rotate0

Rotate90 – 90° counterclockwise rotation. –

Rotate180 – 180° rotation
Rotate270 – 90°clockwise rotation

For details of orthogonal rotation, refer to Table 2‑3. If a RotatePolicy value other than “NoRotate” is specified in FitPolicy, the value specified in Rotate may be modified accordingly.
Default = “ Rotate0”

	TrimSize ?

Modified in JDF 1.1A
	XYPair
	Defines the dimensions of the PageCell.

The lower left corner of the rectangle specified by the value of this attribute establishes the coordinate system into which the page content is mapped.
FitPolicy defines the default TrimSize in the absence of an explicit TrimSize.
If not specified, TrimSize is calculated by subtracting the gutters from the LayoutPreparationParams:SurfaceContentsBox and dividing by the appropriate NumberUp value.

	Color ?
	refelement
	Color of the border. If not present, the default color is system specified.

	DeviceMark ?
	refelement
	Details how device dependent marks should be generated. Defaults to the value of DeviceMark in the parent LayoutPreparationParams.

	FitPolicy ?
	refelement
	Details how page content is fit into the PageCells. If the dimensions of the page contents vary, FitPolicy is applied to the contents of each cell individually.

	ImageShift ?
	element
	Element which describes how content should be placed into the PageCells. X and Y are specified in the coordinate system of the PageCell.

Structure of the ImageShift Subelement

ImageShift elements describe how the grid of page cells will be imaged onto media, when ImageShift is specified in the context of LayoutPreparationParams. When ImageShift is specified in the context of a PageCell, it specifies how content is imaged into the respective page cells.

	Name
	Data Type
	Description

	PositionX ?
	enumeration
	Indicates how images should be positioned horizontally . ShiftBack and ShiftFront are applied after PositionX and PositionY. Values are:

Center – Center the images horizontally without regard to limitations of the printable area.

Left – Position the left edge of the images so they are coincident with the left edge of the printable area.

Right – Position the right edge of the images so they are coincident with the right edge of the printable area.

None – Place the images wherever the print data specifies. The default.

	PositionY ?
	enumeration
	Indicates how images should be positioned vertically. ShiftBack and ShiftFront are applied after PositionX and PositionY. Values are:

Bottom – Position the bottom edge of the images so they are coincident with the bottom edge of the printable area.

Center – Center the images horizontally without regard to limitations of the printable area.

Top – Position the top edge of the images so they are coincident with the top edge of the printable area.

None – Place the images wherever the print data specifies. The default.

	ShiftBack ?
	XYPair
	The amount in X and Y direction by which the image is to be shifted on the back side.

	ShiftFront ?
	XYPair
	The amount in X and Y direction by which the image is to be shifted on the front side. Default = “0 0”

7.2.89 Longitudinal​Ribbon​Operation​Params

Deprecated in JDF 1.1.

This resource provides the parameters of the LongitudinalRibbonOperation process. It is defined as a list of abstract LROperation elements.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
RibbonName, SheetName, SignatureName, WebName
Input of processes:
Longitudinal​Ribbon​Operations
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	LROperation +
	element
	Abstract element which is a placeholder for a longitudinal ribbon operation.

Structure of LongitudinalRibbonOperationParams Elements

LROperation

Deprecated in JDF 1.1.
LROperation is an abstract element that describes the LongitudinalRibbonOperation process. The defined instances (subclasses) of LROperation are LongFold, LongGlue, LongPerforate, and LongSlit. All instances of LROperation have the following common contents.
	Name
	Data Type
	Description

	WorkingList ?
	NumberList
	List of lengths of the Operation to be performed in point. Entries with an odd position (first, third, etc.) in the list define an offset where the tool is inactive. Entries with an even position define a working length where the tool is on. The start position is the leading edge of the plate.

If the sum of all entries is higher than the circumference of the press cylinder, the values exceeding the circumference are cropped. Counting always restarts at the leading edge.

Default = 0 1000000000, i.e., always on.

	XOffset
	double
	Position of the tool for longitudinal action along the cylinder axis.

LongFold

Deprecated in JDF 1.1.
LongFold is derived from the abstract element LROperation and describes a longitudinal fold operation and has no further contents in addition to those of LROperation.

LongGlue

Deprecated in JDF 1.1.
LongGlue is derived from the abstract element LROperation and describes a longitudinal gluing operation and has the following contents in addition to those of LROperation.

	Name
	Data Type
	Description

	GlueBrand ?
	string
	Glue brand.

Use only when Operation = Glue

	GlueType ?
	Enumeration
	If Operation = Glue, the following values can be used:

ColdGlue

Hotmelt

PUR – Polyurethane

	LineWidth ?
	double
	Width of the Operation line.

	MeltingTemperature ?
	integer
	Required temperature for melting the glue (in degrees centigrade).

Use only when GlueType = Hotmelt and Operation = Glue

LongPerforate

Deprecated in JDF 1.1.
LongPerforate is derived from the abstract element LROperation and describes a longitudinal gluing operation and has the following contents in addition to those of LROperation.
	Name
	Data Type
	Description

	TeethPer​Dimension ?
	integer
	If Operation = Perforate, the number of teeth in a given perforation extent is defined in teeth/point.

MicroPerforation is defined by specifying a large number of teeth (n>1000).

LongSlit

Deprecated in JDF 1.1.
LongSlit is derived from the abstract element LROperation and describes a longitudinal cut operation and has no further contents in addition to those of LROperation.

7.2.90 ManualLaborParams

New in JDF 1.1

This resource describes the parameters to qualify generic manual work within graphic arts production. Additional Comment elements will generally be needed to describe the work in human readable form.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
ManualLabor
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	LaborType
	NMTOKENS
	List of types of manual labor that are performed.

7.2.91 Media

Modified in JDF 1.2
[added 10 attributes: CIETint, CIEWhiteness, CIEWhitenessStandard, DimensionName, GlossMeasurement, MediaColorMeasurement, MediaColorNameDetails, MediaColorStandard, OpacityLevel, and RecycledPercentage, deprecated ColorName, added Translucent value to Opacity attribute, added Coated and InkJet to BackCoatings and FrontCoatings, added SystemSpecified value to HoleType attribute, added Disc and Other value to MediaType, added Tractor to MediaTypeDetails, added Continuous, ContinuousLong, and ContinuousShort to MediaUnit, added Translucent value to Opacity, added Uncalendared value to Texture, deprecated Continuous, ContinuousLong, ContinuousShort, Paper, and Transparency in UserMediaType
5 clarifications: Brightness, Dimension, Grade, Opacity, 3 ISSUES]
This resource describes a physical element that represents a raw, unexposed printable surface such as sheet, film, or plate.
Note: The MediaIntent resource duplicates most of these attributes. However, MediaIntent::MediaType is a small subset of Media::MediaType and MediaIntent::UserMediaType is a subset of Media::MediaTypeDetails.
Resource Properties

Resource class:
Consumable

Resource referenced by:
ExposedMedia, DigitalPrintingParams, InsertSheet, LayoutElementProduction, LayoutPreparation​Params, RenderingParams, Sheet, Tile,

Example Partition:
SheetName, Side, TileID, WebName
Input of processes:
ConventionalPrinting, ContactCopying, Cutting, DigitalPrinting, ImageSetting, Proofing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	 BackCoatings ?
	enumeration
	Identical to FrontCoatings, but applied to the back surface of the media. Default = value of FrontCoatings.

	 Brightness ?
Modified in JDF 1.2
	double
	Reflectance percentage of diffuse blue reflectance as defined by ISO2470 – ISO 2470:1977 Paper and board – Measurement of diffuse blue reflectance factor (ISO brightness). The reflectance is reported per ISO 2470 as the diffuse blue reflectance factor of the paper or board in percent to the nearest 0.5% reflectance factor.

See also CIEWhiteness.

	CIETint ?
New in JDF 1.2
	double
	Average CIE Tint. Average CIE Tint is calculated according to equations given in
“TAPPI T 560” – TAPPI T 560 “CIE Whiteness and Tint of Paper and Paper Board (using d/0(, diffuse illumation and normal viewing)”

	CIEWhiteness ?
New in JDF 1.2
	double
	Average CIE Whiteness. Average CIE Whiteness is calculated according to equations given in
“TAPPI T 560” – TAPPI T 560 “CIE Whiteness and Tint of Paper and Paper Board (using d/0(, diffuse illumation and normal viewing)”

	ColorName ?

Deprecated in JDF 1.2
	string
	Link to a definition of the color specifics. The value of ColorName color should match the Name attribute of a Color defined in a ColorPool resource that is linked to the process using this Media resource. Deprecated in JDF 1.2 use MediaColorName and MediaColorNameDetails. ISSUE: Is this reason for deprecation correct?

	Dimension ?

Modified in JDF 1.2
	XYPair
	The X and Y dimensions of the chosen medium. Measured in points. The X,Y values of Dimension establishes the user coordinate system into which content is mapped, i.e., the origin is in the lower left corner of the rectangle defined by 0 0 X Y. In case of Roll media, the X-coordinate specifies the reel width and the Y-coordinate specifies the length of the web in points. If a Dimension coordinate is unknown, the value must be zero. Default = 0 0, i.e., unknown. If either or both X or Y is 0, i.e., unknown, the default orientation is assumed to be portrait, i.e., Y>X.

When DimensionName is present, Dimension must be specified.

	DimensionName ?

New in JDF 1.2
	NMTOKEN
	The name of the media that describes the media size. When DimensionName is present, Dimension must be specified. DimensionName is informational (e.g., can be displayed in a User Interface) and must not to be used to determine the size of the media.

Predefined values are any of the Media Size Self-Describing Names from the Printer Working Group (PWG) IEEE-ISTO 5101.1 Standardized Media Names standard. Example values:
na_letter_8.5x11in

iso_a4_210x297mm

iso_b4_250x353mm

jis_b4_257x364mm

custom_letter_7.5x10in)
The latest version is available at:

ftp://ftp.pwg.org/pub/pwg/standards/pwg5101.1.pdf.
The current verson is dated 26 February 2002, but later versions may be used.

Also a site may define its own simple names that do not follow the custom naming requirements, such as letter. However, such names may cause interoperability and localization problems for other vendor’s Producer implementations.

	FrontCoatings ?
Modified in JDF 1.2
	enumeration
	What preprocess coating has been applied to the front surface of the media. Possible values are:

None – The default.

Coated – A coating of a system specified type. New in JDF 1.2
Glossy

HighGloss

InkJet – A coating intended for use with inkjet technology. New in JDF 1.2
Matte

Satin

Semigloss

	GlossValue ?
New in JDF 1.2
	number
	Gloss in gloss units as defined by ISO 8254-1:1995 Paper and board – Measurement of specular gloss – Part 1: 75º gloss with a converging beam, TAPPI method. Refer also to TAPPI T 480 om-92 “Specular gloss of paper and paper board at 75 degrees” for examples of gloss calculation.

	Grade ?

Modified in JDF1.1A

	integer
	The intended Grade of the media on a scale of 1 through 5. Grade is ignored if MediaType is not “Paper”.

Grade of paper material is defined in accordance with the paper “types” set forth in ISO 12647-2[iso12647-2]. Offset printing paper types are defined with the following integer values:

1: Gloss-coated paper
2: Matt-coated paper

3: Gloss-coated, web paper

4: Uncoated, white paper

5: Uncoated, yellowish paper
Note that ISO 12647-2 paper type attribute values do NOT align with U.S. GRACOL paper grade attribute values, e.g., ISO 12647-2 type 1 does not equal U.S. GRACOL grade 1.

	GrainDirection ?

New in JDF 1.1
	enumeration
	Direction of the grain in the coordinate system defined by Dimension. Possible values are:

ShortEdge: Along the shorter axis as defined by Dimension.
LongEdge: Along the longer axis as defined by Dimension.
If not specified the direction is unknown.

	HoleCount ?

Deprecated in JDF 1.1
	 integer
	The number of holes that should be punched in the media (either pre- or post-punched). Default = 0. In JDF/1.1, use HoleType Hole or HoleLine, which includes the number of holes.

	HoleType ?

New in JDF 1.1
Modified in JDF 1.2
	enumerations
	Predefined hole pattern. Multiple hole patterns are allowed, e.g, 3-hole ring binding and 4-hole ring binding holes on one piece of media. For details of the hole types, refer to Appendix L JDF/CIP4 Hole Pattern Catalog.
Allowed values are:

	
	
	None – The default.

R2-generic

R2m-DIN

R2m-ISO

R2i-US-a

R2i-US-b

R3-generic

R3i-US

R4-generic

R4m-DIN-A4

R4m-DIN-A5

R4m-swedish

R4i-US

R5-generic

R5i-US-a

R5i-US-b

R5i-US-c
	R6-generic

R6m-4h2s

R6m-DIN-A5

R7-generic

R7i-US-a

R7i-US-b

R7i-US-c

R11m-7h4s

P12m-rect-0t

P16_9i-rect-0t

W2_1i-round-0t

W2_1i-square-0t

W3_1i-square-0t

C9.5m-round-0t

Explicit – Holes are defined in an array of Hole or HoleLine
SystemSpecified – A non-zero number of holes of a system-specified pattern. New in JDF 1.2

	ImagableSide ?
	enumeration
	Side of the chosen medium that may be marked. Possible values are:

Front

Back

Both – Default value.
Neither

	LabColorValue ?
New in JDF 1.2
	LabColor
	LabColorValue is a CIE LAB color value computed as specified in TAPPI T527 “Color of Paper and Paperboard (d/0(geometry)”. LabColor is data type LabColorValue. Color values are stated in CIELAB, which can be translated to other color spaces as needed through well-known transforms.

	MediaColorName ?

Modified in JDF 1.1
	NamedColor
	A name for the color. Allowed values are defined in Appendix A.2.8 NamedColor. If more-specific, specialized, or site-specific media color names are needed, use MediaColorNameDetails. Default = SystemSpecified.

	MediaColorNameDetails ?
New in JDF 1.2
	string
	A more-specific, specialized, or site defined name for the media color. If MediaColorNameDetails is supplied, MediaColorName must also be supplied. If MediaColorNameDetails is not specified, defaults to the MediaColorName.

	MediaSetCount ?
	integer
	When the input media is grouped in sets, identifies the number of pieces of media in each set. For example, if the MediaTypeDetails is “PreCutTabs”, a MediaSetCount of 5 would indicate that each set includes 5 tab sheets.

	MediaType ?
Modified in JDF 1.2
	enumeration
	Describes the medium being employed. Possible values are:

Disc - CD or DVD disc to be printed on. New in JDF 1.2
EmbossingFoil

Film

Foil

LaminatingFoil
Other – not one of the defined values. New in JDF 1.2
Paper

Plate

ShrinkFoil

Transparency

Unknown:

	MediaTypeDetails ?
	NMTOKEN
	Additional details of the chosen medium. If MediaTypeDetails is specified, MediaType must be specified with a value other than “Unknown”. Possible values include:

Aluminum – Conventional press plate

Cardboard

DryFilm

Continuous – Continuously connected sheets of an opaque material. Which edge is connected is not specified. Deprecated in JDF 1.2 Use same value in MediaUnit.
ContinuousLong – Continuously connected sheets of an opaque material connected along the long edge.
ContinuousShort – Continuously connected sheets of an opaque material connected along the short edge.
CtPVisiblePhotoPolymer – Visible light CtP plate with photo polymer process.

CtPVisibleSilver – Visible light CtP plate with silver halide process.

CtPThermal: – Thermal CtP plate

Envelope – Envelopes that can be used for conventional mailing purposes.
EnvelopePlain -- Envelopes that are not preprinted and have no windows.
EnvelopeWindow -- Envelopes that have windows for addressing purposes.
FullCutTabs – Media with a tab that runs the full length of the medium so that only one tab is visible extending out beyond the edge of non-tabbed media.
ImageSetterPaper – Contact paper as replacement for film.
Labels – Label stock, e.g., a sheet of peel-off labels.
Letterhead – Separately cut sheets of an opaque material including a letterhead.
MultiLayer – Form medium composed of multiple layers which are preattached to one another, e.g., for use with impact printers.
MultiPartForm – Form medium composed of multiple layers not preattached to one another; each sheet may be drawn separately from an input source.

Paper – Proof or product component paper. Deprecated in JDF 1.2 Its in MediaType.
Photographic – Separately cut sheets of an opaque material to produce photographic quality images.
PlateUV – Press plate for the UV process

Polyester – CtP press plate.
PreCutTabs – Media with tabs that are cut so that more than one tab is visible extending out beyond the edge of non-tabbed media.
Stationery – Separately cut sheets of an opaque material.
TabStock – Media with tabs, either precut or full-cut.
Tractor – Tractor feed with holes. New in JDF 1.2
Transparency – Separately cut sheets of a transparent material. Deprecated in JDF 1.2 Its in MediaType.
WetFilm – Conventional photographic film
.

	MediaUnit ?
Modified in JDF 1.2
	enumeration
	Describes the format of the media as it is delivered to the device. Possible values are:

Continuous – Continuously connected sheets which may be fan folded. Which edge is connected is not specified. New in JDF 1.2

Roll

Sheet – individual cut sheets. Default value.

	Opacity ?
Modified in JDF 1.2
	enumeration
	The opacity of the media. See OpacityLevel to specify the degree of opacity for any of these values. Possible values are:

Opaque – the media is opaque. With two-sided printing the printing on the other side does not show through under normal incident light. The default.
Translucent – The media is translucent to a system specified amount. For example, translucent media can be used for back lit viewing. New in JDF 1.2
Transparent – the media is transparent to a system specified amount.

	OpacityLevel ?
New in JDF 1.2
	number
	Normalized TAPPI Opacity, Cn, as defined and computed in ISO 2471:1998 “Paper and board – Determination of opacity (paper backing) – Diffuse reflectance method”. Refer also to TAPPI T 519 “Diffuse opacity of paper (d/0(paper backing)” for calculation examples.

	Polarity ?
	enumeration
	Polarity of the chosen medium. Possible values are:

Positive – Default value.

Negative

	PrePrinted ?
	boolean
	Indicates whether the media is preprinted. Default = false

	Recycled ?
Modified in JDF 1.2
	boolean
	If true, recycled media is requested. If not specified, the Media may or may not have recycled content.

	RecycledPercentage ?
New in JDF 1.2
	double

	The percentage, between 0 and 100, of recycled material that the media contains. Recycled must be set to true when RecycledPercentage is present. If Recycled is false or omitted, RecycledPercentage is ignored. If Recycled is true and RecycledPercentage is not present, the media contains a system specified percentage of recycled material.

	RollDiameter ?
	double
	Specifies diameter of a roll in points.

	ShrinkIndex ?

New in JDF 1.1
	XYPair
	Specifies the ratio of the media linear dimension after shrinking to prior shrinking. The X-Value specifies index in the major shrink axis, whereas the Y-Value specifies the index in the minor shrink axis. Used to describe shrink wrap media. Default = 1.0 1.0, i.e., no shrinking.

	StockType ?

New in JDF 1.1
	NMTOKEN
	Strings describing the available stock. Examples include:

Bristol

Cover

Bond

Newsprint

Index

Offset – This includes book stock.
Tag

Text

	Texture ?

New in JDF 1.1

	NMTOKEN
	The intended texture of the media. Examples include:

Antique – Rougher than vellum surface.
Calendared – Extra-smooth or polished uncoated paper.
Linen – Texture of coarse woven cloth.
Smooth

Stipple – Fine pebble finish.
Uncalendared – Rough, unpolished, and uncoated paper
Vellum – Slightly rough surface .

	Thickness ?
	double
	The thickness of the chosen medium. Measured in micron [µm].

	UserMediaType ?

Deprecated in JDF 1.1
	NMTOKEN
	A human-readable description of the type of media. The value can be used by an operator to select the correct media to load. The semantics of the values will be site-specific.

In JDF/1.0, MediaIntent and Media had the same values for the UserMediaType attribute. In JDF/1.1 Media::UserMediaType has been merged into Media::MediaTypeDetails making Media::MediaTypeDetails a superset of MediaIntent::UserMediaType. Note: MediaIntent does not have a MediaTypeDetails attribute.

Possible values include:

Continuous – Continuously connected sheets of an opaque material. Which edge is connected is not specified.
ContinuousLong – Continuously connected sheets of an opaque material connected along the long edge.
ContinuousShort – Continuously connected sheets of an opaque material connected along the short edge.
Envelope – Envelopes that can be used for conventional mailing purposes.
EnvelopePlain – Envelopes that are not preprinted and have no windows.
EnvelopeWindow – Envelopes that have windows for addressing purposes.
FullCutTabs – Media with a tab that runs the full length of the medium so that only one tab is visible extending out beyond the edge of non-tabbed media.
Labels – Label stock, e.g., a sheet of peel-off labels.
Letterhead – Separately cut sheets of an opaque material including a letterhead.
MultiLayer – Form medium composed of multiple layers which are preattached to one another, e.g., for use with impact printers.
MultiPartForm – Form medium composed of multiple layers not preattached to one another; each sheet may be drawn separately from an input source.

Photographic – Separately cut sheets of an opaque material to produce photographic quality images.
PreCutTabs – Media with tabs that are cut so that more than one tab is visible extending out beyond the edge of non-tabbed media.
Stationery – Separately cut sheets of an opaque material.
TabStock – Media with tabs, either precut or full-cut.
Transparency – Separately cut sheets of a transparent material.

	Weight ?
	double
	Weight of the chosen medium. Measured in grams per square meter [g/m²].

	Color ?

Deprecated in JDF 1.1
	refelement
	A Color resource that provides the color of the chosen medium.

7.2.92 MediaSource

Deprecated in JDF 1.1

This resource describes the source and physical orientation of the media to be used in DigitalPrinting or IDPrinting.

Resource Properties

Resource class:
Parameter

Resource referenced by:
DigitalPrintingParams, IDPrintingParams, InsertSheet, Layout, Sheet, Tile

Example Partition:
-
Input of processes:
DigitalPrinting, IDPrinting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	LeadingEdge ?
	number
	Specifies the size, in points, of the edge of the media that represents the scanline direction. If this attribute is absent, the scanline direction is assumed to be along the x-axis of the Dimension parameter for the Media.

	MediaLocation ?
	String
	Identifies the location, such as a slot name or ID, of the media in the device.

If the media resource is partitioned by Location (see also Section 3.9.2.2 Locations of Physical Resources) there should be a match between one Location partition key and this MediaLocation value.

	ManualFeed ?
	boolean
	Indicates whether the media will be fed manually. Default = false

	SheetLay ?

New in JDF 1.1
	enumeration
	Lay of input media. Reference edge of where paper is placed in feeder. Possible values are:
Left

Right

Center

Default = The device-specific machine default.

SystemSpecified = The device-specific machine default

Default = SystemSpecified

	Component ?

New in JDF 1.1
	refelement
	A Component resource which identifies the preprinted media to be used. Only one of Component or Media should be specified.

	Media ?
	refelement
	A Media resource which identifies the media to be used. Only one of Component or Media should be specified.

7.2.93 NumberingParams

This resource describes the describes the parameters of stamping or applying variable marks in order to produce unique components, for items such as lottery notes or currency. One NumberingParams element must be defined per numbering machine.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Numbering
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	NumberingParam *
	element
	Set of parameters for one numbering machine

Structure of NumberingParam Subelement

	Name
	Data Type
	Description

	StartValue ?
	string
	First value of the numbering machine.

	XPosition
	number
	Position of the numbering machine along the printer axis.

	YPosition
	NumberList
	List of stamp positions, in points, starting from the leading edge.

	Orientation
	number
	Rotation of the numbering machine in degrees. If Orientation = 0, the top of the numbers is along the leading edge.

	Step ?
	integer
	Number that specifies the difference between two subsequent numbers of the numbering machine. Default = 1

7.2.94 ObjectResolution

Modified in JDF 1.2
[added 1 attribute: AntiAliasing]
ObjectResolution defines a resolution depending on SourceObjects data types.

Resource Properties

Resource class:

Parameter

Resource referenced by:
InterpretingParams, RenderingParams, TrappingDetails
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AntiAliasing ?
New in JDF 1.2
	NMTOKEN
	Indicates the anti-aliasing algorithm that the Device must apply to the rendered output images. An anti-aliasing algorithm causes lines and curves to appear smooth which would otherwise have a jagged appearance, especially at lower resolutions, such as 300 dpi and lower. Values:

None – Anti-aliasing must not be applied.
SystemSpecified – An implementation defined anti-aliasing algorithm is to be applied - the default.

	Resolution
	XYPair
	Horizontal and vertical output resolution in DPI.

	SourceObjects ?
	enumerations
	Identifies the class(es) of incoming graphical objects to render at the specified resolution. Possible values are:

All – Default value.

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of rasterized vector art.

LineArt

SmoothShades – Gradients and blends.

Text

7.2.95 OrderingParams

Attributes of the Ordering process, which results in an acquisition.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Ordering
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Amount
	double
	Amount of the ordered resource.

	Unit
	string
	Unit of measurement for Amount.

	Comment
	telem
	OrderingParams require a Comment element that contains a human-readable description of what to order.

	Company ?

Deprecated in JDF 1.1
	refelement
	Address and further information of the Company responsible for this order. Replaced with Contact in JDF 1.1.

	Contact *

New in JDF 1.1
	refelement
	Address and further information of the Contact responsible for this order.

7.2.96 PackingParams

Deprecated in JDF 1.1

The PackingParams resource has been deprecated in version 1.1 and beyond. It is replaced by the individual resources used by the processes defined in Section 6.5.45.4 Numbering and 6.5.45.5 Packaging Processes.
This resource specifies the box packing parameters for a JDF job, using information that identifies the type of package, the wrapping used, and the shape of the package. Note that this specifies packing for shipping only, not packing of items into custom boxes etc. Boxes are convenience packaging, and are not envisioned to be protection for shipping. Cartons perform this function. All quantities are specified as finished pieces per wrapped/boxed/carton or palletized package.

The model for packaging is that products are wrapped together, wrapped packages are placed in boxes, boxes are placed in cartons, and cartons are stacked on pallets.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Packing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BoxedQuantity ?
	integer
	How many units of product in a box.

	BoxShape ?
	shape
	Describes the length, width and height of the box in points.

	CartonQuantity ?
	integer
	How many units of product in a carton.

	CartonShape ?
	shape
	Describes the length, width and height of the carton in points, e.g., 288 544 1012.

	CartonMaxWeight ?
	double
	Maximum weight of an individual carton in kilograms.

	CartonStrength ?
	double
	Strength of the carton in Newtons per square meter.

	PalletQuantity ?
	integer
	Number of product per pallet

	PalletSize ?
	XYPair
	Describes the length and width of the pallet in points, e.g., 3500 3500

	PalletMaxHeight ?
	double
	Maximum height of a loaded pallet in points.

	PalletMaxWeight ?
	double
	Maximum weight of a loaded pallet in kilograms.

	PalletType ?
	enumeration
	Type of pallet used. Examples include:

2Way – Two-way entry

4Way – Four-way entry

Euro – Standard 1*1 m Euro pallet

	PalletWrapping ?
	enumeration
	Wrapping of the completed pallet. Examples include:

StretchWrap

Banding

None – The default.

	WrappedQuantity ?
	integer
	Number of units of product per wrapped package.

	WrappingMaterial ?
	name
	Examples include:

RubberBand

ShrinkWrap

PaperBand

Polyethylene

None – The default.

7.2.97 PalletizingParams

New in JDF 1.1
PalletizingParams defines the details of Palletizing. Details of the actual palette used for Palletizing can be found in the Pallet resource that is also an input of the Palletizing process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Palletizing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Pattern ?
	string
	Name of the palletizing pattern. Used to store a predefined pattern that defines the layers and positioning of individual component on the palette. Default = equipment-specific pattern.

	MaxHeight ?
	number
	Maximum height of a loaded pallet in points. Default = equipment-specific value.

	MaxWeight ?
	number
	Maximum weight of a loaded pallet in grams.

7.2.98 Pallet

New in JDF 1.1
A Pallet represents the palette used in packing goods.

Resource Properties

Resource class:
Consumable

Resource referenced by:
-

Example Partition:
-
Input of processes:
Palletizing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	PalletType
	NMTOKEN
	Type of pallet used. Examples include:

2Way – Two-way entry

4Way – Four-way entry

Euro – Standard 1*1 m Euro pallet

	Size ?
	XYPair
	Describes the length and width of the pallet in points, e.g., 3500 3500. Default = 0 0 which specifies the size defined by PalletType.

7.2.99 PDFToPSConversion​Params

Modified in JDF 1.2

This resource specifies a set of configurable options that may be used by processes that generate PostScript files from PDF files. Font controls are applied in the following order:

1. IncludeBaseFonts

2. IncludeEmbeddedFonts

3. IncludeType1Fonts

4. IncludeType3Fonts

5. IncludeTrueTypeFonts

6. IncludeCIDFonts

For example, an embedded Type-1 font follows the rule for embedded fonts, not the rule for Type-1 fonts. In other words, if IncludeEmbeddedFonts is true, and IncludeType1Fonts is false, embedded Type-1 fonts would be included in the PostScript stream.

Resource Properties

Resource class:

Parameter
Resources referenced:
-

Example Partition:
 DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
PDFToPSConversion
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BinaryOK ?
	boolean
	If true, binary data are to be included in the PostScript stream.

Default = true

	BoundingBox ?
	rectangle
	If all zeroes, this attribute is ignored. Otherwise, it is used for BoundingBox DSC comment, in CenterCropBox calculations and for SetPageDevice. Default = 0 0 0 0

	CenterCropBox ?
	boolean
	If true, CropBox output is centered on the page when the CropBox < MediaBox. Default = true

	GeneratePageStreams ?
	boolean
	If true, the process emits individual streams of data for each page in the RunList.

Default = false

	IgnoreAnnotForms ?
	boolean
	If true, ignores annotations that contain an XObject form.

Default = false

	IgnoreBG ?

New in JDF 1.1
	boolean
	Ignores the BG,BG2 parameters in the PDF ExtGState dictionary. Default=true

	IgnoreColorSeps ?
	boolean
	If true, ignores images for Level-1 separations. Default = false.

	IgnoreDeviceExtGState ?

Deprecated in JDF 1.1
	boolean
	If true, ignores all device-dependent extended graphic state parameters. This overrides IgnoreHalftones. The following parameters should be ignored:

op OP – Overprint parameter

OPM – Overprint mode

BG, BG2 – Black generation

UCR, UCR2 – Undercolor removal

TR, TR2 – Transfer functions

HT – Halftone dictionary

FL – Flatness tolerance

SA – Automatic stroke adjustment

Default = true

	IgnoreDSC ?
	boolean
	If true, ignores DSC (Document Structuring Conventions).

Default = true

	IgnoreExternSreamRef ?
	boolean
	If an image resource uses an external stream and IgnoreExternStreamRef = true, ignores code that points to the external file.

Default = false

	IgnoreHalftones ?
	boolean
	If true, ignores any halftone screening in the PDF file.

Default = false

	IgnoreOverprint ?

New in JDF 1.1
	boolean
	Ignores the OP, op parameters in the PDF ExtGState dictionary. Default=true

	IgnorePageRotation ?
	boolean
	If true, ignores a concat provided at the beginning of each page that orients the page so that it is properly rotated. Used when emitting EPS. Default = false

	IgnoreRawData ?
	boolean
	If true, no unnecessary filters should be added when emitting image data. Default = false

	IgnoreSeparableImages​Only ?
	boolean
	If true, and if emitting EPS, ignores only CMYK and gray images.

Default = false

	IgnoreShowPage ?
	boolean
	If true, ignores save-and-restore showpage in PostScript files.

Default = false

	IgnoreTransfers ?

New in JDF 1.1
	boolean
	Ignores the TR,TR2 parameters in the PDF ExtGState dictionary. Default = true

	IgnoreTTFontsFirst ?
	boolean
	If true, ignores TrueType fonts before any other fonts.

Default = false

	IgnoreUCR ?

New in JDF 1.1
	boolean
	Ignores the UCR, UCR2 parameters in the PDF ExtGState dictionary. Default=true

	IncludeBaseFonts ?
	enumeration
	Determines when to embed the base fonts. Possible values are:

IncludeNever – Default value

IncludeOncePerDoc
IncludeOncePerPage

	IncludeCIDFonts ?
	enumeration
	Determines when to embed CID fonts. Possible values are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

	IncludeEmbeddedFonts ?
	enumeration
	Determines when to embed fonts in the document that are embedded in the PDF file. This attribute overrides the IncludeType1Fonts, IncludeTrueTypeFonts, and IncludeCIDFonts attributes. Possible values are:

IncludeNever
IncludeOncePerDoc – Default value.

IncludeOncePerPage

	IncludeOtherResources ?
	enumeration
	Determines when to include all other types of resources in the file. Possible values are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

	IncludeProcSets ?
	enumeration
	Determines when to include ProcSets in the file. Possible values are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

	IncludeTrueTypeFonts ?
	enumeration
	Determines when to embed TrueType fonts. Possible values are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

	IncludeType1Fonts ?
	enumeration
	Determines when to embed Type-1 fonts. Possible values are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

	IncludeType3Fonts ?
	enumeration
	Determines when to embed Type-3 fonts. Must always be set to IncludeOncePerPage. It is included here to complete the precedence hierarchy.

	OutputType ?
Modified in JDF 1.2

	enumeration
	Describes the kind of output to be generated. Possible values are:

PostScript – Default value
EPS

	PSLevel ?
	integer
	Number that indicates the PostScript level.. Default = 2

	Scale ?
	Number
	Number that indicates the wide-scale factor of documents. Full-size = 100. Default = 100

	SetPageSize ?
	boolean
	(PostScript Level 2 only) If true, sets page size on each page automatically. Use media box for outputting PostScript files and crop box for EPS. Default = false.

	SetupProcsets ?
	boolean
	If true, indicates that if procsets are included, the init/term code is also included. Default = true

	ShrinkToFit ?
	boolean
	If true, the page is scaled to fit the printer page size. This field overrides scale. Default = false

	SuppressCenter ?
	boolean
	If true, suppresses automatic centering of page contents whose crop box is smaller than the page size. Default = false

	SuppressRotate ?
	boolean
	If true, suppresses automatic rotation of pages when their dimensions are better suited to landscape orientation. More specifically, the application that generates the PostScript compares the dimensions of the page. If the width is greater than the height, then pages are not rotated if SupressRotate is true. On the other hand, if SupressRotate is false, the value of the PDF Rotate key for each page is honored, regardless of the dimensions of the pages (as defined by the MediaBox attribute). Default = false

	TTasT42 ?
	boolean
	If including TrueType fonts, converts to Type-42 instead of Type-1 fonts when TTasT42 = true. Default = false

	UseFontAliasNames ?
	boolean
	If true, font alias names are used when printing with system fonts.

Default = false

7.2.100 PDLResourceAlias

This resource provides a mechanism for referencing resources that occur in files, or that are expected to be provided by devices. Prepress and printing processes have traditionally used the word “resource” to refer to reusable data structures that are needed to perform processes. Examples of such resources include fonts, halftones, and functions. The formats of these resources are defined within PDLs, and instances of these resources may occur within PDL files, or may be provided by devices.

JDF does not provide a syntax for defining such resources directly within a job. Instead, resources continue to occur within PDL files and continue to be provided by devices. However, since it is necessary to be able to refer to these resources from JDF jobs, the PDLResourceAlias resource is provided to fulfill this need.

Resource Properties

Resource class:
Parameter

Resource referenced by:
ColorantControl
Example Partition:
-
Input of processes:
Interpreting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ResourceType
	string
	The type of PDL resource that is referenced. The semantic of this attribute is defined by the PDL.

	SourceName ?
	string
	The name of the resource in the file referenced by the FileSpec element or by the device.

	FileSpec ?
	refelement
	Location of the file containing the PDL resource. If FileSpec is absent, the device is expected to provide the resource defined by this PDLResourceAlias resource.

7.2.101 PerforatingParams

New in JDF 1.1
PerforatingParams define the parameters for perforating a sheet .

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Perforating
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Perforate *
	element
	definition of one or more Perforate lines.

Structure of the Perforate element

Perforate describes one perforated line.

	Name
	Data Type
	Description

	StartPosition
	XYPair
	Starting position of the tool.

	WorkingPath
	XYPair
	Relative working path of the tool. Since the tools can only work parallel to the edges, one coordinate must be zero.

	WorkingDirection
	enumeration
	Direction from which the tool is working. Possible values are:

Top – From above

Bottom – From below

	TeethPer​Dimension ?
	number
	Number of teeth in a given perforation extent in teeth/point.

MicroPerforation is defined by specifying a large number of teeth (n>1000).

7.2.102 Person

This resource provides detailed information about a person. It also has the ability to specify different communication channels to this person. The structure of the resource is derived from the vCard format. It contains all of the same name subtypes (N:) of the identification and the title of the organizational properties. The corresponding XML types of the vCard are quoted in the description field of the table below.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Contact, Employee
Example Partition:
-
Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AdditionalNames ?
	string
	Additional names of the contact person (vCard: N:other).

	FamilyName ?
	string
	The family name of the contact person (vCard: N:family).

	FirstName ?
	string
	The first name of the contact person (vCard: N:given).

	JobTitle ?
	string
	Job function of the person in the company or organization (vCard: title).

	NamePrefix ?
	string
	Prefix of the name, may include title (vCard: N:prefix).

	NameSuffix ?
	string
	Suffix of the name (vCard: N:suffix).

	ComChannel *
	element
	Communication channels to the person.

7.2.103 PlaceHolderResource

This resource is used to link ProcessGroup nodes when the exact nature of interchange resources is still unknown. In this way, a skeleton of process networks can be constructed, with the PlaceHolderResource resources serving as place holders in lieu of the appropriate resources. This resource needs no structure besides that provided in an abstract Resource element, as it has no inherent value except as a stand-in for other resources.

Resource Properties

Resource class:
PlaceHolder

Resource referenced by:
-

Example Partition:
-
Input of processes:
any ProcessGroup nodes

Output of processes:
any ProcessGroup nodes

Resource Structure

The resource has no additional structure.

7.2.104 PlasticCombBindingParams

Modified in JDF 1.2
[Added ReferenceEdge attribute.]
This resource describes the details of the PlasticCombBinding process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
PlasticCombBinding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Brand ?
	string
	The name of the comb manufacturer and the name of the specific item. Default =system specified.

	Color ?
	NamedColor
	Determines the color of the plastic comb. Default =system specified.

	Diameter ?
	double
	The comb diameter is determined by the height of the block of sheets to be bound. Default =system specified.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be bound for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the PlasticCombBinding process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be bound. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	Thickness ?
	double
	The material thickness of the comb. Default =system specified.

	Type ?

Modified in JDF 1.1
	enumeration
	The distance between the “teeth” and the distance between the holes of the prepunched sheets must be the same. The following values from the hole type catalog in Appendix L exist:

P12m-rect-02: Distance = 12 mm; Holes = 7 mm x 3 mm

P16_9i-rect-0t: Distance = 14.28 mm; Holes = 8 mm x 3 mm

The following values are deprecated in JDF 1.1.

Euro (Distance = 12 mm; Holes = 7 mm x 3 mm)

USA1 (Distance = 14.28 mm; Holes = 8 mm x 3 mm)

7.2.105 PlateCopyParams

Deprecated in JDF 1.1

This resource specifies the parameters of the FilmToPlateCopying process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-

Input of processes:
FilmToPlateCopying
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Cycle ?
	integer
	Number of exposure light units to be used. The amount depends on the subject to be exposed.

	Diffusion ?
	enumeration
	The diffusion foil setting. Possible values are:

On

Off

	Vacuum ?
	double
	Amount of vacuum pressure to be used. Measured in bars.

7.2.106 PreflightAnalysis

Note that the resources for Preflight are under development and subject to major changes in a future release of this specification.

PreflightAnalysis resources record the results of a Preflight process. The semantics for results are specific to the FileType of the file. The elements in this resource, detailed in the table below, place the results in specific categories. The value for each of these elements is an array of PreflightResultsDetail and PreflightInstance subelements. Within the PreflightInstance subelements, results are further broken down into PreflightInstanceDetails.

Each PreflightResultsDetail and PreflightInstance subelement in the PreflightAnalysis hierarchy describes the results of a comparison of the properties of the file against one PreflightConstraint in the PreflightProfile.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-
Example Partition:
-
Input of processes:
-

Output of processes:
Preflight
Resource Structure

	Name
	Data Type
	Description

	ColorsResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides analysis about color.

	DocumentResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides analysis about documents.

	FontsResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides analysis about fonts.

	FileTypeResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides analysis about file types.

	ImagesResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides analysis about images.

	PagesResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides analysis about pages.

Structure of PreflightDetail Subelement

PreflightDetail subelements are used to describe one property within the PreflightAnalysis category in which they occur. This subelement is also used by PreflightInventory resource.

	Name
	Data Type
	Description

	PageRefs
	IntegerRangeList
	Identifies the set of pages in a RunList resource that exhibit the characteristic identified by the combination of the Property attribute and the Value element.

	Property ?
	string
	Identifies the property described by this element.

	Status ?
	enumeration
	Possible values are:

Error – Value violates the ConstraintValue specified in the associated PreflightConstraint element. The constraint was flagged as an Error in the profile.

Warning – Value violates the ConstraintValue specified in the associated PreflightConstraint element. The constraint was flagged as a Warning in the profile.

Ignore – The constraint is ignored, and no PreflightDetail or PreflightInstanceDetail elements are created for this constraint.

IgnoreValue – No comparison was made against a ConstraintValue. In other words, either the Status for the PreflightConstraint was Ignore or IgnoreValue, or this PreflightDetail is part of a PreflightInventory hierarchy.

	Value ?
	element
	Identifies the value of the property. The semantics are PDL-specific.

Structure of PreflightInstance Subelement

PreflightInstance subelements are used to collect PreflightInstanceDetail elements for one instance of some object which occurs in the PDL files referenced by a run list. For example, there might be one PreflightInstance element for each font that occurs in the pages of a run list. This subelement is also used by PreflightInventory resources.

	Name
	Data Type
	Description

	Identifier ?
	string
	Identifies the instance this element collects PreflightInstanceDetail elements.

	PageRefs

Modified in JDF 1.1
	IntegerRangeList
	Identifies the set of pages in a RunList on which the instance occurs.

	PreflightInstanceDetail *

Modified in JDF 1.1
	element
	A pool of PreflightInstanceDetail elements that describe the properties for this instance

Structure of PreflightInstanceDetail Subelement

PreflightInstanceDetail subelements describe one property of one instance of some object type that occurs in a PDL file. For example, several PreflightInstanceDetail elements might describe the properties of a single font.

This subelement is also used by PreflightInventory resources.

	Name
	Data Type
	Description

	Status ?
	enumeration
	Specifies the results of the comparison between the value of the property for this instance with the ConstraintValue for the associated PreflightConstraint element.

Possible values are:

Error – Value violates the ConstraintValue specified. The constraint was flagged as an Error in the profile.

Warning – Value violates the ConstraintValue specified. The constraint was flagged as a Warning in the profile.

IgnoreValue – No comparison was made against a ConstraintValue. In other words, either the Status for the Constraint was Ignore or IgnoreValue, or this PreflightInstanceDetail is part of a PreflightInventory hierarchy.

	Property ?
	string
	Identifies the property described by this element.

	Value ?
	element
	Identifies the value of the property. The semantics are PDL-specific.

7.2.107 PreflightInventory

Note that the resources for Preflight are under development and subject to major changes in a future release of this specification.

PreflightInventory resources, like PreflightAnalysis resources, record the results of a Preflight process. The semantics for results are specific to the FileType of the for the file. The elements in this resource, detailed in the table below, place the results in specific categories. The value of each of these elements is an array of PreflightResultsDetail and PreflightInstance subelements. Within the PreflightInstance subelements, results are further broken down into PreflightInstanceDetails.

Each PreflightResultsDetail or PreflightInstance subelement in the PreflightInventory hierarchy describes the results of a comparison of the properties of the file against one PreflightConstraint in the PreflightProfile.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-
Example Partition:
-
Input of processes:
Preflight
Output of processes:
Preflight
Resource Structure

	Name
	Data Type
	Description

	ColorsResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides a color inventory.

	DocumentResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides a document inventory.

	FontsResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides a font inventory.

	FileTypeResultsPool ?
	element
	A PreflightDetail and PreflightInstance subelement that provides a file-type inventory.

	ImagesResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides an image inventory.

	PagesResultsPool ?
	element
	A pool of PreflightDetail and PreflightInstance subelements that provides a page inventory.

7.2.108 PreflightProfile

Note that the resources for Preflight are under development and subject to major changes in a future release of this specification.

PreflightProfile resources specify a set of constraints against which a file may be tested. The semantics for constraints are specific to the FileType of the for the file. The elements in this resource, detailed in the table below, place the results in specific categories. The value for each of these elements is an array of PreflightConstraint subelements. Within the PreflightConstraint resources, the ConstraintValue element indicates allowable values and the Status attribute indicates the error level (if any) to be flagged when exceptions to the constraints are identified.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-
Example Partition:
-
Input of processes:
Preflight
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ColorsContraintsPool ?
	element
	A pool of PreflightConstraint subelements. Each element in this pool identifies a specific constraint concerning colors against which to test the file

	DocumentConstraintsPool ?
	element
	A pool of PreflightConstraint subelements. Each element in this pool identifies a specific constraint concerning documents against which to test the file

	FontsConstraintsPool ?
	element
	A pool of PreflightConstraint subelements. Each element in this pool identifies a specific constraint concerning fonts against which to test the file

	FileTypeConstraintsPool ?
	element
	A Preflight constraint. The Type attribute must have a value of array and must contain string objects that identify the allowable types of data in the file. The strings in the Value array must be MIME-file types as recorded by the Internet Assigned Numbers Authority (IANA). IANA has procedures for registering new file types if needed.

	ImagesConstraintsPool ?
	element
	A pool of PreflightConstraint subelements. Each element in this pool identifies a specific constraint concerning images against which to test the file

	PagesConstraintsPool ?
	element
	A pool of PreflightConstraint subelements. Each element in this pool identifies a specific constraint concerning pages against which to test the file

Structure of PreflightConstraint Subelement

	Name
	Data Type
	Description

	AttemptFixupErrors ?
	boolean
	If true, the device performing preflight should attempt to fix errors that are identified during preflight. Errors that are corrected are not given a Status attribute. Default = false

	AttemptFixupWarnings ?
	boolean
	If true, the device performing preflight should attempt to fix warnings that are identified during preflight. Warnings that are corrected are not given a Status attribute. Default = false

	Constraint ?
	string
	Describes the specific file characteristic to be checked.

	Status
	enumeration
	Possible values are:

Error – Values that violate the ConstraintValue specified are flagged as Errors in PreflightDetail and PreflightInstanceDetail elements.

Warning – Values that violate the ConstraintValue specified are flagged as Warnings in PreflightDetail and PreflightInstanceDetail elements.

Ignore – The constraint is ignored, and no PreflightDetail or PreflightInstanceDetail elements are created for this constraint.

IgnoreValue – No comparison is made against the ConstraintValue.

	ConstraintValue ?
	element
	Provides a value against which to test occurrences of the characteristic in the file.

Note: The semantics of the ConstraintValue element depend on the PDL characteristic in question.

7.2.109 Preview

The preview of the content of a surface. It can be used for the calculation of the ink coverage (PreviewType = Separation) or as a preview of what is currently processed in a device (PreviewType = Viewable). When the preview is of Type = Separation, a gray value of 0 represents full ink, while a value of 255 represents no ink (for more information, see DeviceGray color model chapter 4.8.2. of the PostScript Language Reference Manual).

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
PreviewType, Separation, SheetName, Side, TileID, WebName, RibbonName
Input of processes:
InkZoneCalculation
Output of processes:
PreviewGeneration
Resource Structure

	Name
	Data Type
	Description

	Compensation ?
	enumeration
	Compensation of the image to reflect the application of transfer curves to the image. Possible values are:

Unknown – Default value.

None – No compensation.

Film – Compensated until film exposure.

Plate – Compensated until plate exposure.

Press – Compensated until press.

	CTM ?

New in JDF 1.1
	matrix
	Orientation of the Preview w.r.t. the coordinate system of the device that is defined in Compensation. Default = identity matrix 1 0 0 1 0 0

	Directory ?

New in JDF 1.1
	URL
	Defines a directory where the files that are associated with this Preview should be copied to or from. If Directory is not specified, the URL must be completely specified.

	PreviewType
	enumeration
	Type of the preview. Possible values are:

Separation – Separated preview in medium resolution.
SeparatedThumbNail – Very low resolution separated preview.
ThumbNail – Very low resolution RGB preview.
Viewable – RGB preview in medium resolution.

	URL
	URL
	URL identifying the PNG image file that represents this Preview. This is a normally a URL to a MIME subpart (see Section A.4.1).

Note: A preview will generally be partitioned by separation, unless it represents an RGB viewable image or thumbnail.

7.2.110 PreviewGeneration​Params

Parameters specifying the size and the type of the preview.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
PreviewType, Separation, SheetName, Side, TileID, WebName, RibbonName

Input of processes:
PreviewGeneration
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AspectRatio ?

New in JDF 1.1
	enumeration
	Policy that defines how to define the preview size if the aspect ratio of the source and preview are different. Note that AspectRatio only has an effect if Size is specified. One of:

CenterMax – Keep the aspect ratio and preview Size and center the image so that the preview has missing pixels at both sides of the larger dimension.

CenterMin – Keep the aspect ratio and preview Size and center the image so that the preview has blank pixels at both sides of the smaller dimension.

Crop – Keep the aspect ratio and modify the preview size so that the image fits into a bounding rectangle defined by Size.

Expand – Keep the aspect ratio and modify the preview size so that the smaller image dimension is defined by Size.

Ignore – Fill the preview completely, keeping Size, even if this requires modifying the aspect ratio. The default.

	PreviewType ?

Deprecated in JDF 1.1
	enumeration
	The kind of preview to be generated. Possible values are:

Separation

Viewable

	PreviewUsage

New in JDF 1.1?
	enumeration
	The kind of preview to be generated. Possible values are:

Separation: separated preview in medium resolution.
SeparatedThumbNail: Very low resolution separated preview.
ThumbNail: Very low resolution rgb preview.
Viewable: rgb preview in medium resolution.

	Resolution ?
	XYPair
	Resolution of the preview, in DPI.

Default = 50.8 50.8 dpi.

	Size ?
	XYPair
	Size of the preview, in pixels. If this attribute is present, the Resolution attribute evaluated according to the policy defined in AspectRatio. If Size is not specified, it defaults to “0 0“ and must be calculated using the Resolution attribute and the input image size.

	ImageSetterParams ?

New in JDF 1.1
	refelement
	Details of the ImageSetting process. Needed for accessing information about coordinate transformations that are performed by the image setter hardware.

7.2.111 ProofingParams

Deprecated in JDF 1.2

[1 ISSUE (O & P WG)]
ISSUE (O & P WG): ProofingParams is being DEPRECATED in JDF/1.2, along with Proofing and SoftProofing processes, right?

This resource specifies the settings needed for all proofing operations, including both “hard” or “soft” proofing, of color and imposition proofs.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
Proofing, SoftProofing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ColorType ?
	Enumeration
	Color quality of the proof. Possible values are:

Monochrome – Black and white.

BasicColor – Color does not match precisely. This implies the absence of a color matching system.

MatchedColor – Color is matched to the output of the press using a color matching system.

	DisplayTraps ?
	boolean
	If true, the trap networks are shown in the proof. Default = false

	HalfTone ?
	boolean
	Specifies whether the proof should emulate halftone screens.

Default = false

	ImageViewingStrategy ?
	string
	Identifies which images will be displayed during the SoftProofing process. Possible values are:

NoImages – Default value.

OmitReference – Displays only images actually embedded in the file.

UseProxies – Displays images embedded in the file and proxy versions of referenced data.

UseReplacements – Displays embedded images plus the full resolution version of referenced images.

	ManualFeed ?

New in JDF 1.1
	boolean
	Indicates whether the media will be fed manually. Default = false

	ProofRenderingIntent ?

New in JDF 1.1
	enumeration
	Identifies the rendering intents associated with the proof. Possible ICC-defined rendering intent values are:

Saturation

Perceptual – The default.
RelativeColorimetric

AbsoluteColorimetric

	ProofType ?
	enumeration
	Describes the type of the proof. Possible values are:

None – Default value. Not a proof or the type is unknown.

Page – Page proof

Imposition – Imposition proof.

	Resolution ?
	XYPair
	Resolution of the output.

	FileSpec ?
	refelement
	A FileSpec resource pointing to an ICC profile that describes the proofer device. The ResourceUsage attribute of the FileSpec must be “ProoferProfile”.

	Media ?
	refelement
	Describes the media to be used.

7.2.112 PSToPDFConversionParams

[Corrected Input of processes]
This resource contains the parameters that control the conversion of PostScript streams to PDF pages.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
PSToPDFConversion

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ASCII85EncodePages ?
	boolean
	If true, binary streams such as page contents streams, sampled images, and embedded fonts are ASCII85-encoded, resulting in a PDF file that is almost pure ASCII. If false, they are not, resulting in a PDF file that may contain substantial amounts of binary data.

Default = false

	AutoRotatePages ?
	enumeration
	Allows the device to try to orient pages based on the predominant text orientation. Only used if the file does not contain “%%ViewingOrientation”, “%%PageOrientation”, or “%%Orientation” DSC comments. If the file does contain such DSC comments, it honors them. “%%ViewingOrientation” takes precedence over others, then “%%PageOrientation”, then “%%Orientation”. Possible values are:

None – Turns AutoRotatePages off.

All – Takes the predominant text orientation across all pages and rotates all pages the same way.

PageByPage – Does the rotation on a page-by-page basis, rotating each page individually. Useful for documents that use both portrait and landscape orientations. Default = None

	Binding ?
	enumeration
	Determines how the printed pages would be bound. Specify Left for left binding or Right for right binding. Default = Left

	CompressPages ?
	boolean
	Enables compression of pages and other content streams like forms, patterns and Type 3 fonts. If true, use Flate compression.

	DefaultRenderingIntent ?
	enumeration
	Selects the rendering intent for the current job. Possible values are:

Default – The default.

Perceptual

Saturation

RelativeColorimetric

AbsoluteColorimetric

See the Portable Document Format Reference Manual for more information on rendering intent.

	DetectBlend ?
	boolean
	Enables or disables blend detection. If true, and if PDFVersion is 1.3 or higher, then blends will be converted to smooth shadings.

Default = true

	DoThumbnails ?
	boolean
	If true, thumbnails are created. Default = true

	EndPage ?
	integer
	Number that indicates the last page that is displayed when the PDF file is viewed. EndPage must equal be to anything less than StartPage or be greater than or equal to 1. If not, then it must be greater than or equal to StartPage. When combined with StartPage, EndPage selects a range of pages to be displayed. The entire file may or may not be distilled, but only StartPage to EndPage pages, inclusive, are opened and viewed in Acrobat.

	ImageMemory ?
	integer
	Number of bytes in the buffer used in sample processing for color, grayscale, and monochrome images. Its contents are written to disk when the buffer fills up.

	InitialPageSize ?

New in JDF 1.1
	XYPair
	Defines the initial page dimensions assumed by the PS-to-PDF converter in points. This will be overridden by any PageSize page device parameter found in the PostScript stream. The use of this attribute is strongly encouraged if the PS-to-PDF converter may be used to process Encapsulated PostScript files.

Default = system specific

	InitialResolution ?

New in JDF 1.1
	XYPair
	Defines the initial horizontal and vertical resolution of the PS-to-PDF converter in DPI. This will be overridden by any HWResolution page device parameter found in the PostScript stream. The use of this attribute is strongly encouraged if the PS-to-PDF converter may be used to process Encapsulated PostScript files.

Default = system specific

	OverPrintMode ?
	integer
	Controls the overprint mode strategy of the job. Set to 0 for full overprint or 1 for non-zero overprint. For more information, see http://partners.adobe.com/asn/developer/PDFS/TN/5044.ColorSep_Conv.pdf

	Optimize ?
	boolean
	If true, the PS-to-PDF converter optimizes the PDF file. See the Portable Document Format Reference Manual for more information on optimization. Default = true

	PDFVersion ?
	double
	Specifies the version number of the PDF file produced. Possible values include all legal version designators, e.g., 1.2, 1.3, 1.4.

	StartPage ?
	integer
	Sets the first page that is be displayed when the PDF file is opened with Acrobat. StartPage must be greater than or equal to 1. If EndPage is not -1, then it must be greater than or equal to StartPage.

	AdvancedParams ?
	element
	Advanced parameters which control how certain features of PostScript are handled.

	ThinPDFParams ?
	element
	Parameters that control the optional content or form of PDF files that will be created.

Structure of AdvancedParams Subelement

	Name
	Data Type
	Description

	AutoPositionEPSInfo ?

Modified in JDF1.1A
	boolean
	If true, the process automatically resizes and centers EPS information on the page. Default = true

	EmitDSCWarnings ?
	boolean
	If true, warning messages about questionable or incorrect DSC comments appear during the distilling of the PS file. Default = false

	LockDistillerParams ?
	boolean
	If true, the incoming PS content that specifies any of the PSToPDFConversionParams settings is used. If false, any PSToPDFConversionParams settings configured by the PS content are ignored. Default = true

	ParseDSCComments ?
	boolean
	If true, the process parses the DSC comments for any information that might be helpful for converting the file or for information that must be stored in the PDF file. If false, the process treats the DSC comments as pure PS comments and ignores them. Default = true

	ParseDSCCommentForDocInfo ?
	boolean
	If true, the process parses the DSC comments in the PS file and extracts the document information. This information is recorded in the Info dictionary of the PDF file. Default = true

	PreserveCopyPage ?
	boolean
	If true, the copypage operator of PostScript Level 2 is maintained. If false, the PostScript Level 3 definition of copypage operator is used.

In PostScript Levels 1 and 2, the copypage operator transmits the page contents to the current output device (similar to showpage). However, copypage does not perform many of the reinitializations that showpage does.

Many PostScript Level 1 and 2 programs used the copypage operator to perform such operations as printing multiple copies and implementing forms. These programs produce incorrect results when interpreted using the Level 3 copypage semantics. This attribute provides a mechanism to retain Level 2 compatibility for this operator.

Default = true

	PreserveEPSInfo ?
	boolean
	If true, preserves the EPS information in the PS file and stores it in the resulting PDF file. Default = true

	PreserveHalftoneInfo ?

New in JDF 1.1
	boolean
	If true, passes halftone screen information (frequency, angle, and spot function) into the PDF file. If false, halftone information is not passed in. Default = false

	PreserveOverprint​Settings ?

New in JDF 1.1
	boolean
	If true, Distiller passes the value of the setoverprint operator through to the PDF file. Otherwise, overprint is ignored. Default = true

	PreserveOPIComments ?
	boolean
	If true, encapsulates Open Prepress Interface (OPI) low resolution images as a form and preserves information for locating the high resolution images. Default = true

	TransferFunctionInfo ?

New in JDF 1.1
	enumeration
	Determines how transfer functions are handled. Possible values are:

Preserve – Transfer functions are passed into the PDF file.

Remove – Transfer functions are ignored. They are neither applied to the color values nor passed into the PDF file.

Apply – Transfer functions are used to modify the data that is written to the PDF file, instead of writing the transfer function itself to the file.

Default = Preserve

	UCRandBGInfo ?

New in JDF 1.1
	enumeration
	Determines whether the arguments to the PostScript commands “setundercolorremoval” and “setblackgeneration” are passed into the PDF file. Possible values are:

Preserve – The arguments are passed into the PDF file.

Remove – The arguments are ignored.

Default = Preserve

	UsePrologue ?
	boolean
	If true, the process must prepend a PostScript prologue file to the job and append a PostScript epilog file to the job. Such files are used to control the PostScript environment for the conversion process. The expected location and allowable contents for these files is defined by the process implementation. Default = false

Structure of ThinPDFParams Subelement

	Name
	Data Type
	Description

	FilePerPage ?
	boolean
	If true, the process generates 1 PDF file per page. Default = false

	SidelineFonts ?
	boolean
	If true, font data are stored in external files during PDF generation.

Default = false

	SidelineImages ?
	boolean
	If true, image data are stored in an external stream during the PDF Generation phase. This prevents large amounts of image data from having to be passed through all phases of the code generation process. Default = false

7.2.113 RegisterMark

Modified in JDF 1.2
Changed SeparationSpec * to a refelement for consistency.
Defines a register mark, which can be used for setting up and monitoring color registration in a printing process. It can also be used to synchronize the paper position in a paper path. The position and rotation of each register mark can be specified with the help of the following attributes. It is important that the register marks are defined in such a way that their centers are on the point of origin of the coordinate system, as otherwise they are not positioned properly.

Resource Properties

Resource class:
Parameter

Resource referenced by:
Surface
Example Partition:
-
Input of processes:
Any printing process

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Center
	XYPair
	Position of the center of the register mark in the coordinates of the MarkObject that contains this mark.

	MarkType ?
	NMTOKEN
	Type of register mark. Possible values include:

Arc

Circle

Cross

	MarkUsage ?

New in JDF 1.1
	enumerations
	Specifies the usage of the RegisterMark. Allowed values are:

Color – The mark is used for separation color registration.

PaperPath – The mark is used for paper path synchronization.

	Rotation ?
	double
	Rotation in degrees. Positive graduation figures indicate counter-clockwise rotation; negative figures indicate clockwise rotation.

	SeparationSpec *
Modified in JDF 1.2
	refelement
	Set of separations to which the register mark is bound.

7.2.114 RegisterRibbon

New in JDF 1.1
Description of register ribbons. For the register ribbon the length should be given. There are two parameters:

Figure 7.17Parameters and Coordinate System for BlockPreparation

Resource Properties

Resource class:
Consumable

Resource referenced by:
Block​Preparation​Params
Example Partition:
-
Input of processes:
-

Resource Structure

	Name
	Data Type
	Description

	LengthOverall
	number
	Overall length of the register ribbon, i.e., 1+2 in the picture above.

	Material ?
	string
	Material of the register ribbon. Default =system specified.

	RibbonColor ?
	NamedColor
	Color of the ribbon. Default =system specified.

	RibbonEnd ?
	NMTOKEN
	End of the Ribbon. Values include:

Cut

CutSealed

Knot

SealedOffset – The ribbon is sealed a distance from the cut. Default =system specified.

	VisibleLength
	number
	Length of the register ribbon which will be seen when opening the book, i.e., 2 in picture above.

7.2.115 RenderingParams

This set of parameters identifies how the Rendering process should operate. Specifically, these parameters define the expected output of the ByteMap resource that the Rendering process creates.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
 Rendering
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BandHeight ?
	integer
	Height of output bands expressed in lines. For a frame device, the band height is simply the full height of the frame.

Default = device specific

	BandOrdering ?
	enumeration
	Indicates whether output buffers are generated in BandMajor or ColorMajor order. Possible values are:

ColorMajor – Only an option when dealing with non-interleaved data.

Default = device specific

	BandWidth ?
	integer
	Width of output bands expressed in pixels.

Default = device specific

	ColorantDepth ?
Clarified in JDF 1.2
	integer
	Number of bits per colorant. Determines whether the output is bitmaps or bytemaps.
Default = device specific

	Interleaved ?
	boolean
	If true, the resulting colorant values are interleaved and BandOrdering is ignored. Default = device specific

	AutomatedOverprint​Params ?
	refelement
	Optional controls for overprint substitutions.

Defaults to no automated overprint generation.

	ObjectResolution +
	refelement
	Elements which define the resolutions to render the contents at. More than one element may be used to specify different resolutions for different SourceObject types. Default = device specific

	Media ?

New in JDF 1.1

	refelement
	This resource provides a description of the physical media which will be marked. The physical characteristics of the media may affect decisions made during Rendering.

7.2.116 Resource​Definition​Params

This set of parameters identifies how the ResourceDefinition process should operate. Specifically, these parameters define how default parameters of applications and the input resource should be combined.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
ResourceDefinition
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DefaultID ?

Deprecated in JDF 1.1
	NMTOKEN
	JDF ID of the default resource. If missing, it is assumed that the file specified by DefaultJDF contains only a JDF resource element, not a complete JDF.

	DefaultJDF ?
	URL
	Link to a JDF resource that defines preset values.

	DefaultPriority ?
	enumeration
	Defines whether preset values of the application or of the Resource specified in DefaultJDF have priority. Possible values are:

Application – The application default settings are used to fill the resource.
DefaultJDF – The Settings specified in DefaultJDF are applied. The default.

	ResourceParam +

New in JDF 1.1
	refelement
	Specification of the definition parameters of one individual resource.

Structure of the ResourceParam Subelement

New in JDF 1.1
	Name
	Data Type
	Description

	DefaultID ?
	NMTOKEN
	JDF ID of the default resource. If missing, it is assumed that the file specified by DefaultJDF contains only a JDF resource element, not a complete JDF.

	DefaultJDF ?
	URL
	Link to a JDF resource that defines preset values. Defaults to the DefaultJDF specified in Resource​Definition​Params.

	DefaultPriority ?
	enumeration
	Defines whether preset values of the application or of the Resource specified in DefaultJDF have priority. Possible values are:

Application

DefaultJDF
Defaults to the DefaultPriority specified in Resource​Definition​Params.

7.2.117 RingBindingParams

Modified in JDF 1.2
[Added ReferenceEdge attribute.]
This resource describes the details of the RingBinding process.
Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
RingBinding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BinderColor ?
	NamedColor
	Color of the ring binder.

	BinderMaterial ?
	NMTOKEN
	The following describe RingBinding binder materials used. Values include:

Cardboard – Cardboard with no covering.

ClothCovered – Cardboard with cloth covering.
PVC – Solid PVC.
PVCCovered – Cardboard with PVC covering.

	BinderName ?
	string
	The name of the binder manufacturer and the name of the specific item.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be bound for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the RingBinding process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be bound. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	RingDiameter ?
	double
	Diameter of the rings in points.

	RingMechanic ?
	boolean
	If true, a hand lever is available for opening. Default = false

	RingShape ?
	NMTOKEN
	The possible values include the following RingBinding shapes:

Round – The default.
Oval

D-shape

SlantD

	RingSystem ?

Deprecated in JDF 1.1
	enumeration
	The following ring binding systems are used:

2HoleEuro – in Europe

3HoleUS – in North America

4HoleEuro – in Europe

	RivetsExposed ?
	boolean
	The following RingBinding choice describes mounting of ring mechanism in binder case.

If true, the heads of the rivets are visible on the exterior of the binder. If false, the binder covering material covers the rivet heads.

Default = true

	SpineColor ?
	NamedColor
	Color of the binders spine.

	SpineWidth ?
	double
	The spine width is determined by the final height of the block of sheets to be bound.

	ViewBinder ?
	NMTOKEN
	The possible values include the following RingBinding clear vinyl outer-wrap types on top of a colored base wrap:

Embedded – Printed material is embedded by sealing between the colored and clear vinyl layers during the binder manufacturing.

Pocket – Binder is designed so that Printed material may be inserted between the color and clear vinyl layers after the binder is manufactured.

7.2.118 RunList

Modified in JDF 1.2
[Added EndOfBundleItem attribute.]
RunList resources describe an ordered set of LayoutElement or ByteMap elements. Ordering and structure are defined using the generic partitioning mechanisms as described in 3.9.2 Description of Partitionable Resources.
RunList resources are used whenever an ordered set of page descriptions elements are required. Depending on the process usage of a RunList, only certain Types of LayoutElement may be valid. For example, a pre-RIP imposition process requires LayoutElement elements of Type page or document, whereas a post-RIP imposition process requires ByteMap elements. The usage is detailed in the descriptions of the processes that use the RunList resource.

RunList resources allow structuring of multiple Pages into Documents. Multiple Documents that have a joint context may be grouped into Sets.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
DocIndex, PartVersion, Run, RunPage, Separation

Input of processes:
RunLists are used as input resources by most processes that act on content data

Output of processes:
RunLists are used as output resources by most processes that act on content data

Resource Structure

	Name
	Data Type
	Description

	Directory ?
	URL
	Defines a directory where the files that are associated with this Runlist should be copied to or from. If Directory is not specified, all FileSpec elements in the RunList must be completely specified.

	DocCopies ?

New in JDF 1.1
	integer
	Number of instance document copies that this RunList represents. Specifying DocCopies is equivalent to repeating the sequence of RunList leaves between EndOfDocument = true for a total of DocCopies times. Default = 1.

Note: It is illegal to specify DocCopies with different values of in various leaves of a RunList representing the same instance document.

	DocNames ?
	NameRange​List
	A list of named documents in a multi-document file that supports named access to individual documents. DocNames defaults to all documents. If DocNames occurs in the RunList, Docs is ignored if it is also present.

	Docs ?
	IntegerRangeList
	0-based list of document indices in a multi-document file specified by the LayoutElement element.

	EndOfBundleItem ?
New in JDF 1.2
	boolean
	If true, the last page in the RunList is the last page of a BundleItem. Default = false

	EndOfDocument ?

	boolean
	If true, the last page in the RunList is the last page of an instance document. The precise handling of instance-document changes is defined in the InsertSheet resource. Default = false

	EndOfSet ?

New in JDF 1.1
	boolean
	If true, the last page in the RunList is the last page of a set of instance documents. The precise handling of instance-document boundaries is defined in the InsertSheet resource.

Default = false

	FirstPage ?
	integer
	First page in the document that is described by this RunList. This attribute is generally used to describe preseparated files.

Default = 0

	IsPage ?
	boolean
	If true, the individual RunList element defines one or more page slots, e.g., for filling PlacedObjects. If false, the first parent partitioned RunList element with IsPage = true defines the page level. Defaults to true. In general, IsPage will be false for separations of a preseparated RunList.

	LogicalPage ?

Modified in JDF 1.1
	integer
	The logical page number of the first page in a RunList. This attribute may be used to retain logical page indices when a partitioned RunList is spawned. It defaults to 1 plus the last page of the previous sibling RunList partition. If the RunList element is the first partition LogicalPage defaults to 0. Note that is an error to specify LogicalPage to be less than the number of previously defined logical pages, since this defines overlapping pages within the RunList.

	NDoc ?

New in JDF 1.1
	integer
	Total number of instance documents that are defined by the RunList. If NDoc is not specified, it defaults to all instance documents in the partitioned RunList elements that make up the RunList.

	NPage ?
	integer
	Total number of pages (placed object slots or RunList elements with IsPage = true) that are defined by the RunList. If NPage is not specified, it defaults to all pages in the partitioned RunList elements that make up the RunList. If the RunList describes multiple instance documents, NPage refers to the total number of pages in all instance documents.

	NSet ?

New in JDF 1.1
	integer
	Total number of instance document sets that are defined by the RunList. If NSet is not specified, it defaults to all instance document sets in the partitioned RunList elements that make up the RunList.

	PageCopies ?

New in JDF 1.1
	integer
	Number of page copies that this RunList represents. Specifying PageCopies is equivalent to repeating the RunList leaves representing each page for a total of PageCopies times. Default = 1. Note that pages specified by PageCopies are always assumed uncollated when calculating the index in the logical RunList, e.g., PageCopies = 2 would result in a logical page sequence of 0 0 1 1 2 2, etc.

	PageNames ?
	NameRange​List
	A list of named pages in a multi-page file that supports named access to individual pages. PageNames defaults to all pages.

If PageNames occurs in the RunList, FirstPage, Npage, SkipPage and Pages are ignored if any of them is also present.

	Pages ?

Modified in JDF 1.1A
	IntegerRangeList
	0-based list of indices in the documents specified by the LayoutElement element and the Docs and Sets attribute. If Pages is present, FirstPage, and SkipPage are ignored.

	RunTag ?

New in JDF 1.1
	NMTOKEN
	Tag of a partition of a resource other than the RunList which is partitioned by RunTags. The partition matches if any of the entries in the RunTags list matches RunTag. Multiple entries in a RunList may have the same RunTag.

	SetCopies ?

New in JDF 1.1
	integer
	Number of instance document set copies that this RunList represents. Specifying SetCopies is equivalent to repeating the sequence of RunList leaves between EndOfSet = “true” for a total of SetCopies times. Default=1. Note that it is illegal to specify SetCopies with different values of in various leaves of a RunList representing the same instance document.

	SetNames ?

New in JDF 1.1
	NameRange​List
	A list of named documents in a multi-document file that supports named access to individual documents.

SetNames defaults to all documents. If SetNames occurs in the RunList, Sets is ignored if it is also present.

	Sets ?

New in JDF 1.1
	IntegerRangeList
	0-based list of document set indices in a multi-document file specified by the LayoutElement element.

	SkipPage ?
	integer
	Used when the RunList comprises every Nth page of the file. SkipPage indicates the number of pages to be skipped between each of the pages that comprise the RunList element. This is generally used to describe preseparated files, or to select only even or odd pages. Default = 0

Note: SkipPage is therefore 3 (4 Separations -> skip 3) in a CMYK separated file.

	Sorted ?
	boolean
	Specifies whether the elements in the RunList are sorted in the document reader order. Default = true.

	ByteMap ?
	refelement
	Describes the page or stream of pages. Only one of ByteMap or LayoutElement may be specified in one RunList element. If neither ByteMap nor LayoutElement are specified, the RunList entry specifies empty content.

	DynamicInput *
	element
	Replacement text for a DynamicField element.
This information defines the contents of a dynamic mark on the Layout for automated page layout. The mark must be filled using information from the document runlist, such as the bar code of the recipient. This information varies with the document content.

DynamicInput elements have one optional Name attribute that, when linked to the ReplaceField attribute of the DynamicField element, defines the string that should be replaced.

	InsertSheet *
	refelement
	Describes how Sheets and Surfaces may be completed and optional media which may be inserted at the beginning or end of this RunList element.

	LayoutElement ?
	refelement
	Describes the document, page or image. Only one of ByteMap or LayoutElement may be specified in one RunList element. If neither ByteMap nor LayoutElement are specified, the RunList entry specifies empty content.

Structure of a DynamicInput Subelement

DynamicInput defines the contents of a dynamic mark on a Surface resource for automated page layout. The mark must be filled using information from the document runlist, such as the bar code of the recipient. This information varies with the document content. For details on dynamic marks, see the DynamicField element description in Section 7.2.136 Surface.
	Name
	Data Type
	Description

	Name ?
	string
	Label that must match the ReplaceField attribute of the appropriate DynamicField element

	-
	text
	Defines the text string that should be inserted as a replacement for the text defined in ReplaceField of a DynamicField element.

Examples of partitioning of a RunList

The following examples illustrate how a RunList can be structured using partitioning Mechanisms. Note that the partitioning of a RunList often generates the values necessary to evaluate the partitioning of other resources, e.g., the RunIndex into the RunList. Thus, the order in which the RunLists appear in the XML document is significant. It is interesting to note that the “Run“ partitioning key has a string value, and is not required to be numeric.

Simple unstructured Single-File Runlist

This example specifies all pages contained in “in/colortest.pdf”.

<RunList ID="Link0003" Pages="0~-1" Class="Parameter" Status="Available">

 <LayoutElement>

 <FileSpec URL="File://in/colortest.pdf"/>

 </LayoutElement>

</RunList>

Simple Multi-File unseparated RunList using RunList::Directory

This example specifies all pages contained in “File1.pdf” and “File2.pdf”, which are located in the directory “//Dir” that is specified in RunList::Directory.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run“ Directory=”File://Dir/”>

 <RunList Run=“1“ Pages="0~-1">

 <LayoutElement>

 <FileSpec URL="File1.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Run=“2“ Pages="0~-1">

 <LayoutElement>

 <FileSpec URL="File2.pdf"/>

 </LayoutElement>

 </RunList>

</RunList>

Simple Multi-File unseparated RunList with independent spawning

This example specifies the first five pages contained in File1.pdf and File2.PDF. File2.pdf has been spawned and is being processed individually.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run“>

 <RunList Run=“1“ Pages="0~4">

 <LayoutElement>

 <FileSpec URL="File://File1.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Run=“2“ SpawnStatus=“SpawnedRW“ Pages="0~-1">

 <LayoutElement>

 <FileSpec URL="File://File2.pdf"/>

 </LayoutElement>

 </RunList>

</RunList>

This is the corresponding spawned RunList. Note the LogicalPage attribute, which specifies the number of skipped pages.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run“ Run=“2“

 LogicalPage=“5“ Pages="0~-1">

 <LayoutElement>

 <FileSpec URL="File://File2.pdf"/>

 </LayoutElement>

</RunList>

Simple Multi-File separated RunList

This example specifies all pages contained in Presep.pdf and following that, pages 1, 3, and 5 of each preseparated file.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run Separation“>

 <RunList Run=“1“ SkipPage=“3“>

 <LayoutElement>

 <FileSpec URL="File://Presep.pdf"/>

 </LayoutElement>

 <RunList Separation=“Cyan“ FirstPage=“0" IsPage=“false“/>

 <RunList Separation=“Magenta“ FirstPage=“1" IsPage=“false“/>

 <RunList Separation=“Yellow“ FirstPage=“2" IsPage=“false“/>

 <RunList Separation=“Black“ FirstPage=“3" IsPage=“false“/>

 </RunList>

 <RunList Run=“2“ Pages="1 3 5" IsPage=“true“>

 <RunList Separation=“Cyan“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Cyan2.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation=“Magenta“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Magenta2.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation=“Yellow“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Yellow2.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation=“Black“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Black2.pdf"/>

 </LayoutElement>

 </RunList>

 </RunList>

</RunList>

7.2.119 SaddleStitchingParams

This resource provides the parameters of the SaddleStitching process.

Deprecated in JDF 1.1

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
SaddleStitching
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	NumberOfStitches
	integer
	The number of stitches that will be made.

	StitchPositions ?
	NumberList
	Array containing the stitch positions along the saddle. The center of the stitch must be specified, and the number of entries must match the number given in the NumberOfStitches attribute.

	StapleShape ?
	enumeration
	Shape of staples. Possible values are:

Crown

Overlap

Butted

ClinchOut

Eyelet
These values are displayed in Figure 7.18, below.

	StitchWidth ?
	double
	Width of each stitch.

	WireGauge ?
	double
	Gauge of the wire being used.

	WireBrand ?
	string
	Brand of wire being used.

[image: image93.wmf]Eyelet

Crown

Overlap

ClinchOut

Butted

Figure 7.18 Staple shapes

The process coordinate system is defined as follows — The Y-axis is aligned with the binding edge, and increases from the registered edge to the edge opposite the registered edge. The X-axis, meanwhile, is aligned with the registered edge. It increases from the binding edge to the edge opposite the binding edge, which is the product front edge.

7.2.120 ScanParams

This resource provides the parameters for the Scanning process.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
RunIndex
Input of processes:
Scanning
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BitDepth
	integer
	Bit depth of a one-color separation.

	CompressionFilter ?
	enumeration
	Specifies the compression filter to be used. Possible values include:

CCITTFaxEncode – Used to select CCITT Group 3 or 4 facsimile encoding.

DCTEncode – Used to select JPEG compression.

FlateEncode – Used to select ZIP compression.

WaveletEncode – Used to select Wavelet compression.

JBIG2Encode – Used to select JBIG2 monochrome compression.

	DCTQuality ?
	number
	A value between 0 and 1 that indicates “how much” the process should compress images. 0.0 means “do as loss-less compression as possible.” 1.0 means “do the maximum compression possible.”

	FileSpec ?
	refelement
	A FileSpec resource pointing to an ICC profile that describes color corrections. The ResourceUsage attribute of the FileSpec must be “CorrectionProfile”.

	FileSpec ?
	refelement
	A FileSpec resource pointing to an ICC profile that defines the target output device for a device specific scan, such as the profile of a CMYK press. The ResourceUsage attribute of the FileSpec must be “TargetProfile”.

	FileSpec ?
	refelement
	A FileSpec resource pointing to an ICC profile that describes the scanner. The ResourceUsage attribute of the FileSpec must be “ScanProfile”.

	InputBox ?
	rectangle
	Rectangle that describes the image section to be scanned, in points. The origin of the coordinate system is the lower left corner of the physical item to be scanned.

	Magnification ?
	XYPair
	Size of the output/size of the input for each dimension. Default = 1.0.

	MountID ?
	string
	ID of the drum or other mounting device upon which the media should be mounted.

	Mounting ?
	enumeration
	Specifies how to mount originals. Possible values are:

Unfixed – Original lies unfixed on the scanner tray/drum.

Fixed – Original is fixed on the scanner tray/drum with transparent tape.

Wet – Original is put in gel or oil and fixed on the scanner tray/drum.

Registered – Original is fixed with registration holes. This value is used for copix.

	OutputColorSpace
	enumeration
	Color space of the output images. Possible values are:

LAB

RGB

CMYK

GrayScale

	OutputResolution
	XYPair
	X and Y resolution of the output bitmap in DPI.

	OutputSize ?
	XYPair
	X-,Y-dimension of the intended output image in points.

	SplitDocuments ?
	integer
	A number representing how many images are scanned before a new file is created.

7.2.121 ScavengerArea

New in JDF 1.1

Modified in JDF 1.2
Changed SeparationSpec * to a refelement for consistency.
This resource describes a scavenger area for removing excess ink from printed sheets. It is defined within a MarkObject of a Surface.

Resource Properties

Resource class:

Parameter

Resource referenced by:
Surface
Example Partition:
-
Input of processes:
Any printing process
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Center
	XYPair
	Position of the center of the scavenger area in the coordinates of the MarkObject that contains this mark.

	Rotation ?
	double
	Rotation in degrees. Positive graduation figures indicate counter-clockwise rotation; negative figures indicate clockwise rotation.

	Size
	XYPair
	Size of the scavenger area.

	SeparationSpec *
Modified in JDF 1.2
	refelement
	Set of separations to which the scavenger area is bound.

7.2.122 ScreeningParams

Modified in JDF 1.2

[Added attributes: AngleSecondary, FrequencySecondary, FrequencySelection with 3 values: LowestFrequency, MiddleFrequency, HighestFrequency, SourceFrequencySecondary, SourceScreenMatching, added HybridAM-FM, HybridAM-FM, and HybridAMline-dot values to ScreeningType, removed vendor-specific values from ScreeningFamily, 7 clarifications: Angle, DotSize, Frequency, ScreeningFamily (moved ErrorDiffusion to ScreeningType), SourceFrequency, SpotFunction, 1 ISSUE]
This resource specifies the parameter of the screening process. Since screening is, in most cases, very OEM specific, the following parameters are generic enough that they can be mapped onto a number of OEM controls.
Resource Properties

Resource class:
Parameter

Resource referenced by:
ExposedMedia
Example Partition:
Separation, SheetName, Side, SignatureName
Input of processes:
Screening, ColorCorrection
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	IgnoreSourceFile ?
	boolean
	Specifies whether to ignore the screen settings (such as setscreen, setcolorscreen, and sethalftone) specified in the source files.

Default = true

Note: In some cases, Halftones are used to create patterns. In these cases, the halftone in the source PDL file will not be overridden.

	AbortJobWhenScreenMatchingFails ?
	boolean
	Specifies what happens when the device can not fulfill the screening requests. If true, it flushes the job. If false, it ignores matching errors using the default screening. Default = false

	ScreenSelector *

Modified in JDF 1.1
	element
	List of screen selectors. A screen selector is included for each separation, including a default specification.

Structure of ScreenSelector Subelement

Description of screening for a selection of source object types and separations.

	Name
	Data Type
	Description

	Angle ?
Clarified in JDF 1.2
	double
	Specifies the first angle of the screen when AM screening is used, otherwise Angle is ignored. If only Angle is supplied, AngleSecondary is system specified. See AngleSecondary.
Either Angle (with AngleSecondary) or AngleMap may be specified, but not both. If neither Angle nor AngleMap are specified, the angle is determined by the default of the selected ScreeningFamily.

	AngleMap ?

New in JDF 1.1
	string
	Specifies the mapping of the angle of the screen to the angle of a different separation when AM screening is used, e.g., a spot color that has the same screening angle as the cyan separation is specified by AngleMap = Cyan. Only one of Angle or AngleMap may be specified. This mapping is not transitive, so, when Separation already specifies a color with a known default
, it specifies the angle of the separation defined by AngleMap prior to that separation being mapped, e.g., the following example specifies that Black should be mapped to the Cyan default separation and Cyan to the Black default separation.

<ScreenSelector AngleMap=”Black” Separation=”Cyan”/>

<ScreenSelector AngleMap=”Cyan” Separation=”Black”/>

	AngleSecondary ?

New in JDF 1.2
	double
	Allows specification of the second angle of the screen when AM screening is used, otherwise AngleSecondary is ignored. If Angle is not supplied, AngleSecondary is ignored. In general, two angle values (Angle and AngleSecondary) may be specified to correspond to the directions of two fundamental AM screen frequency components. If only Angle is supplied, it is common that the frequency components are orthogonal, i.e., angle1=angle2+90 is the orthogonal case. However, for backwards compatibility with JDF/1.1, if only Angle (and not AngleSecondary) is supplied, the second angle is system specified.

Either Angle (with AngleSecondary) or AngleMap may be specified, but not both. If neither Angle nor AngleMap are specified, the angle is determined by the default of the selected ScreeningFamily.

	DotSize ?

New in JDF 1.1
Clarified in JDF 1.2
	double
	Specifies the dot size of the screen in microns [µm] when FM screening is used, otherwise DotSize is ignored. FM screens have a constant dot size, which is applied at different concentrations to achieve different gray levels. DotSize is resolution dependent. In some systems, an FM dot is comprised of multiple addressability units, e.g., an FM dot comprised of 2x2 or 3x3 laser spots. In those systems, the DotSize value is a multiple of the size of the smallest addressability unit, e.g., for FM dot = 3x3 laser spots, the multiple would be 3.

DotSize is ignored for AM screens because AM screens have a dot size that varies with gray level.

	Frequency ?
Clarified in JDF 1.2
	double
	Specifies the first halftone screen frequency in lines per inch (lpi), or cells per inch (cpi) when AM screening is used, otherwise Frequency is ignored. The lpi or cpi interpretation is derived from ScreeningType. Frequency direction is given by Angle. If only Frequency is supplied, FrequencySecondary is system specified. See FrequencySecondary.

With some screens, frequency may change as a function of gray level. In this case, the Frequency value is interpreted for a midtone (50%) gray level.
If neither Frequency nor AngleMap are specified, the frequencies are determined by the default of the selected ScreeningFamily.

	FrequencySecondary ?
New in JDF 1.2
	double
	Allows specification of the second halftone screen frequency in lines per inch (lpi), or cells per inch (cpi), when AM dot screening is used, otherwise FrequencySecondary is ignored. The lpi or cpi interpretation is derived from ScreeningType. If Frequency is not supplied, FrequencySecondary is ignored.
AM screens may be dot screens or line screens, or they may be a combination of these. In general, two frequency values are needed for AM dot screens, whereas a single frequency value is needed for AM line screens. If a single frequency value is specified for an AM dot screen, it is common that the two fundamental frequency components are the same. However, for backwards compatibility with JDF1.1, if only Frequency (and not FrequencySecondary) is supplied, the second AM dot frequency is system specified.

FrequencySecondary direction is given by AngleSecondary if AngleSecondary is supplied. If AngleSecondary is not supplied, FrequencySecondary direction is system specified.

For AM related hybrid screens, the AM dot screen assumptions apply.

With some screens, frequency may change as a function of gray level. In this case, the FrequencySecondary value is interpreted for a midtone (50%) gray level.

	FrequencySelection ?

New in JDF 1.2
	enumeration
	Selects the AM or FM frequency. Possible values are:

LowestFrequency – Lowest AM or FM frequency supported.
MiddleFrequency – Middle AM or FM frequency supported
HighestFrequency – Highest AM or FM frequency supported

	ScreeningFamily ?
	string
	Vendor specific screening family name.

 Deprecated in JDF 1.2 See ScreeningType.

	ScreeningType ?
Modified in JDF 1.2
	enumeration
	General type of screening. Possible value are:
Adaptive
AM – the default (may be line or dot – see SpotFunction.).
ErrorDiffusion New in JDF 1.2
FM – Includes all stochastic screening types.
HybridAM-FM New in JDF 1.2
HybridAMline-dot New in JDF 1.2

	Separation ?
	string
	The name of the separation. If Separation = All, the ScreenSelector should be applied to all separations that are not specified explicitly. Default = All

	SourceFrequency ?
Clarified in JDF 1.2
	double
	Specifies the first frequency of screens which should be matched from the source file when SourceScreenMatching = true and AM screening is used, otherwise SourceFrequency is ignored. Conditions and interpretations apply as with the Frequency attribute.

	SourceFrequencySecondary ?

New in JDF 1.2
	double
	Specifies the second frequency of screens which should be matched from the source file when SourceScreenMatching = true, and AM screening is used, otherwise SourceFrequencySecondary is ignored. Conditions and interpretations apply as with the FrequencySecondary attribute.

	SourceScreenMatching ?

New in JDF 1.2
	boolean
	If true then SourceFrequency must be supplied and source screen matching will occur.
ISSUE: there was no Boolean to control the source screen matching function. So OK to add this boolean attribute or is this implied or supplied elsewhere?

	SourceObjects ?
	enumerations
	Identifies the class(es) of incoming graphical objects on which to use the selected screen. Possible values are:

All – Default value.

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of rasterized vector art.

Text

LineArt

SmoothShades – Gradients and blends.

	SpotFunction ?

	NMTOKEN
	Specifies the spot function of the screen when AM screening is used. In general, it is common for a spot function to change its shape as a function of gray level. Response to these spot function names may be implementation dependent. These names are the same as the spot function names defined in PDF. Example values include:

Round

Diamond

Ellipse

EllipseA

InvertedEllipseA

EllipseB

EllipseC

InvertedEllipseC

Line

LineX

LineY

Square

Cross

Rhomboid

DoubleDot

InvertedDoubleDot

SimpleDot

InvertedSimpleDot

CosineDot

Double

InvertedDouble

7.2.123 SeparationControlParams

This resource provides the controls needed to separate composite color files.

Resource Properties

Resource class:

Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Separation
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	AutomatedOverprint​Params ?
	refelement
	Optional controls for overprint substitutions. Default = no automated overprint generation.

	TransferFunctionControl ?
	refelement
	Controls whether the device performs transfer functions and what values are used when doing so.

7.2.124 SeparationSpec

This resource specifies a specific separation, and is usually used to define a list or sequence of separations.

Resource Properties

Resource class:
ResourceElement

Resource referenced by:
ColorantControl, LayoutElement, RegisterMark, TransferFunctionControl
Example Partition:
-

Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Name
	string
	Name of one specific separation.

7.2.125 ShapeCuttingParams

New in JDF 1.1
ShapeCuttingParams defines the details of the ShapeCutting process.
Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
ShapeCutting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Shape *
	element
	details of each individual shape

Structure of Shape Subelement

	Name
	Data Type
	Description

	CutBox ?
	rectangle
	Specification of a rectangular window.

	CutOut ?
	boolean
	If true, the inside of a specified shape will be removed. If false, the outside of a specified shape will be removed. An example of an inside shape is a window, while an example of an outside shape is a shaped greeting card. Default = false

	CutPath ?
	path
	Specification of a complex path. This may be an open path in the case of a single line.

	Material ?
	string
	Transparent material that fills a shape, such as an envelope window, that was cut out when CutOut = true.

	CutType ?
	enumeration
	Type of cut or perforation used. Possible values are:

Cu – Full cut.

Perforate – Interrupted perforation that does not span the entire sheet

	ShapeDepth ?
	double
	Depth of the shape cut. Measured in micron[µm]. If not specified, the shape is completely cut.

	ShapeType
	enumeration
	Describes any precision cutting other than hole making. Possible values are:

Rectangular

Round

Path

	TeethPerDimension ?
	number
	Number of teeth in a given perforation extent in teeth/point.

MicroPerforation is defined by specifying a large number of teeth (n>1000).

7.2.126 Sheet

This resource provides a description of a sheet, as well as the marks on that sheet.

Resource Properties

Resource class:

Parameter

Resource referenced by:
InsertSheet, Layout
Example Partition:
SheetName. Otherwise it is strongly discouraged to partition the Layout tree, including Sheet.

Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	LockOrigins ?
	boolean
	Determines the relationship of the coordinate systems for front and back surfaces.

When false, all contents for all surfaces are transformed into the first quadrant, in which the origin is at the lower left corner of the surface.

When true, contents for the front surface are imaged into the first quadrant (as above), but contents for the back surface are imaged into the second quadrant, in which the origin is at the lower right. This allows the front and back origins to be aligned even if the exact media size is unknown.

Default = false

	Name ?
	string
	Unique name of the sheet. Name is used for external reference to a sheet in, for example, a Part element.

	SurfaceContentsBox ?
	rectangle
	This box, specified in surface-coordinate space, defines the area into which contents and marks will occur for all Surfaces in the Sheet.

CTMs for MarkObjects or ContentObjects transform page contents or marks into this rectangle.

	InsertSheet *
	refelement
	Specifies how to complete a sheet in an automated printing environment.

	Media?

New in JDF 1.1
	refelement
	Describes the media to be used.

	MediaSource ?

Deprecated in JDF 1.1
	refelement
	Describes the media to be used. Replaced by Media in JDF 1.1.

	Surface (Front) ?
	refelement
	Describes the front surface to be used. Two surfaces may be attached: one front surface and one back surface. The surface is defined by the Side attribute of the Surface resource. The Side attribute of this Surface element must be Front.

	Surface (Back) ?
	refelement
	Describes the back surface to be used. The Side attribute of this Surface element must be Back.

7.2.127 ShrinkingParams

New in JDF 1.1
This resource provides the parameters for the Shrinking process in shrink wrapping.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Shrinking
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Duration ?
	duration
	Shrinking time. Default = equipment-specific value.

	ShrinkingMethod ?

	enumeration
	Specifics of the shrinking method for shrink wrapping.

ShrinkCool
ShrinkHot – The default.

	Temperature ?
	number
	Oven temperature in ° Centigrade. Default = equipment-specific value.

7.2.128 SideSewingParams

Deprecated in JDF 1.1

This resource provides the parameters for the SideSewing process. SideSewing is a special case of ThreadSewing. The process coordinate system is defined in the following way: the Y-axis is aligned with the binding edge. It then increases from the registered edge to the edge opposite to the registered edge. The X-axis is aligned with the registered edge, which then increases from the binding edge to the edge opposite to the binding edge, i.e., the product front edge.

[image: image94.wmf]Binding edge (spine)

Y

X

Stitch

Offset

Figure 7.19 Parameters and coordinate system used for side sewing

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
SideSewing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	NumberOfNeedles
	integer
	Specifies the number of needles to be used.

	NeedlePositions ?
	NumberList
	Array containing the Y-coordinates of the needle positions. The number of entries must match the number given in NumberOfNeedles.

	Offset
	double
	Specifies the distance between the stitch and the binding edge.

	SewingPattern ?
	enumeration
	Specifies the sewing pattern to be used. Possible values are:

Normal

Staggered

CombinedStaggered

	ThreadMaterial ?
	enumeration
	Specifies the thread material to be used. Possible values are:

Cotton

Nylon

Polyester

	ThreadThickness ?
	double
	The thickness of the thread to be used.

	ThreadBrand ?
	string
	The brand of thread to be used.

7.2.129 SpinePreparationParams

New in JDF 1.1

Modified in JDF 1.2
[Changed MillingDepth to be optional. Added ReferenceEdge attribute.]
SpinePreparationParams describes the preparation of the spine of book blocks for hard and soft cover book production, e.g., milling and notching.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
SpinePreparation
Output of processes:
-
Resource Structure

	Name
	Data Type
	Description

	FlexValue ?
	double
	Flex quality parameter given in [N/cm].

	MillingDepth ?
Modified in JDF 1.2
	double
	Milling depth in points. This describes the total cut-off of the spine, regardless of the technology used to achieve this goal. If not present, the implied default is specified by the system.

	NotchingDistance ?
	double
	Notching distance in points.

	NotchingDepth ?
	double
	Notching depth relative to the leveled spine in pt. Default = 0, i.e., no notching.

	Operations ?
	NMTOKENS
	List of operations to be applied to the spine. Duplicate entries are allowed to specify a sequence of identical operations. The order of operations is significant. Possible values include:

Brushing – Brushes away dust from the spine to improve the binding quality.
FiberRoughing – The fibers of the paper on the spine are exposed without the risk of glazing the paper coating. This optimizes the spine preparation considering paper and adhesive types.
Leveling – After milling the spine, any uneven areas are leveled to achieve an even surface.
Milling – Cuts of a part of the spine in a way that the spine is not to evenly. A rough texture of the fibers is assured. This creates ideal conditions for stable anchoring of the sheets in the glue.
Notching – This gives a clamping effect on the spine which is desirable for some products.
Sanding – Is used for voluminous book papers.
Shredding – Produces a relatively smooth surface. Further operations like Notching, Leveling, FiberRoughing, Sanding or Brushing are necessary.

	PullOutValue ?
	double
	Pull out quality parameter given in [N/cm].

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be prepared for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the SpinePreparation process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be prepared. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	StartPosition ?
	double
	Starting position of milling tool (along the Y-axis of the operation coordinate system). Default = 0

	WorkingLength ?
	double
	Working length of milling operation. If specified larger than the Spine length, the complete Spine is prepared. If not specified, the complete spine is prepared.

[image: image95.wmf]

Notching

distance

Notch

Block

X

Y

Working

length

Start

position

Figure 7.20 Parameters and coordinate systems for the SpinePreparation process

7.2.130 SpineTapingParams

New in JDF 1.1
Modified in JDF 1.2
[Added ReferenceEdge attribute.]
SpineTapingParams define the parameters for taping a strip tape or kraft paper to the spine of a book block.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
SpineTaping
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	HorizontalExcess ?
	double
	Taping spine excess on each side. The tape is assumed to be centered between left and right. Default =system specified.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be taped for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the SpineTaping process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be taped. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	StripBrand ?
	string
	Strip brand. Default =system specified.

	StripColor ?
	NamedColor
	Color of the strip. Default =system specified.

	StripLength ?
	double
	Length of strip material along binding edge. If not defined, default = spine length.

	StripMaterial ?
	enumeration
	Strip material. Possible values are:

Calico

Cardboard

CrepePaper

Gauze

Paper

PaperlinedMules

Tape

Default =system specified.

	TopExcess ?
	double
	Top spine taping excess. This value may be negative. Default = 0

	GlueApplication *
	refelement
	Describes where and how to apply glue to the book block.

[image: image96.jpg]A
Y

Top excess —’i

Horizontal Block

excess \
DY W

Origin of 159
operation X

coordinate ¥

system Strip

Figure 7.21 Parameters and coordinate system for the SpineTaping process

7.2.131 StackingParams

New in JDF 1.1
Settings for the Stacking process. A stack of components may be uneven and unstable, due to variations in thickness across each component. The thickness variations may be caused by folding, binding, or inserted components. A stack may be split into layers, with successive layers rotated by 180o to compensate for the unevenness.

[image: image97.png]

If the thickest part is on an edge, e.g., a book binding, the components may be offset to separate the thick parts. Layer compensation and offsetting may be combined as in the following examples.

[image: image98.png]SESss8%

Table 7‑5 Parameters in Stacking

	Pile Pattern
	StandardAmount
	LayerAmount

(Default = StandardAmount)
	Compensate

(Default = true)
	Offset

(Default = false)

	1
	6
	6
	true
	false

	2
	6
	1
	true
	false

	3
	6
	1
	false
	true

	4
	6
	1
	true
	true

	5
	6
	3
	true
	false

	6
	6
	3
	false
	true

	7
	6
	3
	true
	true

If the number of components is not evenly divisible by standard stack size (StandardAmount) or the number of components in a bundle is not evenly divisible by layer size (LayerAmount), there will be a remainder, yielding one or more odd-count stacks or layers. By default, the odd-count stack or layer size may contain as few as one component. This may exceed equipment cycle times, and flimsy components (newspapers) may cause problems with downstream equipment such as strappers. MinAmount and MaxAmount control the minimum and maximum size of odd-count stacks and layers. The following figures show the odd count handling for bundles and layers.

Resource Properties

Resource class:
Parameter

Resource referenced by:

Example Partition:
-
Input of processes:
Stacking
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	LayerAmount?
	integer
	Number of products in a layer, typically an even divisor of StandardAmount. Default = StandardAmount

	StandardAmount
	integer
	Number of products in a standard stack

	MaxAmount ?
	integer
	Maximum number of products in a stack, MaxAmount >= StandardAmount. Default = StandardAmount

	MinAmount ?
	integer
	Minimum number of products in a stack or layer, (MaxAmount – StandardAmount) <= MinAmount < StandardAmount and MinAmount < LayerAmount. Defaults to (MaxAmount – StandardAmount)

	MaxWeight ?
	number
	Maximum weight of a stack in grams. Default = infinity

	Compensate?
	boolean
	180 degree rotation applied to successive layers to compensate for uneven stacking. Default = true. If LayerAmount = StandardAmount, there is one layer, and effectively no compensation.

	Offset?
	boolean
	Offset or Shift applied to successive layers to separate the thicker portions of components, for example, offsetting the spines of hardcover books. Default = false

7.2.132 Stitching​Params

Clarified in JDF 1.2
[2 clarifications]
This resource provides the parameters for the Stitching process. The process coordinate system is defined as follows:

A:
The y-axis increases from the (first) registered edge to the edge opposite to the registered edge. The X-axis is aligned with the (second) registered edge. The x-axis increases from the binding edge (or first registered edge) to the edge opposite to the binding edge (or first registered edge).

B.
When the ReferenceEdge attribute is present, then the process coordinate system is defined relative to the layout coordinate system: Left is defined to be along the sheet layout Y-axis, Bottom is defined to be along the sheet layout X-axis, Right is opposite Left, and Top is opposite Bottom. For details on
coordinate systems, see 2.5.3 Coordinate Systems of Resources and Processes.
Note that the stitches are applied from the front in the figures describing the stitching coordinate system.

[image: image99.wmf]Eyelet

Crown

Overlap

ClinchOut

Butted

Figure 7.22 Staple shapes

[image: image100.wmf]Stitch position

Binding edge (spine)

Y

X

Staple

Stitch width

Figure 7.23 Parameters and coordinate system used for saddle stitching

[image: image101.wmf]Stitch position

Y

X

Offset

Stitch width

Reference edge 1

Stitch position

Y

X

Offset

Stitch width

Binding edge

Reference edge 2

Set of folded sheets

collected on a saddle

Set of sheets or partial

products gathered on a

pile that will be folded

later

Figure 7.24 Parameters and coordinate system used for stitching

Resource Properties

Resource class:
Parameter

Resource referenced by:
-
Example Partition:
-
Input of processes:
Stitching
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Angle ?
	double
	Angle of stitch in degree. The angle increases in a counterclockwise direction. 0 = horizontal, which means that it is parallel to the X-axis of the operation coordinate system. Defaults to the system specified value which may vary depending on other attributes set in this resource. If StitchType = Saddle, Angle must be ignored

	Number​OfStitches ?
Modified in JDF 1.2

	integer
	Number of stitches. If not specifieduse the system specified number of stitches which may vary depending on other attributes set in this resource. Use a 0 value to use the stitcher without inserting any stitches. Use NoOp to bypass the stitcher altogether.

	ReferenceEdge ?

Clarified in JDF 1.2
	enumeration
	The edge or corner of the component to be stitched for the process coordinate system (see description above). This attribute is intended for use when the Stitching process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be stitched. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A above, unless used in a combined process, when the default is as defined in B above. The default.

	Offset ?
	double
	Distance between stitch and binding edge. If StitchType = Saddle, Offset must be ignored. Note that it is possible to describe saddle stitching with an offset by defining StitchType = Side with a large Offset value.

	StapleShape ?
	enumeration
	Specifies the shape of the staples to be used. Possible values are:

Crown

Overlap

Butted

ClinchOut

Eyelet

Representations of these values are displayed in Figure 7.18.

Default = equipment-specific setting

	StitchFromFront ?
	boolean
	If true, Stitching is done from front to back. Otherwise it is done from back to front. Default =system specified.

	StitchPositions ?
	NumberList
	Array containing the stitch positions. The center of the stitch must be specified, and the number of entries must match the number given in NumberOfStitches.

	StitchType ?
New in JDF 1.1

	enumeration
	Specifies the type of the Stitching operation. One of:

Corner – Stitch in the corner that is at the clockwise end of the reference edge. For example, to stitch in the top left corner set ReferenceEdge = Left.

Saddle – Stitch the on the middle fold which is on the saddle.

Side – Stitch along the reference edge.

SystemSpecified – The system specified value. The default.

	StitchWidth ?
	double
	Width of the stitch to be used. If not present or 0, means use the system specified width of stitches which may vary depending on other attributes set in this resource.

	WireGauge ?
	double
	Gauge of the wire to be used. If not present or 0, means use the system specified wire gauge which may vary depending on other attributes set in this resource.

	WireBrand ?
	string
	Brand of the wire to be used.

7.2.133 Strap

New in JDF 1.1
Resource Properties

Resource class:
Consumable

Resource referenced by:

Example Partition:
-
Input of processes:
Strapping
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	StrapColor ?
	NamedColor
	Color of the string or strap. defaults to “any”.

	Material
	enumeration
	Strap material.

AdhesiveTape

Strap

String

7.2.134 StrappingParams

New in JDF 1.1
StrappingParams defines the details of Strapping.

Resource Properties

Resource class:
Parameter

Resource referenced by:

Example Partition:
-
Input of processes:
Strapping
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	StrappingType
	enumeration
	Can be:

Single – One strap

Double – Two parallel single straps

Cross – Two crossed straps

DoubleCross – Two cross straps that strap each side of a box.

Default = equipment-specific setting

7.2.135
StripBindingParams

New in JDF 1.1
Modified in JDF 1.2
[Added ReferenceEdge attribute.]
This resource describes the details of the StripBinding process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
StripBinding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Brand ?
	string
	The name of the comb manufacturer and the name of the specific item. Default =system specified.

	Distance ?
	double
	The distance between the pins and the distance between the holes of the prepunched sheets must be the same. Default =system specified.

	Length ?
	double
	The length of the pin is determined by the height of the pile of sheets to be bound. Default =system specified.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be bound for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the StripBinding process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be bound. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	StripColor ?
	NamedColor
	Determines the color of the strip. Default =system specified.

7.2.136 Surface

This resource describes the marks on a sheet surface. Up to two Surface resources may be defined for a Sheet.

Resource Properties

Resource class:

Parameter

Resource referenced by:
Sheet
Example Partition:
Side. Otherwise it is strongly discouraged to partition the Layout tree, including Surface.

Input of processes:
-

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Side
	enumeration
	The side of the Sheet that the Surface describes. Possible values are:

Front

Back

	SurfaceContentsBox ?
	rectangle?
	This rectangle provides the region of the surface into which the contents of ContentObjects and MarkObjects are to be imaged.

Note: The SurfaceContentBox also provides a translation for an object's CTM.

	PlacedObject *
	element
	Provides a list of the ContentObject and MarkObject elements to be placed on to the surface. Contains the marks on the surface in rendering order. See the description that follows.

Note: PlacedObject is not a container but an abstract type.

Structure of the Abstract PlacedObject Subelement

The marks that may be placed on the designated Surface come in two varieties: ContentObject or MarkObject elements. Both inherit characteristics from the abstract PlacedObject element type, and both are described below.

	Name
	Data Type
	Description

	ClipBox ?
	rectangle
	Clipping rectangle in the coordinates of the SurfaceContentsBox.

	CTM
	matrix
	Transformation matrix of the object in the SurfaceContentsBox.

	HalfTonePhaseOrigin ?
	XYPair
	Location of the origin for screening of this ContentObject. Specified in the coordinate systems of SurfaceContentBox. Default = 0 0

	LayerID ?

New in JDF 1.1
	integer
	If a layout supports layering, e.g., for versioning, LayerID may be used to identify the layer that a ContentObject belongs to, e.g., the language layer version. The details of the layers are optionally specified in the Layout::LayerList::LayerDetails key.

	OrdID ?

New in JDF 1.1
	integer
	If a layout supports layering, e.g., for versioning, OrdID may be used to identify ContentObjects that belong to the same final page. These will have a matching OrdID.

	SourceClipPath ?
	path
	Clip path for the PlacedObject in the coordinates of the source page.

	TrimCTM ?

New in JDF 1.1
	matrix
	The transformation matrix of the object’s trim box in the SurfaceContentsBox. TrimCTM and CTM are identical if the TrimBox and dimension of the object in the PlacedObject are identical. Defaults to the value of CTM.

	Type

Deprecated in JDF 1.1
	enumeration
	Describes the kind of PlacedObject. Possible values are:

Content

Mark

Structure of ContentObject Subelement

ContentObject elements describe containers for page content on a surface. They are filled from the Content RunList of the Imposition process. For print applications where page count varies from Instance Document to Instance Document, imposition templates can automatically assign pages to the correct Surface and PlacedObject position.

	Name
	Data Type
	Description

	DocOrd ?

New in JDF 1.1
	integer
	Reference to an index of an instance document in the content RunList. This references an instance document with an index module. Layout::MaxDocOrd equals DocOrd in an automated layout scenario. The index may either be known explicitly from a variable Runlist or implicitly from the index within an indexable content definition language, e.g., PPML.

	Ord ?

Modified in JDF 1.1
	integer
	A non-negative zero-based reference to an index in the content RunList. The index is incremented for every page of the RunList with IsPage = true. The Ord value of the first page of a RunList has the value 0.

	OrdExpression ?
	string
	Function to calculate an Ord value dynamically, using a value of s for signature number and n for total number of pages in the instance document. Ord or DocOrd and OrdExpression are mutually exclusive in one PlacedObject.

	SetOrd ?

New in JDF 1.1
	integer
	A non-negative zero-based reference to an index of a document set in the content RunList. This references an instance document with an index module. Layout::MaxSetOrd equals SetOrd in an automated layout scenario. The index may either be known explicitly from a variable Runlist or implicitly from the index within an indexable content definition language, e.g., PPML.

Using Ord to reference elements in RunLists

New in JDF 1.1A
The Ord attribute in ContentObject or MarkObject elements represents a reference to a logical element in a RunList. The reference is not changed by repartitioning the RunList. The content and marks RunList are referenced independently. The following examples illustrate the usage of Ord.

Simple Multi-File unseparated RunList

This example specifies all pages contained in “File1.pdf” and “File2.pdf”. File 1 has 6 pages, file 2 has an unknown number of pages.

<RunList ID="L3" Class="Parameter" Status="Available" PartIDKeys=“Run“>

 <RunList Run=“1“ NPage=”6” Pages="0~5">

 <LayoutElement>

 <FileSpec URL=" File://File1.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Run=“2“ Pages="0~-1">

 <LayoutElement>

 <FileSpec URL="File://File2.pdf"/>

 </LayoutElement>

 </RunList>

</RunList>

Table 7‑6 Example 1 of Ord in PlacedObjects

	Ord
	File
	Page
	
	Ord
	File
	Page

	0
	File1
	0
	
	1
	File1
	1

	2
	File1
	2
	
	3
	File1
	3

	4
	File1
	4
	
	5
	File1
	5

	6
	File2
	0
	
	7
	File2
	1

	8
	File2
	2
	
	(n)
	File2
	(n-6)

Simple Multi-File separated RunList

This example specifies 2 pages contained in Presep.pdf and following that, pages 1, 3, and 5 of each preseparated file.

<RunList ID="Link0003" Class="Parameter" Status="Available" PartIDKeys=“Run Separation“>

 <RunList Run=“1“ SkipPage=“3“ NPage=”2”>

 <LayoutElement>

 <FileSpec URL="File://Presep.pdf"/>

 </LayoutElement>

 <RunList Separation=“Cyan“ FirstPage=“0" IsPage=“false“/>

 <RunList Separation=“Magenta“ FirstPage=“1" IsPage=“false“/>

 <RunList Separation=“Yellow“ FirstPage=“2" IsPage=“false“/>

 <RunList Separation=“Black“ FirstPage=“3" IsPage=“false“/>

 </RunList>

 <RunList Run=“2“ Pages="1 3 5" IsPage=“true“>

 <RunList Separation=“Cyan“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Cyan2.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation=“Magenta“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Magenta2.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation=“Yellow“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Yellow2.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation=“Black“ IsPage=“false“>

 <LayoutElement>

 <FileSpec URL="File://Black2.pdf"/>

 </LayoutElement>

 </RunList>

 </RunList>

</RunList>

Table 7‑7 Example 2 of Ord in PlacedObjects

	Ord
	File
	Page
	Separation
	
	Ord
	File
	Page
	Separation

	0
	PreSep
	0
	Cyan
	
	0
	Presep
	1
	Magenta

	0
	PreSep
	2
	Yellow
	
	0
	Presep
	3
	Black

	1
	PreSep
	4
	Cyan
	
	1
	Presep
	5
	Magenta

	1
	PreSep
	6
	Yellow
	
	1
	Presep
	7
	Black

	2
	Cyan2
	1
	Cyan
	
	2
	Magenta2
	1
	Magenta

	2
	Yellow2
	1
	Yellow
	
	2
	Black2
	1
	Black

	3
	Cyan2
	3
	Cyan
	
	3
	Magenta2
	3
	Magenta

	3
	Yellow2
	3
	Yellow
	
	3
	Black2
	3
	Black

	4
	Cyan2
	5
	Cyan
	
	4
	Magenta2
	5
	Magenta

	4
	Yellow2
	5
	Yellow
	
	4
	Black2
	5
	Black

Using Expressions in the OrdExpression Attribute

Expressions can use the operators +, – , *, /,% and parentheses, operating on integers and two variables: s for signature number (starting at 0) and n for number of pages to be imposed in one document. Signature number denotes the number of times that a complete set of placed objects has been filled with content from the run list. The operators have the same meaning as in the C programming language. Expressions are evaluated with normal “C” operator precedence. Multiplication must be expressed by explicitly including the * operator, i.e., use “2*s”, not “2 s”. Remainders are discarded.

OrdExpression Examples

a.) Saddlestitched booklet for variable page length documents

The following describes the OrdExpressions for a booklet with varying page lengths. The example page assignments are for a book of 13-16 pages.

Front:

OrdExpression = “2*s”

0
2
4
6

OrdExpression = “4*((n+3)/4) –(s*2)-1”
15
13
11
9

Back:

OrdExpression = “2*s+1”

1
3
5
7

OrdExpression = “4*((n+3)/4) –(s*2)-2”
14
12
10
8

DocOrd Usage Examples

b.) Two-sided business cards 4/sheet

The following describes the Ord + DocOrd usage for a 4-up step + repeat business card

MaxDocOrd=4

Front:

Ord=0
DocOrd=0

Ord=0
DocOrd=1

Ord=0
DocOrd=2

Ord=0
DocOrd=3

Back:

Front:

Ord=1
DocOrd=0

Ord=1
DocOrd=1

Ord=1
DocOrd=2

Ord=1
DocOrd=3

Structure of MarkObject Elements

MarkObject elements describe containers for page marks on a surface. They are filled from the Marks RunList of the Imposition process. An individual MarkObject represents the content data of the Marks. The content data in individual MarkObjects may contain multiple logical marks: CIELABMeasuringField, ColorControlStrip, CutMark, DensityMeasuringField, IdentificationField, RegisterMark, and ScavengerArea.

	Name
	Data Type
	Description

	LayoutElement​​​PageNum ?

New in JDF 1.1
	integer
	Page number to use from the PDL file described by the LayoutElement attribute. Default = 0

	Ord ?

Modified in JDF 1.1A
	integer
	A non-negative reference to an index in the marks RunList. The index is incremented for every page of the RunList with IsPage = true. The first page of a RunList has the value 0.

	CIELABMeasuringField*
	refelement
	Specific information about this kind of mark object.

	ColorControlStrip *

Modified in JDF 1.1
	refelement
	Specific information about this kind of mark object.

	CutMark *

Modified in JDF 1.1
	refelement
	Specific information about this kind of mark object.

	DensityMeasuringField *

Modified in JDF 1.1
	refelement
	Specific information about this kind of mark object.

	DeviceMark ?

New in JDF 1.1
	refelement
	If neither Ord nor LayoutElement are specified, it is assumed that the device can independently generate the mark. DeviceMark defines a set of formatting parameters for the mark.

	DynamicField *
	refelement
	Definition of text replacement for a MarkObject.

	IdentificationField *
	refelement
	Specific information about this kind of mark object.

	JobField *

New in JDF 1.1
	refelement
	Specific information about this kind of mark object.

	LayoutElement ?
	refelement
	PDL description of the mark. LayoutElement and Ord are mutually exclusive within one MarkObject.

	RegisterMark*

Modified in JDF 1.1
	refelement
	Specific information about this kind of mark object.

	ScavengerArea *

New in JDF 1.1
	refelement
	Specific information about this kind of mark object

Structure of the DeviceMark Subelement

New in JDF 1.1
	Name
	Data Type
	Description

	Font ?
	NMTOKEN
	The name of the font that should be used for the DeviceMark. Values include

Courier

Helvetica
Helvetica-Condensed
Times-Roman
If not specified, the result is device dependent.

	FontSize ?
	integer
	The size of the font that should be used for the DeviceMark, in points (0.

	MarkOrientation ?
	enumeration
	Description of the preferred DeviceMark orientation One of:

Vertical

Horizontal
If not specified, the result is device dependent.

Structure of DynamicField Subelement

	Name
	Data Type
	Description

	Format
	string
	Format string in C printf format that defines the replacement.

	InputField ?

Deprecated in JDF 1.1
	string
	String that must be replaced by the DynamicInput element in the Contents RunList referenced by Ord or OrdExpression.

	Ord ?
	integer
	Reference to an index in the Contents RunList that contains DynamicInput elements. Only one of Ord or OrdExpression may be specified.

	OrdExpression ?
	string
	Expression to calculate the reference to an index in the Contents RunList that contains DynamicInput fields. For details, see the definition of OrdExpression in the description of the PlacedObject element. Only one of Ord or OrdExpression may be specified.

	ReplaceField ?
	string
	String that must be replaced by the instantiated text expression as defined by the Format and Template attributes in the file referenced by Ord, OrdExpression . If ReplaceField is not specified, the Device that processes the DynamicField must format the DynamicField.

	Template
	string
	Template to define a sequence of variables consumed by Format. A list of predefined values is found in the description of the FileSpec resource. In addition, the Name attribute of DynamicInput elements of a RunList define further variables.

	DeviceMark ?

New in JDF 1.1
	refelement
	DeviceMark defines the formatting parameters for the mark. If not specified, the DeviceMark settings defined in LayoutPreparationParams or in the Layout tree are assumed.

DynamicField Subelement Properties

DynamicField provides a description of dynamic text replacements for MarkObjects. This element should be used for production purposes, such as defining bar codes for variable data printing. DynamicField elements are not intended as a placeholders for actual content such as addresses. Rather, they are marks with dynamic data such as time stamps and database information. Dynamic objects are MarkObjects with optional additional DynamicField elements that define text replacement.

Example usage of a DynamicField Element:

<!—The RunList entry: -->

<RunList … >

 <DynamicInput Name="i1">Joe</DynamicInput>

 <DynamicInput Name="i2">John</DynamicInput>

 <LayoutElement Type="Graphics">

 <FileSpec URL=“File://Variable.pdf"/>

</LayoutElement>

</RunList>

…

<!—The MarkObject in the Layout hierarchy: -->

<MarkObject CTM=… (…)>

 <LayoutElement Type="Graphics">

 <FileSpec URL=“File://MyReplace.pdf"/>

 </LayoutElement >

 <DynamicField ReplaceField="___xxx___"

 Format="Replacement Text for %s and %s go in here at %s on %s"

 Template="i1,i2,Time,Date" Ord="0"/>

</MarkObject>
In the example above, the text “___xxx___” in the file MyReplace.pdf would be replaced by the sentence “Replacement Text for Joe and John go in here at 14:00 on Mar-31-2000”.

MyReplace.pdf is placed at the position defined by the CTM of the MarkedObject and Variable.pdf is placed at the position defined by the CTM of the PlacedObject.

7.2.137 ThreadSealingParams

Modified in JDF 1.2
[Changed ThreadPositons, ThreadLength, and ThreadStitchWidth to be optional. Added ReferenceEdge attribute.]
New in JDF 1.1

This resource provides the parameters for the ThreadSealing process.
Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
ThreadSealing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BlindStitch ?
	boolean
	If true, a blind stitch after last stitch is required. Default = false

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be sealed for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the ThreadSealing process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be sealed. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	ThreadMaterial ?
	enumeration
	Thread material. Possible values are:

Cotton

Nylon

Polyester

	ThreadPositions ?
Modified in JDF 1.2
	NumberList
	Array containing the Y-coordinate of the center positions of the thread. If not present, the implied default is specified by the system.

	ThreadLength ?
Modified in JDF 1.2
	double
	Length of one thread. If not present, the implied default is specified by the system.

	ThreadStitchWidth ?
Modified in JDF 1.2
	double
	Width of one stitch. If not present, the implied default is specified by the system.

	SealingTemperature ?
	integer
	Temperature needed for sealing thread and sheets together in degrees centigrade.

7.2.138 ThreadSewingParams

Modified in JDF 1.2
[Changed GlueLineRefSheets and NumberOfNeedles to be optional. Added ReferenceEdge attribute.]
This resource provides the parameters for the ThreadSewing process. It may also specify a gluing application, which would be used principally between the first and the second or the last and the last sheet but one. A gluing application might also be necessary if different types of paper are used.

The process coordinate system is defined as follows: The Y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to the registered edge. The X-axis is aligned with the registered edge. It increases from the binding edge to the edge opposite to the binding edge, i.e., the product front edge.

[image: image102.wmf]Stitch

Start

position

Glue line

working length

Binding

edge (spine)

Y

X

Figure 7.25 Parameters and coordinate system used for thread sewing

[image: image103.wmf]Binding edge (spine)

Y

X

Stitch

Offset

Figure 7.26 Parameters and coordinate system used for side sewing

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
ThreadSewing
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BlindStitch ?
	boolean
	If true, a blind stitch after last stitch is required. Default = false

	CastingMaterial ?
	enumeration
	Casting material of the thread being used. Possible values are:

Cotton

Nylon

Polyester

	CoreMaterial ?
	enumeration
	Core material of the thread being used. This attribute must be used to define the thread material if there is no casting. Possible values are:

Cotton

Nylon

Polyester

	GlueLineRefSheets ?
Modified in JDF 1.2
	IntegerList
	This entry is only required if GlueLine is defined. It contains the indices of the loose parts of the input component after which gluing should be applied. The index starts with 0.

	Offset ?

New in JDF 1.1
	double
	Specifies the distance between the stitch and the binding edge. Used only for side stitching. Default = 0

	NumberOfNeedles ?
Modified in JDF 1.2
	integer
	Specifies the number of needles to be used. Default = equipment-specific setting.

	NeedlePositions ?
	NumberList
	Array containing the Y-coordinate of the needle positions. The number of entries must match the number given in NumberOfNeedles. Default = equipment-specific setting.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be sewn for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the ThreadSewing process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be sewn. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	Sealing ?
	boolean
	If true, thermo-sealing is required. Default false

	SewingPattern ?
	enumeration
	Sewing pattern. Possible values are:

Normal – The default.

Staggered

CombinedStaggered

Side – Side sewing.

	ThreadThickness ?
	double
	Thread thickness.

	ThreadBrand ?
	string
	Thread brand.

	GlueLine *
	element
	Gluing parameters.

7.2.139 Tile

Each Tile resource defines how content from a Surface resource will be imaged onto a piece of media that is smaller than the designated surface. Tiling occurs in some production environments when pages are imaged on to an intermediate medium, and the resulting image of the surface is larger than the media. In this case, instructions are needed to determine how the intermediate media (tiles) will be assembled to achieve the desired output, e.g., a single plate for the surface. For example, a device might require that four pieces of film be assembled to create the image for the plate.

In general, a Tile resource will be partitioned (see Section 3.9.2 Description of Partitionable Resources) by TileID. Individual tiles are selected and matched by specifying the appropriate TileID attribute, which is described in Table 3‑25 Contents of the Part element.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
TileID
Input of processes:
Tiling
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ClipBox
	rectangle
	A rectangle that defines the bounding box of the Surface contents which will be imaged on this Tile. The ClipBox is defined in the coordinate system of the Surface.

	CTM
	matrix
	A coordinate transformation matrix mapping the ClipBox for this Tile to the rectangle 0 0 X Y, where X and Y are the extents of the media that the Tile will be imaged onto.

	MediaSource?
	refelement
	Describes the media to be used.

7.2.140 Tool

New in JDF 1.1
A Tool resource defines a generic tool that is customized for needed for a given job, e.g., an embossing stamp. The manufacturing process for the tool is not described within JDF.
Resource Properties

Resource class:
Handling

Resource referenced by:
-

Example Partition:
-
Input of processes:
Embossing, ShapeCutting
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	ToolAmount ?
	Integer
	Number of identical instances of the tool that the tool contains, e.g., the number of cut forms in a die cutting die.

	ToolID
	string
	ID of the tool. This is a unique name within the workflow.

	ToolType ?
	NMTOKEN
	Type of the tool. Possible values include:

EmbossingCalendar

EmbossingStamp

CutDie

7.2.141 TransferCurve

TransferCurve elements specify the characteristic curve of transfer of densities between systems. For more details on transfer curves and their usage, refer to the CIP3 PPF specification at: http://www.cip4.org/documents/technical_info/cip3v3_0.pdf
Resource Properties

Resource class:
Parameter

Resource referenced by:
Color, TransferCurvePool
Example Partition:
RibbonName, SheetName, Side, WebName
Input of processes:

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Curve
	TransferFunction
	The density mapping curve for the separation defined by Separation.

	Separation ?
	string
	The name of the separation. If Separation = All, this curve should be applied to all separations that are not explicitly defined.

7.2.142 TransferCurvePool

A transfer curve pool is a collection of TransferCurveSet elements that each contains information about a TransferCurve. Multiple TransferCurvesSets may exist at one time. For example, one may exist for the laser calibration of the imagesetter, one for the ContactCopying process and one for the printing process. Each TransferCurveSet consists of one or more TransferCurve elements. A TransferCurve element should be applied to the appropriate correlative Separation, or to all Separations when Separation = All. The TransferCurveSets should be concatenated in the following order:

Film -> Plate -> Press -> Paper.

and

Proof.

Resource Properties

Resource class:
Parameter

Resource referenced by:
TransferFunctionControl
Example Partition:
-
Input of processes:
DigitalPrinting
, InkZoneCalculation
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	TransferCurveSet *
	element
	The set of transfer curves.

Structure of TransferCurveSet Subelement

TransferCurveSet elements describe both the characteristic curve of transfer and the relation between the various process coordinate systems.

TransferCurveSet

	Name
	Data Type
	Description

	CTM ?

New in JDF 1.1
	matrix
	Defines the transformation of the coordinate system in the device as defined by Name. Default = identity matrix: “1 0 0 1 0 0”

	Name

Modified in JDF 1.1
	NMToken
	The name of the TransferCurveSet. Possible values include:

Film – The transformation from the Layout system to the Film. In a CtP environment, this defaults to the identity matrix and the identity TransferCurve.

Plate – The transformation from the Film system to the Plate.
Paper – The transformation from the Press system to the Paper.

Press – The transformation from the Plate system to the Press

Proof – The transformation from the Layout system to the Proof.

	TransferCurve *

Modified in JDF 1.1
	refelement
	List of TransferCurve entries.

7.2.143 TransferFunctionControl

Resource class:
Parameter

Resource referenced by:
SeparationControlParams
Example Partition:
-
Input of processes:
-
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	TransferFunctionSource
	enumeration
	Identifies the source of transfer curves which should be applied during separation.

Document – Use the transfer curves provided in the document.

Device – Use transfer functions provided by the output device. When Separation is being performed pre-RIP, this may mean that no transfer curves will be applied.

Custom – Use the transfer curves provided in the TransferCurvePool element of this element.

	TransferCurvePool ?
	refelement
	Provides a set of transfer curves to be used by the process.

7.2.144 TrappingDetails

Modified in JDF 1.2
[added 1 value: 2001 to TrappingType, changed SeparationSpec * to a refelement for consistency, 2 clarifications: IgnoreFileParams, Trapping, 2 Input of processes: RIP’ing, Trapping, 1 ISSUE]
This resource identifies the root of the hierarchy of resources. This hierarchy controls the Trapping process whether used for PDL or in-RIP trapping.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
RIP’ing, SoftProofing, Trapping

Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	DefaultTrapping ?
	boolean
	If true, pages that have no defined TrapRegions are trapped using the set of TrappingParams. The BleedBox is used for the TrapZone. If false, only pages that have TrapRegions are trapped.

Default = false

	IgnoreFileParams ?
Clarified in JDF 1.2
	boolean
	If true, any detectable trapping controls (or traps) provided within any source files used by this process are ignored. If false, trapping controls embedded in the source files are honored. Default = true Note: If TrappingDetails (and the Trapping process) is not present, then the trapping defined in Postscript may still be applied.

	Trapping ?

	boolean
	If true, trapping is enabled. If false, trapping is disabled. If omitted, the default setting for the device is used.

	TrappingOrder ?
	element
	Trapping processes will trap colorants as if they are laid down on the media in the order specified in TrappingOrder. The colorant order may affect which colors to spread, especially when opaque inks are used. Default = system specified

	TrappingType ?
Deprecated in JDF 1.2
	integer
	Identifies the trapping method to be used by the trapping process. The number identifies the minor (last three digits) and major (any digits prior to the last three) version of the trapping type requested.Default = system specified

	TrappingParams ?
	refelement
	A TrappingParams resource that is used to define the default trapping parameters when DefaultTrapping = true.

	ObjectResolution *

New in JDF 1.1

	refelement
	Elements which define the resolutions to trap the contents at. More than one element may be used to specify different resolutions for different SourceObjects t
ypes. Default = device specific

	TrapRegion *
	refelement
	A set of TrapRegion resources that identify the pages to be trapped, the geometry of the areas to trap on each page, and the trapping settings to use for each area.

Structure of the TrappingOrder Subelement

	Name
	Data Type
	Description

	SeparationSpec *
Modified in JDF 1.2
	refelement
	An array of colorant names.

7.2.145 TrappingParams

Modified in JDF 1.2
[added 2 attributes: TrapWidthFast, TrapWidthSlow, 2 clarifications, 1 ISSUEs (Digital Printing WG)]
This resource provides a set of controls that are used to generate traps. The values of the parameters are chosen based on the customer’s trapping strategy, and depend largely on the content of the pages to be trapped and the characteristics of the output device (or press). The attributes of this resource that are optional in the sense that each implementation decides a default value for them.

Resource Properties

Resource class:
Parameter

Resource referenced by:
TrapRegion, TrappingDetails
Example Partition:
DocIndex, RunIndex, RunTag, SheetName, Side, SignatureName
Input of processes:
-
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	BlackColorLimit ?
	number
	A number between 0 and 1 that specifies the lowest color value required for trapping a colorant according to the black trapping rule. This entry uses the subtractive notion of color, where 0 is white, or no colorant, and 1 is full colorant. Default = system specified

	BlackDensityLimit ?
	number
	A positive number that specifies the lowest neutral density of a colorant for trapping according to the black trapping rule.

Default = system specified

	BlackWidth ?
	number
	A positive number that specifies the trap width for trapping according to the black trapping rule. BlackWidth is specified in TrapWidth units; a value of 1 means that the black trap width is one TrapWidth wide. The resulting black trap width is subject to the same device limits as TrapWidth. Default = system specified

	Enabled ?
	boolean
	If true, trapping is enabled for zones that are defined with this parameter set. Default = system specified

	HalftoneName ?
	string
	A name that identifies a halftone object to be used when marking traps. The name is the value of the ResourceName attribute of some PDLResourceAlias resource. If absent, the halftone in effect just before traps are marked will be used, which may cause unexpected results.

	ImageInternalTrapping ?
	boolean
	If true, the planes of color images are trapped against each other.

If false, the planes of color images are not trapped against each other. Default = system specified

	ImageResolution ?
	integer
	A positive integer indicating the minimum resolution, in dots per inch, for downsampled images. Images can be downsampled by a power of 2 before traps are calculated. The downsampled image is used only for calculating traps, while the original image is used when printing the image. Default = system specified

	ImageMaskTrapping ?
	boolean
	Controls trapping when the TrapZone contains a stencil mask.

A stencil mask is a monochrome image in which each sample is represented by a single bit. The stencil mask is used to paint in the current color: image samples with a value of 1 are marked, samples with a value of 0 are not marked.

When false, none of the objects covered by the clipped bounding box of the stencil mask are trapped. No traps are generated between the stencil mask and objects that the stencil mask overlays. No traps are generated between objects that overlay the stencil mask and the stencil mask. For all other objects, normal trapping rules are followed. Two objects on top of the stencil mask that overlap each other may generate a trap, regardless of the value of this parameter. When true, objects are trapped to the stencil mask, and to each other. Default = system specified

	ImageToImageTrapping ?
	boolean
	If true, traps are generated along a boundary between images. If false, this kind of trapping is not implemented.

Default = system specified

	ImageToObjectTrapping ?
	boolean
	If true, images are trapped to other objects. If false, this kind of trapping is not implemented. Default = system specified

	ImageTrapPlacement ?
	enumeration
	Controls the placement of traps for images. Possible values are:

Center – Trap is centered on the edge between the image and the adjacent object.

Choke – Trap is placed in the image.

Normal – Trap is based on the colors of the areas.

Spread –Trap is placed in the adjacent object.

Default = system specified

	MinimumBlackWidth ?
	number
	Specifies the minimum width, in points, of a trap that uses black ink. Allowable values are those greater than or equal to zero.

Default = 0

	SlidingTrapLimit ?
	number
	A number between 0 and 1. Specifies when to slide traps towards a center position. If the neutral density of the lighter area is greater than the neutral density of the darker area multiplied by the SlidingTrapLimit, then the trap slides. This applies to vignettes and non-vignettes. No slide occurs at 1. Default= system specified

	StepLimit ?
	number
	A number between 0 and 1. Specifies the smallest step required in the color value of a colorant to trigger trapping at a given boundary.

If the higher color value at the boundary exceeds the lower value by an amount that is equal or greater than the larger of 0.05 or StepLimit times the lower value (low + max (StepLimit * low, 0.05)), then the edge is a candidate for trapping. The value 0.05 is set to avoid trapping light areas in vignettes. This entry is used when not specified explicitly by a ColorantZoneDetails subelement for a colorant. Default = system specified

	TrapColorScaling ?
	number
	A number between 0 and 1. Specifies a scaling of the amount of color applied in traps towards the neutral density of the dark area. 1 means the trap has the combined color values of the darker and the lighter area. 0 means the trap colors are reduced so that the trap has the neutral density of the darker area. This entry is used when not specified explicitly by a ColorantZoneDetails subelement for a colorant. Default = system specified

	TrapEndStyle ?
	NMTOKEN
	Instructs the trap engine how to form the end of a trap that touches another object. Possible values include:

Miter

Overlap

Other values may be added later as a result of customer requests.

Default = Miter

	TrapJoinStyle ?
	NMTOKEN
	Specifies the style of the connection between the ends of two traps created by consecutive segments along a path. Possible values include:

Bevel

Miter

Round

Default = Miter

	TrapWidth ?
Modified in JDF 1.2
	number or XYPair
	A positive number or two positive numbers. Specifies the trap width in points. Also defines the unit used in trap width specifications for certain types or objects, such as BlackWidth.
Default = system specified
ISSUE: Need to define the X and Y coordinates for trapping
.

	ColorantZoneDetails *
	element
	ColorantZoneDetails subelements. Entries in this dictionary reflect the results of any named colorant aliasing specified.

Each entry defines parameters specific for one named colorant.

If the colorant named is neither listed in the ColorantParams array, nor implied by the ProcessColorModel, for the ColorantControl object in effect when these TrappingParams are applied, the entry is not used for trapping.

Structure of ColorantZoneDetails Subelement
	Name
	Data Type
	Description

	Colorant
	string
	The colorant name that occurs in the SeparationSpec::Name of the ColorantParams array of the ColorantControl object used by the process.

	StepLimit ?
	number
	A number between 0 and 1. Specifies the smallest step required in the color value of a colorant to trigger trapping at a given boundary. If the higher color value at the boundary exceeds the lower value by an amount that is equal or greater than the larger of 0.05 or StepLimit times the lower value (low + max (StepLimit * low, 0.05)), then the edge is a candidate for trapping. The value 0.05 is set to avoid trapping light areas in vignettes. If omitted, the StepLimit attribute in the TrappingParams resource is used.

	TrapColorScaling ?
	number
	A number between 0 and 1. Specifies a scaling of the amount of color applied in traps towards the neutral density of the dark area. 1 means the trap has the combined color values of the darker and the lighter area. 0 means the trap colors are reduced so that the trap has the neutral density of the darker area. If omitted, the TrapColorScaling attribute in the TrappingParams resource is used.

7.2.146 TrapRegion

This resource identifies a set of pages to be trapped, an area of the pages to trap, and the parameters to use.

Resource Properties

Resource class:
Parameter

Resource referenced by:
TrappingDetails
Example Partition:
-
Input of processes:
-
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	TrapZone ?
	path
	Each element within TrapZone is one subpath of a complex path. The TrapZone is the area that results when the paths are filled using the non-zero winding rule.

When absent, the MediaBox array for the RunList defines the TrapZone.

	Pages
	IntegerRangeList
	Identifies a set of pages from the RunList to trap using the specified geometry and trapping style.

	TrappingParams ?
	refelement
	The set of TrappingParams which will be used when trapping in this region.

Default = use system specified trapping parameters.

7.2.147 TrimmingParams

[ISSUE: Why not make TrimmingType be OPTIONAL, so that TrimmingParams could be OPTIONAL for the Trimming process or even simpler, remove TrimmingType altogether, since it has only two values: Detailed and SystemSpecified?]
This resource provides the parameters for the Trimming process.

The process coordinate system is defined as follows — The y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to the registered edge. The x-axis is aligned with the registered edge. It increases from the binding edge to the edge opposite to the binding edge, i.e. the product front edge.

[image: image104.wmf]Y

X

Block before

trimming

Binding

edge

Trimmed

block

Origin of

operation

coordinate

system

Width

Height

Trimming

offset

Figure 7.27 Parameters and coordinate system used for trimming

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Trimming
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Height ?
	double
	Height of the trimmed product. If not specified, the system specified Height is assumed.

	TrimmingOffset ?
	double
	Amount to be cut at bottom side. If not specified, the system specified TrimmingOffset is assumed.

	TrimmingType

New in JDF 1.1
Deprecated in JDF 1.2
	enumeration
	Trimming operation to perform: Possible values are:
Detailed – Cut the amount specified by Height, Width and TrimmingOffset.

SystemSpecified – Cut the amount specified by the system.

	Width ?
	double
	Width of the trimmed product. If not specified, the system specified Width is assumed.

7.2.148 VerificationParams
This resource provides the parameters of a Verification process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
Verification
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	FieldRange ?
	IntegerRangeList
	Zero based range list of integers that determines which characters of the data in IdentificationField should be applied to the field formatting strings. Defaults = 0~-1, which means first-to-last.

	InsertError ?
	string
	Database insertion statement in C printf format defining how information read from the IdentificationField resource of the Verification process should be stored in case of verification errors. The database is defined by the DBSelection resource of the Verification process. This field must be specified if a database is selected.

	InsertOK ?
	string
	Database insertion statement in C printf format defining how information extracted from the IdentificationField should be stored in case of verification success. The database is defined by the DBSelection resource of the verification node. This field must be specified if a database is selected.

	Tolerance ?
	double
	Ratio of tolerated verification failures to the total number of tests.

0 = none allowed, 1.0 = all.

Usage of FieldRange and Format Strings.

A database field name can be calculated from the characters of the IdentificationField using standard C printf notation and the FieldRange attribute. Each range that is defined in FieldRange is passed to printf as one string that is applied to the format. The order is maintained. Note that SQL was chosen for illustrative purposes only. The mechanism is defined for any database interface.

Example
IdentificationField string:
1234:John Doe

FieldRange:

5~-1 0~3

FieldOK:

Insert true into Va where Name = ’%s’ and ID = %s

Resulting string:

Insert true into Va where Name = “John Doe” and ID = 1234

7.2.149 WireComb​Binding​Params

Modified in JDF 1.2
[Added ReferenceEdge attribute.]
This resource describes the details of the WireCombBinding process.

Resource Properties

Resource class:
Parameter

Resource referenced by:
-

Example Partition:
-
Input of processes:
WireCombBinding
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	Brand ?
	string
	The name of the comb manufacturer, e.g., Wire-O®, and the name of the specific item. Default =system specified.

	Color ?
	NamedColor
	Determines the color of the comb. Default =system specified.

	Diameter ?
	double
	The comb diameter is determined by the height of the block of sheets to be bound. Default =system specified.

	Distance ?
	double
	The distance between the “teeth” and the distance between the holes of the prepunched sheets must be the same. Default =system specified.

	FlipBackCover ?

New in JDF 1.1

	boolean
	The spine is typically hidden between the last page of the Component and the back cover. Flip the back cover after the wire was "closed" or keep it open. The latter makes sense, if further processing is required, e.g., inserting a CD, before closing the book.

Default = false.

	^Material ?
	enumeration
	The material used for forming the wire comb binding. Possible values are:

LaqueredSteel

TinnedSteel

ZincsSteel

Default =system specified.

	ReferenceEdge ?

New in JDF 1.2
	enumeration
	The edge of the component to be bound for the process coordinate system (see description in 7.2.132 Stitching​Params). This attribute is intended for use when the WireCombBinding process is combined with other processes, such as DigitalPrinting, where, when combined, there is no input Component to be bound. Possible values are:

Top

Left

Right

Bottom

SystemSpecified – Default to the process coordinate system defined in A in 7.2.132 Stitching​Params, unless used in a combined process, when the default is as defined in B in 7.2.132 Stitching​Params. The default.

	Shape ?
	enumeration
	The shape of the wire comb binding. Possible values are:

Single – Each “tooth” is made with one wire. The default.
Twin – The shape of each “tooth” is made with a double wire

	Thickness ?
	double
	The thickness of the comb material. Default =system specified.

7.2.150 WrappingParams

New in JDF 1.1
WrappingParams defines the details of Wrapping. Details of the material used for Wrapping can be found in the Media resource that is also an input of the Wrapping process.

Resource Properties

Resource class:
Parameter

Resource referenced by:

Example Partition:
-
Input of processes:
Wrapping
Output of processes:
-

Resource Structure

	Name
	Data Type
	Description

	WrappingKind
	enumeration
	LooseWrap – The wrap is loose around the component

ShrinkWrap – The wrap is shrinked around the component

Default = equipment-specific setting

7.3 Device Capability Definitions

New in JDF 1.1

The elements in this section are used to specify capabilities of devices. Note that only attributes and elements that are explicitly described within the device capabilities structure are supported by the device. For more details on using device capabilities, refer to section 4.8 Describing Device Capabilities with JDF.
7.3.1 Structure of the DeviceCap Subelement

New in JDF 1.1
The DeviceCap element describes the JDF Nodes and Resources that a device is capable of processing. Elements that are derived from the abstract State elements are used to describe ranges and lists of ranges of allowed parameters.

	Name
	Data Type
	Description

	CombinedMethod ?
	enumeration
	Specifies how the processes specified in Types may be specified. One of:

Combined – The list of processes in Types must be specified as a Combined process.

ProcessGroup – The list of processes in Types must be specified as a ProcessGroup of individual processes.

CombinedProcessGroup – The list of processes in Types may be specified either as a Combined process or as a ProcessGroup of individual processes.

None – No support for Combined or ProcessGroup. Only one individual process type defined in Types is supported. The default.

	GenericAttributes ?
	NMTOKENS
	List of generic attributes that are supported and unrestricted by the device implementation. Note that descriptions of attributes that appear in State elements (see the following section 7.3.5) overwrite the description in GenericAttributes.

	OptionalCombined​Types ?
	NMTOKENS
	List of optional JDF Node types. The entries of the list must be a subset of Types.
For example, a RIP with optional in-RIP trapping would specify OptionalCombinedTypes = Trapping if Types = Trapping Interpreting Rendering”. Default = none, i.e. no optional Node type dependencies exist..

	TypeOrder ?
	enumeration
	Ordering restriction for Combined or ProcessGroup nodes.
Fixed – The order of process types specified in the Types attribute is ordered and each type can be specified only once, e.g., Cutting, Folding. Order does matter. The default.
Unordered – The order of process types specified in the Types attribute is unordered, and each type can be specified only once, e.g., DigitalPrinting, Screening, Trapping Order does not matter.

Unrestricted – The order of process types specified in the Types attribute is unordered, and each type can be specified multiply, e.g., Cutting, Folding. The device can do both processes, in any order and multiple times.

	Type
	NMTOKEN
	JDF Type attribute of the supported process. Extension types may be specified by stating the namespace prefix in the value.

	Types ?
	NMTOKENS
	If Type = Combined, or Type = ProcessGroup this attribute represents the list of combined processes. If any of the Services are in a namespace other than JDF, the namespace prefix should be included in this list. For details, see Section 3.2.3 Combined Process Nodes

	DevCaps *
	element
	List of definitions of the accepted resources. The DevCaps elements are combined with a logical AND, i.e. A JDF must fulfill all restrictions defined by the set of DevCaps. Only resources that are specified within this list are honored by the device.

	Performance *
	element
	Specification of a devices performance capabilities.

7.3.2 Structure of the Performance Subelement

New in JDF 1.1
The Performance element describes speed as the capability to consume or produce a JDF Resource.

	Name
	Data Type
	Description

	AverageAmount
	number
	Average amount produced/consumed per hour assuming an average job.

	AverageCleanup ?
	duration
	Average time needed to clean the device after a job. Default = 0M

	AverageSetup ?
	duration
	Average time needed to setup the device before a job. Default = 0M

	MaxAmount ?
	number
	Maximum amount produced/consumed per hour assuming an ideal job. Default = 0 which translates to the value of AverageAmount.

	MaxCleanup ?
	duration
	Maximum time needed to clean the device after a job assuming a worst case job. Default = 0M which specifies the value defined in AverageCleanup.

	MaxSetup ?
	duration
	Maximum time needed to setup the device before a job assuming a worst case job. Default = 0M which specifies the value defined in AverageSetup.

	MinAmount ?
	number
	Minimum amount produced/consumed per assuming a worst case job. Default = 0 which translates to the value of AverageAmount.

	MinCleanup ?
	duration
	Minimum time needed to clean the device after a job assuming an ideal job. Default = 0M which specifies the value defined in AverageCleanup.

	MinSetup ?
	duration
	Minimum time needed to setup the device before a job assuming an ideal job. Default = 0M which specifies the value defined in AverageSetup.

	Name
	NMTOKEN
	Name of the input resource type that is processed by the device, e.g., “Media”, “Ink”, “RunList”.

	Unit ?
	NMTOKEN
	Unit of measure of resource consumption per hour. Defaults to the resources generic units as defined in Table 1‑3 Units used in JDF

7.3.3 Structure of the DevCaps Subelement

New in JDF 1.1
The DevCaps element describes the valid parameter space of a JDF Resource, message or resource link that is consumed, honored, or produced by a device. Note: DevCaps not only describes the structure of the individual resources and resource links but also of the NodeInfo element within a JDF node. The DevCaps element may be used to model product intent resources as well as process definition resources.

	Name
	Data Type
	Description

	DevNS ?
	URI
	Namespace of the resource or message that is described. Default = the JDF namespace.

	Name
	NMTOKEN
	Fully qualified name of the element that is described, ResourceUsage attribute or ProcessUsage of the respective resource within a JDF node . If Name = NodeInfo, it describes the structure of the NodeInfo information that is accepted by the device.

	ResourceUpdate ?
	NMTOKENS
	Specifies the capability to handle partial updates defined in ResourceUpdate elements. Possible values include:

None – ResourceUpdate is not supported. Must not be combined with any other value. The default.

JMFID – JMF Resource messages that reference ResourceUpdates that have been previously loaded to the device are accepted.

PDLID – References from PDL data, e.g., PPML TicketRef elements that reference ResourceUpdates that have been previously loaded to the device are accepted.

	Types ?
	NMTOKENS
	List of JDF Node types that a DevCaps applies to. Default = the Types attribute of the parent DeviceCap element. The value of Types must be a subset of Types in DeviceCap.

	DevCap +
	element
	List of definitions of the accepted parameter space for resources and messages. The parameter spaces of multiple DevCap elements are combined as a superset of the individual DevCap elements. Only elements that are explicitly specified as DevCap elements within a DevCaps are supported.

7.3.4 Structure of the DevCap Subelement

New in JDF 1.1
The DevCap element describes the valid parameter space of a JDF resource, message or element that is consumed or produced by a Device. The structure of the DevCap is identical to that of the JDF resource, message, or element that it models. Individual attributes are replaced by the appropriate State elements. For more details on State elements, see Section 7.3.5. The Name attribute of the State element must match the attribute key that is described. If no State element exists for a given attribute, it is assumed to be unsupported. The restrictions of multiple attributes and elements are combined with a logical AND.

Subelements of resources are modeled by including nested DevCap with a ResourceUsage attribute equal to the subelements tag-name or ResourceUsage if the subelement is a FileSpec. Attributes of the resource link belonging to the resource, e.g., Transformation or the various pipe control parameters may also be restricted.

	Name
	Data Type
	Description

	DevNS ?
	URI
	Namespace of the element that is described by this DevCap. Default = the JDF namespace.

	MaxOccurs ?
	integer or “unbounded”

	Maximum number of occurrences of the element described by this DevCap. Default = 1.

	MinOccurs ?
	integer or “unbounded”
	Minimum number of occurrences of the element described by this DevCap. Default = 1.

	Name
	NMTOKEN
	Fully qualified name of the resource that is described. ResourceUsage attribute or ProcessUsage of the respective resource within a JDF node. Default = the value of Name of the parent DevCaps element.

	DevCap *
	element
	Definition of the accepted parameter space for the messages or resources subelements.

	State *
	element
	Abstract State elements that define the parameter space that is covered by device. One State element must be defined for each supported attribute or Intent Span element of the resource that is not specified DeviceCaps::GenericAttributes. If a resource attribute has no matching State element in DevCap, it is not supported.

7.3.5 Structure of the Abstract State Subelement

New in JDF 1.1
The following table describes the common, data type independent parameters of all State objects.

	Name
	Data Type
	Description

	DevNS ?
	URI
	Namespace of the attribute that is described by this State element. Default = the JDF namespace.

	HasDefault ?
	boolean
	A flag that describes whether the parameter has a device default. If set, DefaultValue must be set. Default = true

	Name ?
	NMTOKEN
	Name of the attribute that is described by this State. If Name is omitted this State describes the element’s text, i.e., the text between the XML start and end tag.

	Span ?

New in JDF 1.1a
	boolean
	A flag that describes whether the parameter is an intent span data type. Default=”false”. For example a State element describing an XYPairSpan would have DataType=”XYPairState” and Span=”true”.

The following types of State elements are defined:

	Name
	Data Type
	Description

	BooleanState
	element
	Describes a set of boolean values.

	EnumerationState
	element
	Describes a set of enumeration values.

	IntegerState
	element
	Describes a numerical range of integer values.

	MatrixState
	element
	Describes a range of matrices. generally used to define valid orientations of Components.

	NameState
	element
	Describes a set of NMTOKEN values.

	NumberState
	element
	Describes a numerical range of values.

	ShapeState
	element
	Describes a set of 3 value shape values.

	StringState
	element
	Describes a set of string values.

	XYPairState
	element
	Describes a set of XYPair values.

7.3.5.1 Structure of the BooleanState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of boolean values. It inherits from the abstract State element described above.

	Name
	Data Type
	Description

	AllowedValueList ?

Added in JDF 1.1A
	enumerations
	A list of all legal values. Allowed list values are the booleans “true” and “false”. Default = the empty list, which specifies an unrestricted range.

	CurrentValue ?
	boolean
	Current value for the current running job set in the device.

If not specified, the value is unknown.

	DefaultValue ?
	boolean
	Expected, initial value. Must be set if HasDefault = true.

7.3.5.2 Structure of the EnumerationState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of enumerative values. It inherits from the abstract State element described above. It is identical to the NameState element except for the fact that it describes a closed list of enumeration values.

	Name
	Data Type
	Description

	DefaultValue ?
	enumeration
	Expected, initial value. Must match the enumeration defined in the resource. Must be set if HasDefault = true.

	CurrentValue ?
	enumeration
	Current value for the current running job set in the device. Must match the enumeration defined in the resource. Default = unknown.

	AllowedValueList ?
	enumerations
	A list of all potential legal values. Must match the enumeration defined in the resource. Default = the empty list, which specifies an unrestricted range.

	PresentValueList ?
	enumerations
	A list of values that can be chosen without operator intervention. Must match the enumeration defined in the resource. If not specified, the value of AllowedValueList is applied.

7.3.5.3 Structure of the IntegerState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of integer values. It inherits from the abstract State element described above.

	Name
	Data Type
	Description

	DefaultValue ?

	integer
	Expected, initial value. Must be set if HasDefault = true.

	CurrentValue ?
	integer
	Current value for the current running job set in the device. Default = unknown.

	AllowedValueList ?
	IntegerList
	A list of all legal values. Default = the empty list, which specifies an unrestricted range.

	AllowedValueMax ?
	integer
	Inclusive maximum allowed value.

	AllowedValueMin ?
	integer
	Inclusive minimum allowed value.

	PresentValueList ?
	IntegerList
	A list of values that can be chosen without operator intervention. If not specified, the value of AllowedValueList is applied.

	PresentValueMax ?
	integer
	Inclusive maximum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMax is applied.

	PresentValueMin ?
	integer
	Inclusive minimum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMin is applied.

7.3.5.4 Structure of the MatrixState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of matrix values. It inherits from the abstract State element described above. It is primarily intended to specify orientations and manipulation capabilities of physical resources, e.g. in finishing devices.

	Name
	Data Type
	Description

	DefaultValue ?
	matrix
	Expected, initial value. Must be set if HasDefault = true.

	CurrentValue ?
	matrix
	Current value for the current running job set in the device. Default = unknown.

	Value *
	element
	A list legal values.

Structure of the Value element

	Name
	Data Type
	Description

	AllowedValue
	matrix
	A legal value for a matrix variable.

	PresentValue ?
	matrix
	A legal value for a matrix variable that can be chosen without operator intervention. If not specified, the value of AllowedValue is applied.

7.3.5.5 Structure of the NameState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of NMTOKEN values. It inherits from the abstract State element described above.

	Name
	Data Type
	Description

	DefaultValue ?
	NMTOKEN
	Expected, initial value. Must be set if HasDefault = true.

	CurrentValue ?
	NMTOKEN
	Current value for the current running job set in the device. Default = unknown.

	AllowedValueList ?
	NMTOKENS
	A list legal values. Default = the empty list, which specifies an unrestricted range.

	PresentValueList ?
	NMTOKENS
	A list of values that can be chosen without operator intervention. If not specified, the value of AllowedValueList is applied.

7.3.5.6 Structure of the NumberState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of integer values. It inherits from the abstract State element described above.

	Name
	Data Type
	Description

	DefaultValue ?
	number
	Expected, initial value. Must be set if HasDefault = true.

	CurrentValue ?
	number
	Current value for the current running job set in the device. Default = unknown.

	AllowedValueList ?
	NumberList
	A list legal values. Defaults to the empty list, which specifies an unrestricted range.

	AllowedValueMax ?
	number
	Inclusive maximum allowed value.

	AllowedValueMin ?
	number
	Inclusive minimum allowed value.

	PresentValueList ?
	NumberList
	A list of values that can be chosen without operator intervention. If not specified, the value of AllowedValueList is applied.

	PresentValueMax ?
	number
	Inclusive maximum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMax is applied.

	PresentValueMin ?
	number
	Inclusive minimum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMin is applied.

7.3.5.7 Structure of the ShapeState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of Shape values. It inherits from the abstract State element described above.

	Name
	Data Type
	Description

	DefaultValue ?
	shape
	Expected, initial value. Must be set if HasDefault = true.

	CurrentValue ?
	shape
	Current value for the current running job set in the device. Default = unknown.

	AllowedValueList ?
	NumberList
	A list of values that can be chosen. The NumberList must have a number of entries that is a multiple of three and three adjacent entries define one shape.

	AllowedValueMax ?
	shape
	Inclusive maximum allowed value.

	AllowedValueMin ?
	shape
	Inclusive minimum allowed value.

	PresentValueList ?
	NumberList
	A list of values that can be chosen without operator intervention. The NumberList must have a number of entries that is a multiple of three and three adjacent entries define one shape. If not specified, the value of AllowedValueList is applied.

	PresentValueMax ?
	shape
	Inclusive maximum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMax is applied.

	PresentValueMin ?
	shape
	Inclusive minimum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMin is applied.

7.3.5.8 Structure of the StringState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of string values. It inherits from the abstract State element described above.

	Name
	Data Type
	Description

	DefaultValue ?
	string
	Expected, initial value. Must be set if HasDefault = true.

	CurrentValue ?
	string
	Current value for the current running job set in the device. Default = unknown.

	Value +
	element
	A list legal values.

Structure of the Value element

New in JDF 1.1
	Name
	Data Type
	Description

	AllowedValue
	string
	A legal value for a string variable.

	PresentValue ?
	string
	A legal value for a string variable that can be chosen without operator intervention. If not specified, the value of AllowedValue is applied.

7.3.5.9 Structure of the XYPairState Subelement

New in JDF 1.1
This State subelement is used to describe ranges of XYPair values. It inherits from the abstract State element described above.

	Name
	Data Type
	Description

	DefaultValue ?
	XYPair
	Expected, initial value. Must be set if HasDefault = true.

	CurrentValue ?
	XYPair
	Current value for the current running job set in the device. Default = unknown.

	AllowedValueList ?
	NumberList
	A list of values that can be chosen. The NumberList must have an even number of entries and two adjacent entries define one XYPair.

	AllowedValueMax ?
	XYPair
	Inclusive maximum allowed value.

	AllowedValueMin ?
	XYPair
	Inclusive minimum allowed value.

	PresentValueList ?
	NumberList
	A list of values that can be chosen without operator intervention. The NumberList must have an even number of entries and two adjacent entries define one XYPair. If not specified, the value of AllowedValueList is applied.

	PresentValueMax ?
	XYPair
	Inclusive maximum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMax is applied.

	PresentValueMin ?
	XYPair
	Inclusive minimum allowed value that can be chosen without operator intervention. If not specified, the value of AllowedValueMin is applied.

7.3.6 Examples of Device Capabilities

New in JDF 1.1 Modified in JDF 1.1A
Device Description of a Scanner

Simple example of a Scanner description in a Device resource. The JMF based hand shaking is also illustrated. NodeInfo, ExposedMedia, and ScanParams are restricted.

Device Query:

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1" TimeStamp="2002-04-05T16:45:43+02:00" SenderID=”Controller”>
 <Query ID=”DeviceQuery” Type=”KnownDevices”>

 <DeviceFilter DeviceDetails=”Capability”/>

 </Query>

</JMF>

Device Response:

<?xml version='1.0' encoding='utf-8' ?>

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1" TimeStamp="2002-06-05T16:45:43+02:00" SenderID=”Scanner”>
 <Response ID=”xyz” refID=”DeviceQuery” Type=”KnownDevices”>

 <DeviceList>

 <DeviceInfo>

 <Device ID="IDXYZ" Class="Implementation" Status="Available"

 DeviceID=”Joe the Drum” ModelName=”Bongo”>

 <DeviceCap Type="Scanning"

 GenericAttributes=”ID Class SettingsPolicy BestEffortExceptions

 OperatorInterventionExceptions MustHonorExceptions

 PartIDKeys DocIndex rRefs”>

 <!— the scanner takes a minute to set up and scans an average of 2 sheets a min. -->

 <Performance Name=”ExposedMedia” AverageSetup=”P1T0H1M” AverageAmount=”120”/>

 <DevCaps Name="NodeInfo">

 <DevCap>

 <!-- NodeInfo only supports the JobPriority and TargetRoute attributes -->

 <StringState Name=”TargetRoute”/>

 <IntegerState Name="JobPriority"/>

 </DevCap>

 </DevCaps>

 <DevCaps Name="ExposedMedia">

 <DevCap>

 <!-- ExposedMedia restrictions -->

 <DevCap Name="Media">

 <NameState Name="MediaUnit" DefaultValue="Sheet"/>

 <XYPairState Name="Dimension" AllowedValueMax="600 1200"

 AllowedValueMin="0 0"/>

 </DevCap>

 </DevCap>

 </DevCaps>

 <DevCaps Name="ScanParams">

 <DevCap>

 <!-- Black and white 1 bit mode -->
 <IntegerState Name="BitDepth" DefaultValue="1" AllowedValueList="1"/>

 <EnumerationState Name="CompressionFilter"

 AllowedValueList="CCITTFaxEncode None"/>

 <NumberState Name="Magnification" AllowedValueMax="100"

 AllowedValueMin="1.e-002"/>

 <EnumerationState Name="OutputColorSpace" AllowedValueList="GrayScale"/>

 <XYPairState Name="OutputResolution" DefaultValue="2400 2400"/>

 </DevCap>

 <DevCap>

 <!-- Grayscale 12 bit mode -->

 <IntegerState Name="BitDepth" DefaultValue="8" AllowedValueMax="12"

 AllowedValueMin="1"/>

 <EnumerationState Name="CompressionFilter"

 AllowedValueList="FlateEncode DCTEncode None"/>

 <NumberState Name="Magnification" AllowedValueMax="100"

 AllowedValueMin="1.e-002"/>

 <EnumerationState Name="OutputColorSpace" AllowedValueList="GrayScale"/>

 <XYPairState Name="OutputResolution" DefaultValue="600 600"

 AllowedValueMax="2400 2400" AllowedValueMin="100 100"/>

 </DevCap>

 <DevCap>

 <!-- Color 10 bit mode -->

 <IntegerState Name="BitDepth" DefaultValue="8" AllowedValueMax="10"

 AllowedValueMin="1"/>

 <EnumerationState Name="CompressionFilter"

 AllowedValueList="FlateEncode DCTEncode None"/>

 <NumberState Name="Magnification" AllowedValueMax="10"

 AllowedValueMin="1.e-002"/>

 <EnumerationState Name="OutputColorSpace" AllowedValueList="CMYK RGB LAB"/>

 <XYPairState Name="OutputResolution" DefaultValue="600 600"

 AllowedValueMax="2400 2400" AllowedValueMin="100 100"/>

 </DevCap>

 </DevCaps>

 </DeviceCap>

 </Device>

 </DeviceInfo>

 </DeviceList>

 </Response>

</JMF>

JDF node that is accepted by the scanner of the previous example

All parameters of the following Scanning node are compliant with the device capabilities.

?xml version='1.0' encoding='utf-8' ?>

<JDF xmlns=http://www.CIP4.org/JDFSchema_1 ID="GoodScan" Type="Scanning" Status="Waiting" Version="1.1">

 <ResourcePool>

 <ScanParams ID="Link0007" Class="Parameter" Status="Available" BitDepth="8" OutputColorSpace="RGB" OutputResolution="600. 600."/>

 <ExposedMedia ID="Link0008" Class="Handling" Status="Available">

 <Media Dimension="425.196850394 566.929133858"/>

 </ExposedMedia>

 </ResourcePool>

 <ResourceLinkPool>

 <ScanParamsLink rRef="Link0007" Usage="Input"/>

 <ExposedMediaLink rRef="Link0008" Usage="Input"/>

 </ResourceLinkPool>

</JDF>

JDF node that is rejected by the scanner of the previous example

All parameters of the following Scanning node except Magnification are compliant with the device capabilities. Therefore, the device can NOT execute the job.

<?xml version='1.0' encoding='utf-8' ?>

<JDF xmlns=http://www.CIP4.org/JDFSchema_1” ID="BadScan" Type="Scanning" Status="Waiting" Version="1.1">

 <ResourcePool>

 <ScanParams ID="Link0012" Class="Parameter" Status="Available" BitDepth="8" Magnification="1000. 1000." OutputColorSpace="RGB" OutputResolution="600. 600."/>

 <ExposedMedia ID="Link0013" Class="Handling" Status="Available">

 <Media Dimension="425.196850394 566.929133858"/>

 </ExposedMedia>

 </ResourcePool>

 <ResourceLinkPool>

 <ScanParamsLink rRef="Link0012" Usage="Input"/>

 <ExposedMediaLink rRef="Link0013" Usage="Input"/>

 </ResourceLinkPool>

</JDF>

Chapter 8 Building a System Around JDF

8.1 Implementation Considerations and Guidelines

JDF parsing: JDF devices must implement JDF parsing. At a minimum, a device must be able to search the JDF to find a node whose process type it is able to execute. In addition, a device must be able to consume the inputs and produce the outputs for each process type it is able to execute.

Test run: To reduce failures during processing, it is recommended that either individual devices or their controller support the testrun functionality. This prevents the case where a device begins processing a node that is incomplete or malformed.

8.2 JDF and JMF Interchange Protocol

A system of vendor independent elements must define a protocol that allows them to interchange information based on JDF and JMF.

8.2.1 File-Based Protocol (JDF only)

The file-based protocol is only a solution for JDF job tickets, not JMF messages. A JMF-compliant controller must implement the HTTP protocol. A file-based protocol is based on hot folders. Every processor must define an input hot folder and an output folder for JDF. In addition the “SubmitQueueEntry” message contains a URL attribute that allows specification of arbitrary JDF locators.

Implementation of JDF file-based protocol is simple, but it is important to note that the protocol does not support acknowledgement receipts for protocol error handling. It requires that the receiver polls the output folder of the processor. Finally, granting read/write access to your hot folder negates the security functions.

8.2.2 HTTP-Based Protocol (JDF + JMF)

HTTP is a stable, vendor-independent protocol, and it supports a variety of advantageous features. For example, it offers a wide availability of tools, it is already a common technology among vendors who use HTTP, and it has a well defined query-response mechanism (HTTP post message). It also offers widespread firewall support and secure connections via SSL when using HTTPS.

8.2.3 Protocol Implementation Details

JDF Messaging will not specify a standard port. We recommend that you use the standard HTTP port 80 in order to avoid firewall problems.

Implementation of Messages

Only HTTP servers may be targeted by Query or Command messages. This is done with a standard HTTP Post request. The JMF is the body of the HTTP post message. The Response is the body of the initiated HTTP post response. Signal and Acknowledge messages are also implemented as HTTP post messages. The body of the HTTP response to these messages is empty.

HTTP Push Mechanisms

Since HTTP is a stateless protocol, push mechanisms, such as regular status bar updates, are non-trivial when communicating with a client. Work-arounds can, however, be implemented. For example, a Java applet that polls the server in regular intervals can be used.

8.2.4 MIME Types and File Extensions

The MIME type for JDF is not yet registered with IANA: http://www.iana.org/. The registration process is ongoing and the MIME types will be registered as:

JDF: application/vnd.cip4-jdf+xml

JMF: application/vnd.cip4-jmf+xml
It is recommended that the controller use a file extension of .jdf when using file-based JDF in an environment that supports file name extensions. Although JMF is not foreseen to use a file based protocol, agents that serialize JMF to a file should use a file extension of .jmf.

8.3 MIS Requirements

MIS systems may:

· Ignore Audit elements when they receive complete information about a process execution via JMF.

· Decompose JDF into an internal format such as database tables.

Appendix A Encoding

This appendix lists a number of commonly used JDF data types and structures and their XML encoding. Data types are simple data entities such as strings, numbers and dates. They have a very straightforward string representation and are used as XML attribute values. Data structures, on the other hand, describe more complex structures that are built from the defined data types, such as colors

A.1 XML Schema Data Types

Clarified in JDF 1.2
[Added examples to language, clarified ID, 1 ISSUE]

JDF is based on the XML Schema specification. The JDF data types used in this specification are summarized in the table below and comply with the lexical representation of (primitive) data types defined by [XML Schema Part 2: Datatypes]. For a complete definition of each of these data types, please refer to the specification of XML Schema Datatypes.

Table A.1 XML Schema Data Types

	XML Data Type
	Description
	Example

	boolean
	Has the value space required to support the mathematical concept of binary-valued logic: {true, false}.
	<Example Enable="true"/>

	date
	A calendar date, it represents a time period that starts at midnight on a specified day and lasts for 24 hours. Based on ISO 8601.
	<Example StartDate="1999-05-31"/>

	dateTime
	Represents a specific instant of time. It must be a Coordinated Universal Time (UTC) or the time zone must be indicated by the offset to UTC. In other words, the time must be unique in all time zones around the world.
	<Example Start="1999-05-31T18:20:00Z"/>

<Example Start="1999-05-31T13:20:00-05:00"/>

	double
	Corresponds to IEEE double-precision 64-bit floating point type
	<Example Pi="3.14"/>

	duration
	Represents a duration of time. Based on ISO 8601.
	<Example Duration= "P1Y2M3DT10H30M"/>

	enumeration
	Limited set of NMTOKEN.
	<Example H="P1Y2M3DT10H30M"/>

	enumerations
	Whitespace-separated list of enumeration data types.
	<Example Orientation=”Flip90”/>

	gYearMonth
	Represents a specific Gregorian month in a specific Gregorian year. Based on ISO 8601.
	<Example Month=”2002-11”/>

	hexBinary
	Represents arbitrary hex encoded binary data.
	<Example Hex=”0A1C”/>

	ID
	Represents the ID attribute from [XML Specification Version 1.0]. It basically represents a name or string that contains no space characters and starts with a letter, ':' or '_' . An ID name value must not appear more than once in an XML; i.e., ID values must uniquely identify the elements which bear them.
	<Example ID="R-16"/>

	IDREF
	Represents the IDREF attribute from [XML Specification Version 1.0]. For a valid XML-document, an element with the ID value specified in IDREF must be present in the scope of the document.
	<Example IDREF="R-16"/>

	IDREFS
	Represents the IDREFS attribute from [XML Specification Version 1.0]. More specifically, this is a whitespace-separated list of IDREFs.
	<Example IDREFS="R-12 R-16"/>

	integer
	Represents numerical integer values.
	<Example Copies="36"/>

	language
	Represents a natural language defined in IETF rfc 1766. http://www.ietf.org/rfc/rfc1766.txt
ISSUE: RFC 1766 has been obsoleted by RFC 3066 which includes some 3-letter languages, such as Hawaiian (hwi) with no 2-letter code. Do we want to change the reference and the schema for JDF/1.2 to allow these longer language tags, instead of restricting them to 2-letters?

	<Example Language="de"/> - German
<Example Language="de-CH"/> - Swiss German
<Example Language="en"/> - English
<Example Language="en-GB"/> - British English

	NMTOKEN
	Represents the NMTOKEN attribute type from [XML Specification Version 1.0]. It basically represents a name or string that contains no space characters.
	<Example Alias="ABC_6"/>

	NMTOKENS
	Represents the NMTOKENS attribute type from [XML Specification Version 1.0]. More specifically, this is a whitespace-separated list of NMTOKENs.
	<Example AliasList="ABC_6 ABCD_3 DEGF"/>

	string
	Represents character strings in XML.
	<Example Name="Test"/>

	URI
	Short for URI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in Section 4 of [RFC 2396].
	<Example URI="http://www.w3.org/1999/XMLSchema"/>

	URL
	Short for URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in Section 4 of [RFC 2396].
	<Example URL=" file://hubble/test.txt"/>

A.2 JDF Data Types

The data types listed and described in this section are defined by JDF. They are also found in PJTF and CIP3.

A.2.1 CMYKColor

XML attributes of type CMYKColor are used to specify CMYK colors.

Encoding

CMYKColor attributes are primitive data types and are encoded as a string of four numbers in the range of [0…1.0] separated by whitespace. A value of 0 specifies no ink and a value of 1 specifies full ink.

Example:

<Color cmyk = "0.3 0.6 0.8 0.1"> (brick red)

A.2.2 DurationRange

XML attributes of type DurationRange are used to describe a range of time durations. More specifically, it describes a time span that has a relative start and end.

Encoding

A DurationRange is represented by two durations, separated by a “~” (tilde) character and optional additional whitespace.

Example:

<XXX range="P1Y2M3DT10H30M~P1Y2M3DT10H35M"/>

A.2.3 IntegerList

XML attributes of type IntegerList are used to describe a variable length list of integer values.

Encoding

An IntegerList is encoded as a string of integers separated by whitespace.

Example

<XXX list="0 1 2 3 4 1 3 0"/>

A.2.4 IntegerRange

XML attributes of type IntegerRange are used to describe a range of integers. In some cases, ranges are defined for an unknown number of objects. In these cases, a negative value denotes a number counted from the end. For example, -1 is the last object, -2 the second to last, and so on. IntegerRanges that follow this convention are marked in the respective attribute descriptions.

If the first element of an IntegerRange specifies an element that is behind the second element, the Range specifies a list of integers in reverse order, counting backwards. For example “6~4” = “6 5 4” and “-1~0” = “last… 2 1 0”.

Encoding

An IntegerRange is represented by two integers, separated by a “~” (tilde) character and optional additional whitespace.

Example:

<XXX range="-3~-5"/>

A.2.5 IntegerRangeList

XML attributes of type IntegerRangeList are used to describe a list of IntegerRanges and/or enumerated integers.

Encoding

A IntegerRangeList is represented by a sequence of IntegerRanges and integers, separated by whitespace.

Example:

<XXX list="-1~-6 3~5 7 9~128 131"/>

A.2.6 LabColor

XML attributes of type LabColor are used to specify absolute Lab colors. The Lab values are normalized to a Light of D50 and an angle of 2 degrees as specified in CIE Publication 15.2 - 1986 "Colorimetry, Second Edition" and ISO 13655:1996 "Graphic technology - Spectral measurement and colorimetric computation for graphic arts images"

This corresponds to a white point of X = 0.9642, Y = 1.0000, and Z = 0.8249 in CIEXYZ color space. L is restricted to a range of [0..100]; a and b are unbounded.

Encoding

LabColors are primitive data types and are encoded as a string of three numbers separated by whitespace:

“L a b”

Example:

<Color … Lab="51.9 12.6 -18.9">

A.2.7 Matrix

Coordinate transformation matrices are widely used throughout the whole printing process, especially in layout resources. They represent 2D transformations as defined by the PostScript and PDF Reference manuals. For more information, refer to the respective Reference Manuals, and look for “Coordinate Systems and Transformations.”

Encoding

Coordinate transformation matrices are primitive data types and are encoded as a string attribute of six numbers, separated by whitespace:

"a b c d Tx Ty"

Tx and Ty describe distances and are defined in points.

Example:

<ContentObject CTM="1 0 0 1 3.14 21631.3" … />

A.2.8 NamedColor

Modified in JDF 1.2
[added 3 values: Cyan, Magenta, SystemSpecified, Clarifiied that the list is a close-end list. ACTION (Jim): Alphabetize the names]
XML attributes of type NamedColor are not sufficient for process color definition, but rather serve to define the colors of preprocessed products such as Wire-O binders and cover leaflets. However, to promote interoperability this list is a closed end list (enumeration), rather than an open-ended list (NMTOKEN).
The entries in the following table may be prefixed by either “Dark” or “Light”. The result may additionally be prefixed by “Clear” to indicate translucent material. For example, “ClearDarkBlue” indicates a translucent dark blue, “ClearBlue” a translucent blue and “Blue” indicates an opaque blue.

Table A.Named colors

	Color name

	White

	Black

	Gray

	Red

	Yellow

	Green

	Blue

	Turquoise

	Violet

	Orange

	Brown

	Gold

	Silver

	Pink

	Buff

	Ivory

	Goldenrod

	Mustard

New in JDF 1.1

	MultiColor

New in JDF 1.1

	Cyan
New in JDF 1.2

	Magenta
New in JDF 1.2

	NoColor

Encoding

NamedColor is a restriction of NMTOKEN.

Example:

<SomePlasticStuff CoverColor="ClearDarkBrown" … />

A.2.9 NameRange

XML attributes of type NameRange are used to describe a range of NMTOKEN data that are acquired from a list of named elements, such as named pages in a PDL file. It depends on the ordering of the targeted list, which names are assumed to be included in the NameRange. The following two possibilities exist:

1. There is no explicit ordering. In this case, alphabetical ordering is implied.

2. There is explicit ordering, such as in a list of named pages in a RunList. In this case, the ordering of the Runlist defines the order and all pages between the end pages are included in the NameRange.

Encoding

A NameRange attribute is represented by two NMTOKEN-{~}, separated by a “~” (tilde) character and optional additional whitespace.

Example:

<XXX NameRange="Jack~Jill"/>

A.2.10 NameRangeList

XML attributes of type NameRangeList are used to describe a list of NameRanges.

Encoding

A NameRangeList is represented by a sequence of NameRanges and NMTOKEN, separated by whitespace.

Example:

<XXX list="A b~f x z"/>

A.2.11 NumberList

XML attributes of type NumberList are used to describe a variable length list of numbers (double or integer).

Encoding

A NumberList is encoded as a string of space-separated numbers.

Example:

<XXX list="3.14 1 .6"/>

A.2.12 NumberRange

XML attributes of type NumberRange are used to describe a range of numbers. Mathematical spoken, the two numbers define a closed interval.

Encoding

A NumberRange is represented by two numbers, separated by a “~” (tilde) character and optional additional whitespace.

Example:

<XXX range="-3.14~5.13"/>

A.2.13 NumberRangeList

XML attributes of type NumberRangeList are used to describe a list of NumberRanges and/or enumerated numbers.

Encoding

A NumberRangeList is a sequence of NumberRanges and numbers separated by whitespace.

Example:

<XXX list="-1~-6 3.14~5.13 7 9~128 131"/>

A.2.14 Path

XML attributes of type Path are used in JDF for describing parameters such as trap zones and clip paths. In PJTF, Paths are encoded as a series of moveto-lineto operations. JDF has a different encoding, which is able to describe more complex paths, such as Beziers.

Encoding

Paths are encoded as an XML string attribute formatted with PDF path operators. This allows for easy adoption in PS and PDF workflows. PDF operators are limited to those described in Section 8.6.1 “Path Construction Operators” in "Portable Document Format Reference Manual", Version 1.3.

Example:

<ElementWithPath path="0 0 m 10 10 l 20 20 l"/>

A.2.15 Rectangle

XML attributes of type Rectangle are used to describe rectangular locations on the page, sheet, or other printable surface. A Rectangle is represented as an array of four numbers—llx lly urx ury—specifying the lower-left x, lower-left y, upper-right x, and upper-right y coordinates of the rectangle, in that order. This is equivalent to the ordering: Left Bottom Right Top. All numbers are defined in points.

Encoding

To maintain compatibility with PJTF, Rectangles are primitive data types and are encoded as a string of four numbers, separated by whitespace:

"llx lly urx ury" or “l b r t"

Example:

<ContentObject ClipBox="0 0 3.14 21631.3" … >

Implementation Remark

Since all numbers are real numbers, any comparison of boxes should take into account certain rounding errors. For example, different XYPairs may be considered equal when all numbers are the same within a range of 1 point.

A.2.16 shape

XML attributes of type shape are used to describe a three dimensional box.

Encoding

A shape is represented as an array of three numbers—x y z—specifying the Width x, height y and depth z coordinates of the shape, in that order.

Example:

<XXX Dimensions=”10 20 40"/>

A.2.17 ShapeRange

XML attributes of type ShapeRange are used to describe a range of Shapes (three dimensional boxes). The range “x1 y1 z1~x2 y2 z2” describes the area x1<=x<=x2 and y1<=y<=y2 and z1<=z<=z2. Thus the Shape “2 3 4” is within “1 2 1~ 3 4 4”. Note that this implies that all three values of the second entry must be >= the corresponding values of the first entry. The following example is therefore invalid: “1 2 1 ~ 0 4 4”.

Encoding

A ShapeRange is represented by two Shapes, separated by a “~” (tilde) character and optional additional whitespace.

Example:

<XXX Shaperange=”1 2~3 4"/>

A.2.18 ShapeRangeList

XML attributes of type ShapeRangeList are used to describe a list of ShapeRange and/or Shapes.

Encoding

A ShapeRangeList is a sequence of ShapeRange and Shapes separated by whitespace.

Example:

The brackets below the example illustrate the grouping of Shapes and ShapeRanges.

<XXX Shapelist="100 200 300~110 220 330 150 300 150 2 3 0 ~ 3 4 5"/>

 ()()()

A.2.19 sRGBColor

XML attributes of type sRGBColors are used to specify sRGB colors.

Encoding

sRGBColors are primitive data types and are encoded as a string of three numbers in the range of [0…1.0] separated by whitespace A value of 0 specifies no intensity (black) and a value of 1 specifies full intensity:

“r g b”

Example:

<Color sRGB="0.3 0.6 0.8" … >

A.2.20 TimeRange

XML attributes of type TimeRange are used to describe a range of time. More specifically, it describes a time span that has a specific start and end. Mathematically, two dateTime values define a closed time interval.

Encoding

A TimeRange is represented by two dateTimes, separated by a “~” (tilde) character and optional additional whitespace.

Example:

<XXX range="1999-05-31T13:20:00-05:00~2000-08-03T23:50:00-05:00"/>

A.2.21 TransferFunction

XML attributes of type TransferFunction are functions that have a one-dimensional input and output. In JDF, they are encoded as a simple kind of sampled functions and used to describe transfer curves of processes such as Film-to-Plate-copy, LaserCalibration and Press Calibration. They may also be used in Color specifications, e.g., when converting a spot tint value to a CMYK value.

A transfer curve consists of a series of XY pairs where each pair consist of the stimuli(X) and the resulting value(Y). To calculate the result of a certain stimuli, the following algorithms must be applied:

1. If x < = first stimuli, then the result is the y value of the first xy pair.

2. If x > = the last stimuli, then the result is the y value of the last xy pair.

3. Search the interval in which x is located.

4. Return the linear interpolated value of x within that interval.

Encoding

A TransferCurve is encoded as a string of space-separated numbers. The numbers are the XY pairs that build up the transfer curve.

Example:

<someElementWithTransferCurve someCurve="0 0 .1 .2 .5 .6 .8 .9 1 1"/>

A.2.22 XYPair

XML attributes of type XYPair are used to describe sizes like Dimensions and PageSize. They can also be used to describe positions on a page. All numbers that describe lengths are defined in points.

Encoding

XYPair attributes are primitive data types and are encoded as a string of two numbers, separated by whitespace:

“x y”

Example:

<CutBlock BlockSize="612 792">

Implementation Remark

Since all numbers are real numbers, comparison of XYPairs should take into account certain rounding errors. For example, different XYPairs may be considered equal when all numbers are the same within a range of 1 point.

A.2.23 XYPairRange

XML attributes of type XYPairRange are used to describe a range of XYPairs. The range “x1 y1~x2 y2” describes the area x1<=x<=x2 and y1<=y<=y2. Thus the XYPair “2 3” is within “1 2 ~ 3 4”. Note that this implies that both values of the second entry must be >= the corresponding values of the first entry. The following example is therefore invalid: “1 2 ~ 0 4”.

Encoding

An XYPairRange is represented by two XYPairs, separated by a “~” (tilde) character and optional additional whitespace.

Example:

<XXX XYrange=”1 2~3 4"/>

A.2.24 XYPairRangeList

XML attributes of type XYPairRangeList are used to describe a list of XYPairRange and/or XYPairs.

Encoding

A XYPairRangeList is a sequence of XYPairRange and XYPairs separated by whitespace.

Example:

The brackets below the example illustrate the grouping of XYPairs and XYPairRanges.

<XXX XYlist="100 200~110 220 150 300 150 350 200 300 ~ 400 500"/>

 ()()()()

A.3 JDF Data Structures

The following data structures are unique to JDF, although they may be comprised of existing XML structures.

A.3.1 Links

Links are defined by a combination of XML attributes of type ID and XML attributes of type IDREF. The referenced element or target of the link contains the actual information and an ID attribute, whereas the reference or link itself contains an IDREF attribute. The value of an ID attribute must be unique within an XML file. In order to keep the implementation burden on JDF compliant processors low, linking between distributed JDF files is not supported. The ID attribute of the target is always named ID. This is not required by XML, but it makes implementation simpler. The IDREF attribute in a link, however, can have varying names depending on the link type. The names of the IDREF attributes are defined in this document. The following example specifies a trivial link and target pair
:

<Target ID="id1" (lots of attributes)><Subelement/></Target>

…

<Link rRef="id1"/>

A.4 JDF File Formats

This section describes the specific file formats used by JDF. JDF uses MIME files to package different files in a single file for transmission, and when representing preview images, JDF uses the PNG image file format. The following sections explain in what ways MIME and PNG are used in JDF.

A.4.1 MIME File Packaging

JDF files are XML files but may contain references (URLs) to external data files. The following external data file types are identified, although any valid MIME file type may be referenced:

· Preview images (They are encoded using the PNG format.)

· ICC Profiles

· Preflight Profiles

· PDL files (PageDescription files)

One of the requirements for JDF is to support the ability to make a single, self-contained job package that contains the JDF with all of its related files, maintaining the external data references. That package will be send to a remote location where it is used for further processing. This section describes how JDF uses MIME to achieve this requirement.

MIME (Multipurpose Internet Mail Extensions) is an Internet standard that defines mechanisms for specifying and describing the format of Internet message bodies. One of its applications is the MIME Multipart/related type and is used by JDF. The MIME Multipart/Related Content-type specification can be found at http://rfc.roxen.com/rfc/rfc2112.html “The MIME Multipart/Related Content-type”

A 4.1.1 MIME Basics

MIME is comprised of headers and bodies. In case of Multipart messages, the body consists of multiple messages, each identified by the individual MIME header and separated by an unique boundary string. Normally a MIME-user agent uses the boundary string to separate different message parts, and JDF MIME files are compliant with that mechanism. Furthermore, JDF defines a Content-Length mechanism that enables fast scanning of MIME files for their body parts.

A 4.1.2 MIME Fields

Content Type

This field is always required. Content Type identifies the MIME type of the message (part). The Multipart header uses this to identify itself as a multipart message and the subparts also have MIME types to identify their content.

Content ID

This field is required for every part that is referenced by other parts. Content ID identifies each different part within a multipart MIME message. Its value can be anything as long as it is defined using USASCII. It is good practice to limit yourself to using only alphanumeric characters or only the first 127 characters of the USASCII character set in order to avoid confusing less intelligent MIME agents.

Content Transfer Encoding

This field is optional, and its default = none. MIME prescribes three different encodings: None, Base64 and QuotedPrintable. When no encoding is used, the data are only encapsulated by MIME headers. Base64 and QuotedPrintable encodings are commonly used algorithms for converting 8-bit and binary data into 7-bit data and vice versa. Although these encodings are not imposed, JDF agents that support MIME must be able to handle them.

A 4.1.3 CID URL scheme

One of the benefits of the MIME multipart/related mediatype is the ability to refer from one bodypart to another bodypart. This is done by using the cid: URL addressing scheme, specified in http://rfc.roxen.com/rfc/rfc2111.html “Content-ID and Message-ID Uniform Resource Locators”. Please look at the example to see how it is used.

Example

MIME-Version: 1.0

Content-Type: multipart/related; boundary=abcdefg0123456789

--abcdefg0123456789

Content-Type: text/xml

<JDF … >

<PreviewImage Separation = "Pantone 128" URL="cid:123456.png" />

</JDF>

--abcdefg0123456789

Content-Type: image/png

Content-Transfer-Encoding: base64

Content-ID: 123456.png

Content-Length: 12345

BASE64DATA

BASE64DATA

--abcdefg0123456789--
A 4.1.4 JDF Agent Requirements

All JDF agents must be prepared to receive JDF files that are MIME encoded. They may choose not to support it, but they should be able to handle these JDF files gracefully. Agents that do support MIME must support Base64 and QuotedPrintable encodings.

A.4.2 HTTP 1.0 Field

Content Length

Although this field is optional, it is recommended that it be included. Content Length is used to optimize the performance of scanning multipart messages. Each multipart bodypart may have an optional Content-Length header field. Its syntax is identical to the syntax defined by RFC1945 “HTTP1.0”.

When present, the Content Length identifies the number of octets of the encoded bodypart. When no encoding as is the case with 7bit, 8bit, binary, it represents the size of the bodypart. Otherwise it depends on what encoding method is used encoding (Base64, QuotedPrintable) and what the relationship is between the encoded size and the bodypart size. If an agent composing a MIME message can not derive a Content Length for its encoded body parts, it must omit the Content-Length field.

An agent parsing such a message can use the Content-Length field to seek to the end of the body. This position is calculated by using the position of the first byte of the bodypart and adding the Content Length. At that position (one byte after the bodypart contents), the agent must check if the following characters are one of either “\r\n—boundary” or “—boundary.” If not, the agent must ignore the Content-Length field and resume the normal MIME Multipart behavior and restart scanning for the boundary from the beginning of the bodypart.

A.4.3 PNG Image Format

JDF uses the PNG images for representing preview images. CIP3 defined two formats: composite CMYK and separated. With PNG, only the separated format is supported for color spaces other than RGB. The composite CMYK or spot color representations must be represented as separated CMYK or spot colors. Thus, preview images are stored as separate PNG images and JDF links them together. Viewable images and thumbnails can be represented as composite RGB PNG images.

References: http://www.w3.org/Graphics/png.

Appendix B Schema

[ISSUE: Add additional information about what is in the spec but is not in the Schema. For example, NMTOKEN values aren't in the Schema, while enumeration values are]
XML Schema for JDF (and JMF) will be published on: http://www.CIP4.org .

The XML Schema in the current version is not sufficient to completely validate a JDF job. For example, partitioned resources or process node types as defined in JDF cannot be validated by XML Schema processors. In other words, the structure of some elements depends on the context of usage which cannot currently described by XML Schema. Thus, the XML Schema for JDF will be structured in a way that it enables a prevalidation of valid JDF-candidates but does not preclude all syntactically invalid files to be validated.

Appendix C Converting PJTF to JDF

This appendix is provided as a non-normative guide to developers writing applications that will consume PJTF version 1.1 jobs and produce JDF.

C.1 PJTF Object Conversion

Many PJTF objects are directly translatable to JDF processes or resources. Others, especially those containing multiple keys, correspond to multiple processes and resources. For example, the JobTicketContents object corresponds to four JDF processes and three JDF resources. And still others, such as AuditObject, cannot be translated to JDF at all.

Listed below are the prominent PJTF objects and the JDF components to which they correspond. Each section heading contains the title of the object in question, and each section contains a descriptive table. The first column in the tables, entitled JDFKey or Object, contains a list of the keys or objects contained within the object being described. For example, the Accounting object contains an Address object, while the Address object contains an Address key. If no subobject or key is contained within the object, then the first column is left blank and the process or resource listed is assumed to correspond directly to that object.

C.1.1 Accounting

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	Address
	-
	Address
	-

C.1.2 Address

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	Address
	-
	Address
	Used whenever people or organizations need to be identified.

C.1.3 Analysis

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	Analysis
	-

C.1.4 AuditObject

Audit objects must not be translated. PJTF Audit objects describe the results of operations on files, while JDF Audit elements describe the results of processes, so there is a basic incompatibility between the two. In addition, PJTF Audit objects will not be needed to direct further processing of the job after it is converted to JDF.

C.1.5 ColorantAlias

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Maps to a subelement of the ColorantControl resource.

C.1.6 ColorantControl

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	ColorantControl
	-

C.1.7 ColorantDetails

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Keys in the PJTF ColorantDetails dictionary are a set of colorant names. The values are DeviceColorant objects.

C.1.8 ColorantZoneDetails

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	TrappingParams
	DeviceColorant map to the ColorantZoneDetails subelement of the TrappingParams. resource.

C.1.9 ColorSpaceSubstitute

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Maps to a subelement of the ColorantControl resource.

C.1.10 Delivery

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Delivery
	Address
	Specifies a quantity of a product to be delivered to an address.

C.1.11 DeviceColorant

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Maps to a Color subelement of the ColorPool resource. The name is entered in the SeparationSpec of a TrappingDetails resource.

C.1.12 Document

JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects. Most of the key/value pairs translate into various resources.

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	bleed media trim
	-
	RunList
	Maps to attributes of the RunList resource or to processes in which they are used.

	ColorantControl
	-
	ColorantControl
	-

	Files
	-
	RunList

FileSpec
	Maps to FileSpec resources contained within RunList elements.

	Finishing
	AdhesiveBinding

EndSheetGluing

SaddleStitching

SideSewing

Stitching

ThreadSewing
	AdhesiveBinding-Params

EndSheetGluing-Params

SaddleStitching-Params

SideSewingParams

StitchingParams

ThreadSewingParams
	-

	FontPolicy
	-
	FontPolicy
	The resource is attached to the applicable processes.

	IgnoreHalftone
	-
	-
	Maps to the IgnoreHalftone attribute of the PDFToPS-ConversionParams resource.

	InsertPage
	Imposition
	RunList

Sheet
	Occurs as an attribute either of RunList resources or of Sheet resources referenced by Imposition processes.

	NewSheet
	Imposition
	InsertSheet
	NewSheets become instances of InsertSheet resources on RunLists with a SheetUsage attribute of “Header”.

	Media
	-
	Media
	Maps to a subelement of the ExposedMedia resource.

	MediaSource
	-
	-
	Maps to a Media resource refelement of a DigitalPrintingParams resource.

	MediaUsage
	Dividing
	DividingParams
	Specifies controls for roll-fed media.

	Rendering
	Rendering
	-
	-

	Trailer
	Imposition
	InsertSheet
	Trailers become instances of InsertSheet resources on RunLists with a Usage attribute of “trailer”

	Trapping
	Trapping
	-
	-

C.1.13 Finishing

Finishing operations are derived from CIP3 PPF. Conversion of PJTF Finishing objects is vendor-dependent, since the PJTF specification does not describe any detail for Finishing objects.

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	AdhesiveBinding

EndSheetGluing

SaddleStitching

SideSewing

Stitching

ThreadSewing
	AdhesiveBinding-Params

EndSheetGluing-Params

SaddleStitching-Params

SideSewing-Params

StitchingParams

ThreadSewing-Params
	-

C.1.14 FontPolicy

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Interpreting
	FontPolicy
	

C.1.15 InsertPage

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	RunList
	InsertPage objects may generate a InsertSheet resource within a RunList.

C.1.16 InsertSheet

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	InsertSheet
	-

C.1.17 Inventory

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	
	
	
	

C.1.18 JobTicket

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys except Audit, Scheduling, PreflightResults
	Any process
	Any resource
	Keys may be represented at various levels of the JDF tree. Contents are represented as processes, resources, and versions.

C.1.19 JobTicketContents

JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects. Most of the key/value pairs translate into various resources.

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	Accounting
	-
	-
	Maps to the CustomerInfo element.

	Administrator
	-
	-
	Maps to the CustomerInfo element.

	ColorantControl
	-
	ColorantControl
	-

	Delivery
	Delivery
	DeliveryParams
	-

	Documents
	-
	RunList
	May require more than one RunList resource.

	EndMessage
	-
	-
	Maps to the End attribute of the NodeInfo element.

	Finishing
	AdhesiveBinding

EndSheetGluing

SaddleStitching

SideSewing

Stitching

ThreadSewing
	AdhesiveBinding-Params

EndSheetGluing-Params

SaddleStitching-Params

SideSewing-Params

StitchingParams

ThreadSewing-Params
	-

	FontPolicy
	Interpreting

PDFToPS-Conversion
	FontPolicy
	The FontPolicy resource is attached to any process that uses it.

	IgnoreHalftone
	-
	-
	Maps to the IgnoreHalftone attribute of the PDFToPS-ConversionParams resource.

	InsertPage
	Imposition
	RunList

Sheet
	Occurs as an attribute either of RunList resources or of Sheet resources referenced by Imposition processes.

	JobName
	
	
	CustomerJobName in the CustomerInfo element of the JobInfo node.

	Layout
	Imposition
	Layout
	-

	MarkDocuments
	Imposition
	RunList
	Requires one of two RunList resources, each of which is a resource of the Imposition process.

	MediaSource
	-
	-
	Maps to a MediaSource resource refelement of a DigitalPrintingParams resource.

	MediaUsage
	Dividing
	DividingParams
	Specifies controls for roll-fed media.

	NewSheet
	Imposition
	InsertSheet
	NewSheets become instances of InsertSheet resources on RunLists with a Usage attribute of “header”

	PrintLayout
	Imposition
	-
	Maps to a subelement of the Layout resource.

	Rendering
	Rendering
	-
	Maps to the attribute of the Rendering process.

	Scheduling
	-
	-
	The Scheduling object is not translated.

	StartMessage
	-
	-
	Maps to the Start attribute of the NodeInfo element.

	Submitter
	-
	-
	Maps to the CustomerInfo element.

	Trailer
	Imposition
	InsertSheet
	Trailers become instances of InsertSheet resources on RunLists with a Usage attribute of “trailer”

	Trapping
	Trapping
	-
	-

C.1.20 JTFile

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	In most cases, JTFile objects will become FileSpec resources.

If a FilesDictionary is present, the resource may need to be partitioned by Separation.

If a PlaneOrder is present, RunLists which reference the file will need to be partitioned by Separation and structured to reference the page in the file appropriately.

C.1.21 Layout

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Imposition
	Layout
	-

C.1.22 Media

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	Media
	Maps to a subelement of the ExposedMedia resource.

C.1.23 MediaSource

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	ManualFeed

	-
	-
	Maps to the ManualFeed attribute of a MediaSource resource pointed to by a refelement of a DigitalPrintingParams or IDPrintingParams resource.

	LeadingEdge
	
	
	Maps to the LeadingEdge attribute of a MediaSource resource refelement of a DigitalPrintingParams or IDPrintingParams resource.

	Media
	-
	-
	Maps to a Media refelement of a MediaSource resource.

	MediaClass
	-
	-
	Maps to the MediaTypeDetails attribute of a Media resource of a DigitalPrintingParams or IDPrintingParams resource.

	Position
	-
	-
	Maps to the MediaLocation attribute of a MediaSource resource.

C.1.24 MediaUsage

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Dividing
	DividingParams
	Specifies controls for roll-fed media.

C.1.25 PageRange

JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF objects. Most of the key/value pairs translate into various resources.

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	bleed media trim
	-
	RunList
	Maps to attributes of the RunList resource or to processes in which they are used.

	ColorantControl
	-
	ColorantControl
	-

	Delivery
	Delivery
	DeliveryParams
	-

	Files
	-
	RunList

FileSpec
	Maps to FileSpec resources contained within RunList elements.

	Finishing
	AdhesiveBinding

EndSheetGluing

SaddleStitching

SideSewing

Stitching

ThreadSewing
	AdhesiveBinding-Params

EndSheetGluing-Params

SaddleStitching-Params

SideSewing-Params

StitchingParams

ThreadSewing-Params
	-

	FontPolicy
	Interpreting

PDFToPS-Conversion
	FontPolicy
	The FontPolicy resource is attached to any process that uses it.

	IgnoreHalftone
	-
	-
	Maps to the IgnoreHalftone attribute of the PDFToPS-ConversionParams resource.

	InsertPage
	Imposition
	RunList

Sheet
	Occurs as an attribute either of RunList resources or of Sheet resources referenced by Imposition processes.

	Media
	-
	Media
	Maps to a subelement of the ExposedMedia resource.

	MediaSource
	-
	--
	Maps to a Media resource refelement of a DigitalPrintingParams resource.

	MediaUsage
	Dividing
	DividingParams
	Specifies controls for roll-fed media.

	NewSheet
	Imposition
	InsertSheet
	NewSheets become instances of InsertSheet resources on RunLists with a Usage attribute of “header”

	Rendering
	Rendering
	-
	-

	Trailer
	Imposition
	InsertSheet
	Trailers become instances of InsertSheet resources on RunLists with a Usage attribute of “trailer”

	Trapping
	Trapping
	-
	-

	Which
	-
	RunList
	The Pages attribute or combination of FirstPage and SkipPage in RunLists reflect the values of Which. Note: More than one PageRange may generate Pages entries for a single Run.

C.1.26 PlacedObject

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Maps to a subelement of the Surface resource.

C.1.27 PlaneOrder

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	RunList
	See Section 0,
Translating the Contents Hierarchy

C.1.28 Preflight

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Preflight
	-
	-

C.1.29 PreflightConstraint

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Maps to a subelement of the PreflightProfile resource.

C.1.30 PreflightDetail

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Maps to a subelement of the PreflightAnalysis resource.

C.1.31 PreflightInstance

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Subelement of the PreflightAnalysis resource

C.1.32 PreflightInstanceDetail

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	
	
	Subelement of the PreflightAnalysis resource

C.1.33 PreflightResults

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	This object is not translated.

C.1.34 PrintLayout

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Imposition
	-
	Maps to a subelement of the Layout resource.

C.1.35 Profile

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Preflighting
	PreflightProfile
	

C.1.36 Rendering

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Rendering
	RenderingParams
	-

C.1.37 ResourceAlias

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	Location
	
	PDLResourceAlias
	Location is Device

	File
	
	PDLResourceAlias
	File is supported via the SourceFile fileref.

	This
	
	PDLResourceAlias
	This is supported via the SourceFile fileref.

	ResourceName
	
	PDLResourceAlias
	This key is not used. References to the aliased resource run via the ResourceLink element.

	SourceFile
	
	PDLResourceAlias
	Source file maps to an attribute of this resource.

PJTF ResourceAlias objects provide a unified namespace that allows each PJTF object to refer to the resources it needs to execute the job of which it is a part. More specifically, PJTF version 1.1 supports the use of ResourceAlias objects to allow references to halftones and colorspaces.

For the ResourceAlias::Location key, the File and This keys are supported by a SourceFile attribute whose value is a fileref. The translator must provide a reference to the original PJTF file (for this) or a copy that contains the referenced resources.

C.1.38 Scheduling

Scheduling objects are not translated. It is presumed that translation of PJTF jobs into JDF is performed to allow the reuse of PJTF jobs that have been archived. Thus, the original scheduling information embedded in the PJTF is irrelevant.

C.1.39 Signature

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	-
	Maps to a subelement of the Layout resource.

C.2 Sheet

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	Sheet
	-

C.2.1 SlipSheet

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	InsertSheet
	SlipSheets become an InsertSheet resource which may define new media, and which has a Usage attribute of “trailer”.

C.2.2 Surface

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	Surface
	-

C.2.3 Tile

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Tiling
	Tile
	-

C.2.4 Trapping

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	Trapping
	TrappingParams
	-

C.2.5 TrappingDetails

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	TrappingDetails
	See the PJTF DeviceColorant object entry for details on how it is translated.

C.2.6 TrappingParameters

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	TrappingParams
	-

C.2.7 TrapRegion

	PJTF Key or Object
	JDF Process
	JDF Resource
	Description

	All keys
	-
	TrapRegion
	-

C.3 Translating Values

The PJTF version 1.1 specification lists twelve data types that may occur for the values of keys in PJTF objects. The following table describes how each of these datatypes must be represented in JDF.

	PJTF Data Type
	JDF Representation
	Comment

	boolean
	boolean
	-

	Number
	number
	-

	Name
	name
	-

	Dictionary
	element
	All PJTF objects are dictionaries. These dictionaries generally become resources or processes as specified above.

In addition, some PJTF objects contain embedded dictionaries whose keys are not specified (examples include TrappingParameters and ColorantDetails). These dictionaries are converted to arrays of elements, with the key name from the PJFT dictionary becoming an attribute of the subelement.

	Stream
	URL
	PJTF supports PDF streams by reference to an object in a PDF file. The same mechanism is supported in JDF, with the JDF URL data type being used to identify the PDF file.

	Rectangle
	rectangle
	-

	Filespec
	URL
	-

	Text
	string
	-

	String
	string
	-

	Date
	date
	-

	Phone number
	Phone number
	The standard for the representation of phone numbers in PJTF is used here as well.

C.4 Translating the Contents Hierarchy

The contents of a PJTF job are represented in the “contents hierarchy”. The hierarchy is headed by the JobTicketContents object, with Document, PageRange and JTFile objects occurring below. The hierarchy implicitly specifies the sequence of source pages for the job.

The contents sequence comprises all the pages specified by the first, then second, then last PageRange for the first Document, followed by the pages specified by the first, then last PageRange for the second Document, followed by the pages for the first, then last PageRange for the last Document. This sequence of source pages is consumed when the job is printed via PrintLayout (discussed below).

The contents hierarchy must be translated into a JDF RunList resource. Each LayoutElement entry in a RunList can reference a file via the FileSpec:URL attribute and a set of pages in the file via the Pages element. There are several additional issues related to this translation which are discussed below.

C.5 Representing Pages

In PJTF, source pages are represented as a hierarchy of Document and PageRange objects. Pages are referenced by page number out of files; files are represented in JTFile objects. PageRange objects can reference a single page, or a set of contiguous pages.

In JDF, source pages are represented as a set of partitions of the RunList, which reference files via URL, and pages from the files via an IntegerRangeList (such as ‘1 3~5 7~ -1‘).

As a consequence of this difference, pages from more than one PJTF PageRange object can be represented in a single RunList resource, assuming that all the other keys for the multiple PageRanges have the same values.

C.6 Representing Preseparated Documents

In preseparated workflows, all planes of each page may occur in the same file, or there may be a separate file for each plane. When all the planes occur in a single file, PJTF JTFile objects use a PlaneOrder object to specify which pages in the file represent each colorant plane for each source page. When each plane occurs in a separate file, the JTFile objects use a FilesDictionary to associate files with each colorant.

In JDF, both of these cases are handled through the RunList resource. In the case where the planes occur in separate files, the RunList is partitioned; and each partition contains the name of the colorant and the URL for the file for that colorant. In the case where the colorant planes are intermingled via PlaneOrder objects, the RunLists are partitioned, but only a single URL is used for each RunList partition. Each PlaneOrder object will become one RunList partition.

C.7 Representing Inherited Characteristics

In PJTF, many of the characteristics of source pages—including MediaBox, ColorantControl, and InsertPage—may occur at all levels of the contents hierarchy. This inheritance scheme is not provided in JDF. Therefore, the correct values for each of the attributes must be translated to the appropriate element for each RunList element.

C.8 Translating Layout

PJTF provides two mechanisms to image a set of source pages onto a larger surface for printing: Layout and PrintLayout. Layout is a mechanism for explicitly associating specific source pages with specific locations on the surface. PrintLayout is a method for automatically positioning a sequence of source pages onto a series of surfaces.

Layout is represented as a hierarchy of PJTF objects: Signatures, Sheets, Surfaces and PlaceObjects. The Layout hierarchy may have one or more Signature objects. Each Signature must have one or more Sheets. Each Sheet must have 1 or 2 Surfaces. Each Surface may have 0 or more PlacedObjects.

PlacedObjects directly reference source pages by referring to a Document object via its Doc key, and a specific page within the sequence of pages specified by all the PageRanges in Pages arrays for that Document.

JDF defines resources which are direct translations of Signature, Sheet and Surface. PlacedObjects and MarkObjects are subelements of the Surface resource. Note: PlacedObjects identify specific source pages via a combination of Ord and either Doc or MarkDoc. Ord identifies one page out of the sequence of pages specified by all the PageRange objects for the document identified by either Doc or MarkDoc.

In the JDF PlacedObject subelement, the Ord attribute is an index into the entire sequence of pages specified by all the partitions with IsPage = true in the RunList. So there is a translation required between the PJTF Ord value and the JDF Ord attribute.

Similarly, in the JDF MarkObject subelement, the Ord attribute is an index into the entire sequence of pages specified by all the partitions in the RunList for marks. So there is a translation required between the PJTF Ord value and the JDF Ord attribute.

C.9 Translating PrintLayout

PrintLayout uses the same hierarchy of objects as Layout, but with the restriction that there can be only a single Signature. The Signature is used as a template that is repeated to consume all the source pages specified by the contents hierarchy for the job.

In addition, the PlacedObjects that occur in a PrintLayout hierarchy are not references to specific source pages. Instead, they represent the intent that a page from the sequence of source pages specified by the contents hierarchy be consumed and placed onto the Surface each time the Signature is executed.

In JDF, PrintLayout is represented via the same set of resources as Layout, except that the top of the hierarchy is an AutomatedLayout resource instead of Layout. This resource is constrained to have only one Signature resource. Note that when translating PJTF PlacedObjects to PlacedObject subelements of a Surface resource in the AutomatedLayout hierarchy, the Ord values from the PJTF PlacedObjects need not be modified. However, as in the creation of Layout, the Ord attribute for JDF MarkObject subelements are indices into the entire sequence of pages specified by all the partitions in the RunList for marks. So there is a translation required between the PJTF Ord value and the JDF Ord attribute.

C.10 Translating Trapping

Trapping controls are represented in PJTF as several objects: Trapping, TrappingDetails, ColorantDetails and DeviceColorants; TrappingParameters and ColorantZoneDetails; and TrapRegions. These objects can occur in multiple places in the PJTF job, and they work together to determine, for each page in the job, whether it will be trapped and how. There is also a key in the JobTicketContents object, TrappingSourceSelector, which determines which set of trapping controls will be honored.

The trapping controls in PJTF are the same, whether the trapping will be done pre-RIP or in-RIP. In translating PJTF trapping controls to JDF, there are several tasks to perform:

· Create the required Trapping node

· Add the resources to represent the TrappingParameters which will be used

· Create the resources which represent the TrapRegions which will be used

· Determine the pages to be trapped

· Determine which controls to use for each page

· Add references to the pages in the RunList in the TrapRegion resource

Note: The contents hierarchy for the PJFT job must be translated into RunLists before trapping objects can be translated. Paths in JDF are specified as a set of path operators. PJTF TrapZone paths are a sequence of coordinates with an implied moveto at the beginning, and an implied closepath the end.

Appendix D Converting PPF to JDF

This appendix gives non-normative advice on how to convert CIP3 PPF 3.0 files to JDF encoded files. Since JDF was designed with the intention of providing the highest possible level of compatibility with PPF, many of these conversions are relatively straightforward. From the point of view of JDF, CIP3’s PPF is mainly resource-based. Most of the PPF structures were, therefore, translated to JDF resources of a corresponding process. Meanwhile, the PPF product definition operations are easily translated to JDF processes of the same name, as quoted in CIP3ProductOperation. This kind of conversion is possible because the component structure of PPF is adopted by JDF, with some enhancements. Parameters of PPF product definition operations (CIP3ProductParams) are given the abbreviated name “Params,” and this name is appended to the CIP3ProductOperation name. Thus SideSewing becomes SideSewingParams.

In many cases, PPF key names became JDF attribute or element names with the “CIP3” prefix removed. An example of this kind of translation is provided below, and the CIP3 product structure shown in the example is expressed as a JDF process in Figure D.1, following the example.

Example: A CIP3 PPF product definition operation

/CIP3Products [

<<

/CIP3ProductName (sewed book block)

/CIP3ProductOperation /ThreadSewing

/CIP3ProductParams <<

/NumberOfNeedles 4

/GlueLineRefSheets [0]

/GlueLine <<

...

>>

/BlindStitch false

/Sealing false

>>

/CIP3ProductComponents

[

<<

/SourceType /PartialProduct

/SourceProduct (book block)
...

>>

]

>>

<<

/CIP3ProductName (book block)

% ... the definition of the book block operation would go here ...

>>

] def

[image: image105.wmf]Component

Component

ThreadSewing

ThreadSewingParams

Figure D.8.1 JDF node of a CIP3 product structure

In Figure D.1, the input Component represents the “book block,” the output Component represents the “sewed book block,” and ThreadSewingParams covers all information of the CIP3ProductParams structure. Whenever possible, the formal conversion and translation conventions described above were followed, but because extensions and operations new to PPF are included in JDF, some exceptions were made. These exceptions are explained in detail for each PPF structure in the sections that follow. Before they are explained, however, a translation of PPF data types is provided.

D.1 Converting PPF Data Types

The following table shows all PPF data types, and how they are transformed. All measuring units of CIP3 must be converted to the JDF native unit point (1/72 inch). Comments are only provided when there is something unusual or noteworthy about the translation; thus, not all translations require comment.

Table D.1 Conversion of PPF Data Types

	PPF Data Type
	JDF Data Type
	Comments

	boolean
	boolean
	-

	Integer
	integer
	-

	Real
	double
	The exponent symbol must be a capital “E” in XML.

	Number
	double
	The exponent symbol must be a capital “E” in XML.

	Name
	enumeration or NMTOKEN
	When PPF Names are used as a closed set of predefined values, they are converted to an enumeration. Otherwise, they are converted to an NMTOKEN.

	String
	string
	Some PostScript string characters cannot be used in XML.

	Array
	Sequence of elements or IntegerList or NumberList
	If the array consists of homogeneous integers or doubles, it is converted to an IntegerList or NumberList, otherwise to a sequence of corresponding elements.

	Dictionary
	element
	In most cases, the structure of a Dictionary is directly converted to a XML element. Exceptions to this rule are described in the following sections.

D.2 PPF Product Definitions

The information stored in CIP3Products and CIP3FinalProducts is implicitly expressed by the structure of the JDF tree. Each product definition step is converted to a JDF node, and a product node is created for every final product of a PPF file. This is also the case for each partial product that is used in two or more final products. The following table provides information that explains how to accomplish these transformations and make these conversions. The content of the entities CIP3ProductJobName, CIP3ProductJobCode, CIP3ProductCopyright and CIP3ProductCustomer must also be copied to the parent product node. The sections that follow contain information about the conversion requirements of prominent postpress processes.

Table D.2 JDF Representation of a product definition step

	PPF Key
	JDF Representation
	Comments

	CIP3ProductName
	This is expressed by an output resource link.
	-

	CIP3ProductOperation
	JDF node
	See Section 3.1 JDF Nodes.

	CIP3ProductParams
	Resource identified by the name of the JDF node + “Params”
	For example, during a CIP3ProductOperation of the type “Saddle​Stitching”, the JDF representation of the CIP3ProductParams is SaddleStitchingParams

	CIP3ProductComponent
	Component
	See Section D.2.1, below

	CIP3ProductJobName
	Comment element of the JDF node
	-

	CIP3ProductJobCode
	JobID or JobPartID attribute of the JDF node
	If the output of this step is a final product and it is only final product, it should be converted into JobID of the root node. Otherwise, it is converted into a JobPartID of the corresponding process node.

	CIP3ProductCopyright
	Comment element of the JDF node
	-

	CIP3ProductCustomer
	CustomerInfo element of the JDF node
	Note that the CustomerInfo element is structured, while the CIP3ProductCustomer is not.

	CIP3ProductVolume
	Amount attribute of the output Component resource link
	-

D.2.1 Comparison of the PPF Component to the JDF Component

The structure of the PPF Component is very similar to the structure of the JDF Component, so it is easy to convert one to the other. The following table gives advice on how to do this. Some information stored in the PPF Component must be used for linking the correct resources to a process. Other implicit information, such as the bounding box of the component or an overfold, must be calculated and explicitly specified in the subelements of the Component. Furthermore, the appropriate algorithms can be very complex for some operations, such as folding. For further information about the Component resource, see Section 7.2.29 Component.

Table D.3 Converting a PPF Component

	PPF Key
	JDF Representation
	Comments

	SourceType
	ComponentType attribute of Component
	-

	SourceSheet
	SourceSheet attribute of Component
	-

	-
	SheetPart attribute of Component
	Calculable out of the cut block structure.

	SourceBlock
	Expressed by an input resource link to an output Component of a previous Cutting process.
	see Section D.3.6 Cutting Data

	SourceProduct
	Expressed by an input resource link to a Component.
	-

	Params
	Transformation attribute of Component
	In most CIP3 operations, there is only one component parameter called Orientation. This matrix is renamed to Transformation. The only exception is the EndSheetGluing process. See Section EndSheetGluing for more information.

D.2.2 Collecting

To convert a Collection operation, follow the previous descriptions. This process contains no special considerations to take into account.

D.2.3 Gathering

To convert a Gathering operation, follow the previous descriptions. This process contains no special considerations to take into account.

D.2.4 ThreadSewing

Convert the entries of CIP3ProductParams structure directly to the ThreadSewingParams resource. Add this resource as an input resource link to the originated ThreadSewing process. See Section 7.2.138 ThreadSewingParams for more information.

D.2.5 SaddleStitching

Convert the entries of CIP3ProductParams structure directly to the StitchingParams resource. Set StitchType=”Saddle”. Add this resource as an input resource link to the originated Stitching process. See Stitching for more information.

D.2.6 Stitching

Convert the entries of CIP3ProductParams structure directly to the StitchingParams resource. Set StitchType=”Side”. Add this resource as an input resource link to the originated Stitching process. See Section Stitching for more information.

D.2.7 SideSewing

Convert the entries of CIP3ProductParams structure directly to the ThreadSewingParams resource. Add this resource as an input resource link to the originated ThreadSewing process. See ThreadSewing for more information.

D.2.8 EndSheetGluing

The EndSheetGluing CIP3 operation is the only operation that requires more information than Orientation in the PPF Component Params. This additional information of the front and the back end sheet components is transferred to the EndSheetGluingParams resource, as described in the following table. See Section 7.2.53 for more information.

Table D.4 Converting the PPF EndSheetGluing operation to JDF

	PPF Key
	JDF Representation
	Comments

	Offset
	Offset attribute of the EndSheet element of EndSheetGluingParams
	-

	GlueLine
	GlueLine element of the EndSheet element of EndSheetGluingParams
	See Section 7.2.53 for information on how to convert the GlueLine structure.

D.2.9 AdhesiveBinding

The PPF main adhesive binding operation dictionary is translated to the AdhesiveBindingParams resource. All single suboperations that were resident in the PPF Processes array are converted to special elements inside the AdhesiveBindingParams (see Section 7.2.3 Adhesive​Binding​Params). For each type of adhesive binding suboperation there exists one extra element. The suboperations SpinePreparation and GlueApplication can simply be translated by removing the ProcessType entry and converting all other entries directly to the appropriate element.

The following tables show how to convert the main operation and its other suboperations. Because new features were added, the CIP3 Lining operation was renamed to SpineTaping.

Table D.5 Converting the PPF AdhesiveBinding operation to JDF

	PPF Key
	JDF Representation
	Comments

	Processes

- BackPreparation

- GlueApplication

- Lining

- CoverApplication
	Several single process:

SpinePreparation

Gluing

SpineTaping

CoverApplication
	See description above.

	PullOutValue
	PullOutValue attribute of all SpinePreparationParams resources, which are part of the AdhesiveBinding process chain.
	-

	PullOutMake
	-
	Not needed.

	FlexValue
	FlexValue attribute of AdhesiveBinding-Params
	-

	FlexMake
	-
	Not needed.

The following tables show how to convert the main operation and its other sub-operations. Because new features were added, the CIP3 Lining operation was renamed to SpineTaping. Convert the PPF AdhesiveBinding sub-operation Lining to a SpineTaping process. Copy the parameters of the sub-operation to the equivalent attributes of the SpineTapingParams resource and link them with the process.

Table D.6 Converting the PPF AdhesiveBinding suboperation Lining

	PPF Key
	JDF Representation
	Comments

	ProcessType
	Name of the JDF process.
	

	TopLiningExcess
	TopExcess attribute of SpineTapingParams
	-

	LiningExcess
	HorizontalExcess attribute of SpineTapingParams
	-

	LiningLength
	StripLength attribute of SpineTapingParams
	-

	LiningMaterial
	StripMaterial attribute of SpineTapingParams
	-

	LiningBrand
	StripBrand attribute of SpineTapingParams
	-

Table D.7 Converting the PPF AdhesiveBinding suboperation CoverApplication

	PPF Key
	JDF Representation
	Comments

	ProcessType
	-
	There is an extra element for each type of AdhesiveBinding suboperation.

	CoverOffset
	CoverOffset attribute of CoverApplication
	-

	ScoringOffsets and ScoringSide
	Several Score elements inside of CoverAppli​cation
	The Score element is much more structured than these two single entries.

D.2.10 Trimming

Convert the entries of CIP3ProductParams structure directly to the TrimmingParams resource. Add this resource as an input resource link to the originated Trimming process. See Section 6.5.45.9 Trimming for more information.

D.2.11 GluingIn

Because extended features have been added, the PPF GluingIn operation was renamed to the Inserting process. Consequently, the parameters of this CIP3 operation are transformed into the InsertingParams resource. For more information see Section 7.2.78 InsertingParams.

Table D.8 Converting the PPF GluingIn operation to JDF

	PPF Key
	JDF Representation
	Comments

	SheetOffset
	SheetOffset attribute of InsertingParams
	-

	-
	Location attribute of InsertingParams
	Must be Front

	GlueLines
	Several GlueLine elements in InsertingParams
	See Section 7.2.78 InsertingParams for information on how to convert the GlueLine structure.

	Sample
	Comment of the corresponding Component
	Converted to an input Component of Type PartialProduct

Most of the entries of the PPF GlueLine structure can be directly mapped to the GlueLine element. Note that the GluingPattern attribute cannot have an empty array to describe a solid glue line. For this purpose, use an array of “1 0”.

D.2.12 Folding

Like all formats, JDF follows a structured approach in the description of the folding process. That is why every suboperation has its own element type and has no need of the function entry. Normally, the names of the CIP3 fold functions was taken for the name of the respective corresponding process names. One of the specialized processes:

· Folding,

· Creasing

· Cutting,

· Perforating

· Gluing.

is created for each folding sub-operation.

Because of inherent naming obscurities, the CIP3 functions Groove and Lime were renamed to Crease and Gluing in JDF. The following tables give advice on how to convert the PPF structures to JDF elements.

Table D.9 Converting the PPF Folding operation to JDF

	PPF Key
	JDF Representation
	Comments

	CIP3FoldDescription
	-
	If required, it can be expressed by the FoldCatalog attribute or by the fold operations.

	CIP3FoldSheetIn
	-
	In CIP3 the parameters of the folding procedure will be scaled, if the value of the CIP3FoldSheetIn array is different from the dimension of the input component. In JDF a scaling mechanism is not supported.

	CIP3FoldProc

- Fold

- Lime

- Cut

- Groove

- Perforate
	Several processes

Folding

Gluing

Cutting

Creasing

Perforating

	See previous description

The PPF Folding suboperation is translated to a Folding process. The parameters of the PPF command are copied into a Fold element inside the FoldingParams resource. The table below shows how to assign the parameters of the PPF Fold command to the equivalent attributes inside the Fold element.

Table D.10 Converting the PPF Folding suboperation of type Fold

	PPF Key
	JDF Representation
	Comments

	travel
	Travel attribute of Fold
	-

	from
	From attribute of Fold
	-

	to
	To attribute of Fold
	-

	function
	-
	-

For every lime operation, a Gluing process is generated. Create a GluingParams resource and add a Glue element. Insert the value of the working-direction attribute into the WorkingDirection attribute. Attach a GlueApplication element. To this element add a GlueLine element. The attributes start-position and working-path can put into the equivalent attributes StartPosition and WorkingPath inside the GlueLine.

Table D.11 Converting the PPF Folding suboperation of type Lime

	PPF Key
	JDF Representation
	Comments

	start-position
	StartPosition attribute of the GlueLine element of the Gluing element
	JDF uses the GlueLine element because of the advantage of more optional attributes of this type of element.

	working-path
	WorkingPath attribute of the GlueLine element of the Gluing element
	JDF uses the GlueLine element because of the advantage of more optional attributes of this type of element.

	working-direction
	WorkingDirection attribute of the Gluing element
	-

	function
	-
	-

The remaining operation types can converted to one of the following processes:

· Cutting. Create a CuttingParams resource and link it to the process. Transfer the parameters of the PPF Cut command into equivalent attributes of a Cut element and insert this into the CuttingParams resource.

· Creasing. The same as above except that there is a CreasingParams resource with a Crease element inside which will fill with the converted parameters of the PPF Groove command.

· Perforate. The same as above except that there is a PerforatingParams resource with a Perforate element inside which will fill with the converted parameters of the PPF Perforate command.

Table D.12 Converting the PPF Folding suboperation of all other types

	PPF Key
	JDF Representation
	Comments

	start-position
	StartPosition attribute of the respective Cut / Crease / Perforate element
	-

	working-path
	WorkingPath attribute of the respective Cut / Crease / Perforate element
	-

	working-direction
	WorkingDirection attribute of the respective Cut / Crease / Perforate element
	-

	function
	-
	There is an extra element for each type of a Folding suboperation. The extra elements are: Cut, Crease, and Perforate

D.3 PPF Sheet Structure

The conversion of the PPF sheet structures is much more complex than the conversion of the product operations. A JDF layout structure, which is not directly specified in PPF, must be built up in order to place the mark objects such as register mark or density measuring field. All other sheet information is stored in specialized resources. These resources are often partitionable to specify the sheet, surface and separation to which they belong (see Section 3.9.2 Description of Partitionable Resources). The result is an inheritance of attributes comparable to the inheritance process in CIP3.

To build the layout structure, create a Layout resource that includes one Signature element with a unique Name. For each PPF Sheet, add one Sheet resource to the Signature. Set the Name of the corresponding Sheet to the value of CIP3AdmSheetName. For each surface (front or back) initiate a Surface resource with one PlacedObjects element. In order to define a mark object, i.e., CutMark, CIELABMeasuringField, DensityMeasuringField, ColorControlStrip, or RegisterMark, build a MarkObject element inside PlacedObjects. In that element, define CTM and an appropriate LayoutElement. The CIP3 information is added to the MarkObject by including the mark-specific element, e.g., RegisterMark for a register mark. Note: The coordinate system of the JDF Sheet is specified by the SurfaceContentsBox, which defaults to the page coordinates and the coordinate system of the CIP3 Sheet is the PSExtent coordinates.

[image: image106.wmf]One

for

each

PPF

Sheet

One

for

each

PPF

Surface

One

for

each

PPF Mark

Layout

Signature

Sheet

PlacedObjects

MarkObject

Sheet

Sheet

Surface

Surface

MarkObject

MarkObject

...

...

Figure D.8.2 JDF representation of sheets

If there are no product definitions in the PPF file, create JDF product nodes which are the results of all cutting and folding information in the sheet structure.

D.3.1 Administration Data

Clarified in JDF 1.2
The following table defines how to convert the administration data of CIP3. In some situations, it may not be clear whether or not conversion is necessary. Processes such as CIP3AdmFilmType, for example, contain limited information, making it difficult to tell.

Table D.13 Converting administration data

	PPF Key
	JDF Representation
	Comments

	CIP3AdmSheetName
	Name attribute of the corresponding Sheet
	If there is no CIP3AdmSheetName, define a unique new one.

	CIP3AdmJobName
	Comment of the corresponding product node
	-

	CIP3AdmJobCode
	JobPart of the corresponding product node
	May conflict with CIP3ProductJobCode.

	CIP3AdmMake
	-
	Not supported.

	CIP3AdmModel
	-
	Not supported.

	CIP3AdmSoftware
	-
	Not supported.

	CIP3AdmCreationTime
	-
	Not supported.

	CIP3AdmArtist
	Comment of the corresponding product node
	-

	CIP3AdmCopyright
	Comment of the corresponding product node
	-

	CIP3AdmCustomer
	CustomerInfo element of the corresponding product node
	May conflict with CIP3ProductCustomer. Note: The CustomerInfo element is structured while the CIP3AdmCustomer is not.

	CIP3AdmPSExtent
	indirect
	-

	CIP3AdmTypeOfScreen
	see description
	Not possible to convert appropriately.

	CIP3AdmFilmType
	Brand attribute of the corresponding Media resource
	MediaType of the Media is Film.

	CIP3AdmFilmExtent
	Dimension attribute of the corresponding Media resource
	-

	CIP3AdmFilmTrf
	TransferCurveSet:CTM
	TransferCurveSet:Name = “Film”

	CIP3AdmPlateType
	Brand attribute of the corresponding Media resource
	MediaType of the Media is Plate.

	CIP3AdmPlateExtent
	Dimension attribute of the corresponding Media resource
	-

	CIP3AdmPlateTrf
	TransferCurveSet:CTM
	TransferCurveSet:Name = “Plate”

	CIP3AdmPaperGrade
	Grade attribute of the corresponding Media resource
	MediaType of the Media is Paper

	CIP3AdmPaperGrammage
	Weight attribute of the corresponding Media resource
	See CIP3AdmPaperGrade.

	CIP3AdmPaperThickness
	Thickness attribute of the corresponding Media resource
	See CIP3AdmPaperGrade.

	CIP3AdmPaperColor
	Lab attribute of the Color element of the corresponding Media resource
	See CIP3AdmPaperGrade.

	CIP3AdmPaperExtent
	Dimension attribute of the corresponding Media resource
	-

	CIP3AdmPaperTrf
	TransferCurveSet:CTM
	 TransferCurveSet:Name = “Paper”

	CIP3AdmSeparationNames
	see description
	Create a ConventionalPrinting process (see Section 6.4.1) and a corresponding ColorantControl resource. Fill the ColorantOrder parameter.

	CIP3AdmSheetLay
	SheetLay attribute of the corresponding ConventionalPrinting​Params or FoldingParams resource
	-

	CIP3AdmPrintVolume
	Amount attribute of the output Component resource link of the printing process
	-

	CIP3AdmPressTrf
	TransferCurveSet:CTM
	TransferCurveSet:Name = “Press”

	CIP3AdmPressExtent
	indirect
	-

	CIP3AdmInkInfo
	Name attribute of the Color element of the corresponding Ink resource.

The value of Ink::ColorName color should match the Name attribute of a Color defined in a ColorPool resource that is linked to the process that is using this Ink resource. This does not refer to the A.2.8 NamedColor attribute.

	Create a partitioned Ink matching the side and separation. Add the Ink to the ConventionalPrinting process of CIP3AdmSeparationNames

	CIP3AdmInkColors
	LabColor attribute of the Color element defined by the ColorName of the Ink resource.
The value of Ink::ColorName color should match the Name attribute of a Color defined in a ColorPool resource that is linked to the process that is using this Ink resource. LabColor defines values for that Color::Name.

	see CIP3AdmInkInfo

D.3.2 Preview Images

In PPF, preview images are coded as an in-line image. This is not possible in version 1.0 of XML, so JDF uses the URL attribute within the Preview resource (see Section 7.2.109 Preview), which points to an external PNG file. The following table shows how to translate the PPF preview structure to the PNG header. Use the partition feature to assign a preview image to a specific separation and surface.

Table D.14 PPF preview representation as PNG

	PPF Key
	JDF Representation
	Comments

	CIP3PreviewImage​Width
	“Width” of the “IHDR” chunk of the PNG file
	-

	CIP3PreviewImage​Height
	“Height” of the “IHDR” chunk of the PNG file
	-

	CIP3PreviewImage​BitsPerComp
	“Bit depth” of the “IHDR” chunk of the PNG file
	-

	CIP3PreviewImage​Components
	-
	Because of a lack of CMYK composite support by PNG, PPF previews of this type must be separated.

	CIP3PreviewImage​ImageMatrix
	-
	Not needed. Convert image data to the PNG native sequence.

	CIP3PreviewImage​Resolution
	“pHYs” chunk of the PNG file
	Use the meter unit and convert DPI to DPM.

	CIP3PreviewImage​Encoding
	-
	Not needed.

	CIP3PreviewImage​Compression
	-
	Not needed. Use PNG’s own compression.

	CIP3PreviewImage​FilterDict
	-
	Not needed.

	CIP3PreviewImage​ByteAlign
	-
	Not needed.

	CIP3PreviewImage​DataSize
	-
	Not needed.

To calculate ink zones, JDF uses a process chain of PreviewGeneration and InkZoneCalculation processes. Add the converted CIP3 previews as an input resource to InkZoneCalculation. The ProfileOffset attribute of InkZoneCalculationParams can be calculated out of the different CIP3 coordinate systems.

D.3.3 Transfer Curves

Simply convert all CIP3 transfer curves to elements of a partitioned TransferCurvePool (see Section 7.2.139 Tile). Add this TransferCurvePool as an input resource to a corresponding InkZoneCalculation process.

D.3.4 Register Marks

The table provides information about how to create a JDF RegisterMark and place this element inside the respective MarkObject.

Table D.15 Converting the parameter of the CIP3PlaceRegisterMark command

	PPF Key
	JDF Representation
	Comments

	translate-x and translate-y
	Center attribute of RegisterMark
	Apply all transformations of the CIP3 coordinate systems to get from the PS system to the Layout system.

	rotation
	Rotation attribute of RegisterMark
	-

	type
	MarkType attribute of RegisterMark
	-

	Current CIP3SetRegisterMark​Separations context
	Several SeparationSpec elements inside the RegisterMark
	-

D.3.5 Color and Ink Control

In CIP3, the two types of measuring fields are specified by an entry of the data dictionary in the CIP3PlaceMeasuringField command. In JDF, this approach is replaced by two different types of JDF elements: CIELABMeasuringField and DensityMeasuringField. All parameters of the CIP3PlaceMeasuringField command are merged into these elements. See the following tables as well as Section 7.2.15 CIELABMeasuringField and Section 7.2.44 DensityMeasuringField for further information. All PPF entries that are not explicitly listed in the following tables can be directly converted. Place the originated element inside the appropriate MarkObject.

Table D.16 Converting PPF color-measuring data

	PPF Key
	JDF Representation
	Comments

	position-x and position-y of the respective CIP3​PlaceMeasuringField command
	Center attribute of CIELABMeasuring​Field
	Apply all transformations of the CIP3 coordinate systems to get from the PS system to the Layout system.

	Type
	-
	There is an extra resource for each type of CIP3 measuring field.

	CIE-L*, CIE-a* and CIE-b*
	CIELab attribute of CIELABMeasuring​Field
	-

Table D.17 Converting PPF density-measuring data

	PPF Key
	JDF Representation
	Comments

	position-x and position-y of the respective CIP3​PlaceMeasuringField command
	Center attribute of DensityMeasuring​Field
	Apply all transformations of the CIP3 coordinate systems to get from the PS system to the Layout system.

	Type
	-
	There is an extra resource for each type of CIP3 measuring field.

	DensityCyan, DensityMagenta, DensityYellow and DensityBlack
	Density attribute of DensityMeasuring​Field
	-

Like the measuring fields, the CIP3PlaceColorControlStrip command is translated to a structured element. All parameters of this command can be converted to the ColorControlStrip element (see Section 7.2.21) by following the instructions in table D.18, below.

Table D.18 Converting the parameter of the CIP3PlaceColorControlStrip command

	PPF Key
	JDF Representation
	Comments

	position-x and position-y
	Center attribute of ColorControlStrip
	Apply all transformations of the CIP3 coordinate systems to get from the PS system to the Layout system.

	rotation
	Rotation attribute of ColorControlStrip
	-

	width and height
	Size attribute of ColorControlStrip
	-

	data
	Sequence of DensityMeasuring​Field elements within the ColorControlStrip
	The entries of the data parameter have to be converted to DensityMeasuring​Field elements.

	name
	StripType attribute of ColorControlStrip
	-

D.3.6 Cutting Data

CIP3’s cut block structure is translated to JDF by defining Cutting processes. Since CIP3 has the ability to create nested cut blocks, one separate Cutting process is needed for each nested block set. Simply follow the instructions in the following table, and add all originated CutBlock resources as input the corresponding Cutting process. The CIP3CutModel entry is not used in JDF.

Table D.19 Converting the Cutting Data structure

	PPF Key
	JDF Representation
	Comments

	CIP3BlockTrf
	BlockTrf attribute of CutBlock
	If the CutBlock is at the uppermost level, apply all transformations of the CIP3 coordinate systems to get from the PS system to the Layout system.

	CIP3BlockSize
	BlockSize attribute of CutBlock
	-

	CIP3BlockElementSize
	BlockElementSize attribute of CutBlock
	-

	CIP3BlockSubdivision
	BlockSubdivision attribute of CutBlock
	Determines how many Components are produced.

	CIP3BlockType
	BlockType attribute of CutBlock
	-

	CIP3BlockElement​Type
	BlockElementType attribute of CutBlock
	-

	CIP3BlockName
	This is expressed by resource links
	Not needed in JDF.

	CIP3BlockFolding​Procedure
	A Folding process
	See Folding

For cut marks, follow the instructions in the table below. Place the originated element inside the appropriate MarkObject.

Table D.20 Converting the parameter of the CIP3PlaceCutMark command

	PPF Key
	JDF Representation
	Comments

	position-x and position-y
	Center attribute of CutMark
	Apply all transformations of the CIP3 coordinate systems to get from the PS system to the Layout system.

	mark-type
	MarkType attribute of CutMark
	-

D.3.7 Folding Data

When a CIP3 cut block has a folding operation defined (CIP3BlockFoldingProcedure), append a JDF Folding process which uses the respective output Component of the respective Cutting process as an input Component. See Folding for more information on how to translate the CIP3 folding procedure, which is used to fold the cut block.

D.3.8 Comments and Annotations

PPF comments can either be converted to an XML comment or to a human-readable form by transforming them into a Comment telem of the next element. In most cases, PPF comments can simply be ignored. Annotations are not supported by JDF.

D.3.9 Private Data and Content

For your private data, you should first examine if one of the new JDF elements or attributes fits your requirements. If not, please use the extension capabilities of JDF to express your needs. They are described in Section 3.11.
Appendix E Modeling IfraTrack in JDF

Introduction

Job tracking and production control are integral parts of a workflow system. IFRA, described in this section, has defined a job tracking system called IfraTrack that fulfills a large number of the job tracking requirements of a production scenario and is especially effective in newspaper production. The JDF messaging system generalizes the IfraTrack approach, expanding its focus from a newspaper workflow to one that encompasses the entire graphic arts industry. This appendix provides further detail about the way in which JDF expands upon the existing IfraTrack technology.

E.1 IFRA Objects and JDF Nodes

IfraTrack traces the status of objects, and these objects are modified by processes that are only generic. JDF, on the other hand, precisely defines process nodes that create output resources. These JDF output resources are equivalent to IfraTrack objects, so tracking the state of a JDF node conveys a superset of the information communicated by tracking the state of an IfraTrack. The sections that follow define the mapping of IFRA concepts to JDF concepts in greater detail.

E.1.1 Object Identification

IfraTrack defines objects with an object path. The object path, in turn, may be a unique identifier, or UID. JDF also supports UIDs for internal linking of objects, although these UIDs should not be exported beyond the scope of a JDF document. External references to JDF nodes should be made the JobID/JobPartID pair. These values may be defined by an external system, such as MIS, and can be used to uniquely track JDF nodes.

E.1.2 IFRA Object Hierarchy

IfraTrack defines an explicit hierarchy to define a newspaper, from Issue through Edition, EditionVersion, and so on. JDF, on the other hand, defines a generic hierarchy of products containing a description attribute that allows the products to be named. An IfraTrack-conforming JDF job consequently includes a product hierarchy with product nodes that contain the appropriate description fields. Furthermore, the abstract IFRA Element type is mapped to the JDF LayoutElement type.

E.1.3 Object States

IFRA defines object states that define the status of a resource, although they also define the status of the process that defines a resource. JDF defines explicit states for both processes and resources. In addition, JDF defines a descriptive string to denote the details of each status. The mapping is defined in the following table.

Table E.1 IFRA object states

	IFRA Object Status
	JDF Node Status
	JDF Resource Status
	Description

	Not Started
	Waiting
	Unavailable
	Status prior to InProgress.

	
	Ready
	Unavailable
	JDF defines a test-run mode that allows generalized preflighting. Ready is the status after TestRun.

	In Progress
	Setup
	Unavailable
	A process is InProgress but not yet producing any output.

	
	InProgress
	Unavailable
	A process is InProgress.

	
	Cleanup
	Available
	A process is running after all output has been produced.

	On Hold
	Stopped
	Unavailable
	A process is active but not currently producing, as when maintenance is run during a job.

	Completed
	Completed
	Available
	Completed

	Aborted
	Aborted
	Unavailable

	Fatal Error

E.1.4 Deadlines and Scheduling

In IfraTrack, activities may be linked to deadlines. JDF defines deadlines in the NodeInfo element of every node. The definition of deadline values is identical.

IFRA defines an integer value for deadline level. JDF defines four explicit enumerations for DueLevel in order to assure that devices in a heterogeneous system have the same concept of deadline level.

E.2 JMF Messages that Translate IfraTrack Messages

The messages explained in Section 5.5.2 Device/Operator Status and Job Progress Messages can be used to emulate IfraTrack functionality. Specifically the messages:

· 5.5.2.3 Status
· 5.5.2.4 Track

Appendix F Mapping between JDF and IPP

The mapping between JDF and IPP is specified in Appendix F in JDF/1.0 using the IDPrinting process. However, for JDF/1.1, the IDPrinting process is deprecated. Thus for JDF/1.1, mapping between JDF/1.1 and IPP should be

done with the DigitalPrinting process and many other JDF/1.1 processes as a combined process node.

F.1 IPP References

The documents below give detailed information about IPP attributes.

· IPP Model and Semantics, RFC 2911, September 2000

· Collection attribute syntax, <draft-ietf-ipp-collection-05.txt>, July 17, 2001

· Production Printing Attributes - Set1, IEEE-ISTO 5100.3-2001, ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.3.pdf, .doc, .rtf, February 17, 2001

· Override Attributes for Documents and Pages, IEEE-ISTO 5100.4-2001, ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.4.pdf, .doc, .rtf, February 7, 2001

· IPP/1.0 & 1.1: “Output-bin” attribute extension, IEEE-ISTO 5100.2-2001, ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.2.pdf, .doc, .rtf, February 7, 2001

· IPP/1.1: finishings attribute values extension, IEEE-ISTO 5100.1-2001, ftp://ftp.pwg.org/pub/pwg/standards/pwg5100.1.pdf, .doc, .rtf, February 5, 2001

· Job Progress Attributes, <draft-ietf-ipp-job-prog-03.txt>, July 17, 2001.

Appendix G StatusDetails Supported Strings

The StatusDetails attribute refines the concept of a job status to be job specific or a device status to be device specific. The following tables define individual StatusDetail values and map them to the appropriate job specific state Status or device specific state DeviceStatus.

Table G.1 StatusDetails and Status mapping for generic devices

	StatusDetails
	Status
	DeviceStatus
	Description

	ControllDeferred
	-
	Stopped
	The device is controlled by a master device and cannot be accessed.

Table G.2 StatusDetails and Status mapping for conventional printing devices

	StatusDetails
	Status
	DeviceStatus
	Description

	Good
	InProgress
	Running
	Production of sheets in progress, good copy counter is on.

	Waste
	InProgress
	Running
	Production of sheets in progress, good copy counter is off.

	FormChange
	Setup
	Setup
	In conventional printing. changing of plates or in digital printing changing of images.

	SizeChange
	Setup
	Setup
	Changing setup for media size.

	WashUp
	Cleanup
	Cleanup
	Machine is washed before, during or after production. WashUp is a super-term for BlanketWash, CylinderWash, CleaningInkingUnit, or CleaningInkFountain.

WashUp is the default which is assumed if StatusDetails is not specified.

	InkingRollerWash
	Cleanup
	Cleanup
	Washing of the inking roller, subterm of WashUp.

	PlateWash
	Cleanup
	Cleanup
	Washing of the plate, subterm of WashUp.

	DampeningRoller-Wash
	Cleanup
	Cleanup
	Washing of the dampening roller, subterm of WashUp.

	BlanketWash
	Cleanup
	Cleanup
	Washing of the blanket, subterm of WashUp.

	CylinderWash
	Cleanup
	Cleanup
	Washing of impression cylinders, subterm of WashUp.

	CleaningInkFountain
	Cleanup
	Cleanup
	Cleaning of the ink fountain, subterm of WashUp.

	Pause
	Stopped
	Stopped
	Machine paused, restart is possible.

	MissResources
	Stopped
	Stopped
	Production has been stopped because resources are missed. For example, if the machine has consumed paper, ink, plates, etc., and waits for new resources, subterm of Pause.

	WaitForApproval
	Stopped
	Stopped
	Production has been stopped because a required approval is still missing, subterm of Pause.

	ShutDown
	Stopped
	Down
	Machine stopped (may be switched off), restart requires a run up.

	BreakDown
	Stopped
	Down
	Breakdown of the device, repair required.

	Repair
	Stopped
	Down
	After a breakdown the device is being repaired.

	Failure
	Stopped
	Stopped
	Failure of the device. Requires some maintenance in order to restart the device.

	PaperJam
	Stopped
	Stopped
	Paper jam in the device, subterm of Failure.

	Maintenance
	Stopped
	Stopped
	Maintenance of the device.

	BlanketChange
	Stopped
	Stopped
	Changing of blankets, subterm for Maintenance.

	SleeveChange
	Stopped
	Stopped
	Changing of sleeves, subterm for Maintenance.

Appendix H ModuleType Supported Strings

Both the ModuleStatus element (see Table 5‑46 Contents of the ModuleStatus element) and the ModulePhase element (see Table 3‑34 Contents of the ModulePhase element) contain a ModuleType attribute that defines individual modules within a machine. The following table defines individual ModuleType values.

Table H.1 ModuleType definition for conventional printing devices

	ModuleType
	Description

	Feeder
	Feeder module, feeds the device with paper.

	PrintModule
	Unit for printing a color.

	CoatingModule
	Unit for coatings, for example, full coating of varnish.

	Drier
	Module for drying the previously printed color or varnish.

	PerfectingModule
	Unit for perfecting, reversing device.

	ExtensionModule
	Unit for extending the distance between modules, for example to increase the distance between the last printing module and the delivery module.

	Delivery
	Delivery module, unit for gathering the printed sheets.

	Imaging
	Imaging Module in a direct to plate machine.

	Numbering
	Numbering unit.

Appendix I Supported Error Codes in JMF

The following list defines the standard ReturnCode for messaging. The ID numbers are decimal. Error messages below 100 are reserved for protocol errors. Error messages above 100 are used for device and controller errors and error messages above 200 for job and pipe specific errors.

Table J.1 Return codes for JMF

	ReturnCode
	Description

	0
	Success

	1 – 99
	Protocol errors

	1
	General error

	2
	Internal error

	3
	XML parser error, e.g., if a MIME file is sent to an XML controller.

	4
	XML validation error

	5
	Query/command not implemented

	6
	Invalid parameters

	7
	Insufficient parameters

	8
	Device not available (controller exists but not the device or queue)

	9
	Message incomplete. Message Service is busy

	100 – 199
	Device and controller errors

	100
	Device not running

	101
	Device incapable of fulfilling request, e.g., a RIP that has been asked to cut a sheet.

	102
	No executable node exists in the JDF

	103
	Job ID not known by controller

	104
	JobPartID not known by controller

	105
	Queue entry not in queue

	106
	Queue request failed because queue entry is already executing

	107
	Queue entry is already executing. Late change is not accepted

	108
	Selection or applied filter results in an empty list

	109
	Selection or applied filter results in an incomplete list. A buffer cannot provide the complete list queried for.

	110
	Queue request of a job submission failed because the requested completion time of the job cannot be fulfilled.

	111
	Subscription request denied.

	112
	Queue request failed because the Queue is closed and does not accept new entries.

New in JDF 1.1

	200 – …
	Job and pipe specific errors

	200
	Invalid resource parameters

	201
	Insufficient resource parameters

	202
	PipeID unknown

	203
	Unlinked resource link

Appendix J NotificationDetails

The Notification element is used for messaging and logging of events. It is defined in Section 3.10.1.2 Notification. Notifications are grouped into five classes: event, information, warning, error, and fatal. For notification classes see Section 4.6.1 Classification of Notifications. In addition to the classes, the Type attribute and abstract NotificationDetails element provide a container for detailed information about the notification.

Elements derived from the abstract NotificationDetails element represent a structured and extensible data type. It is defined in section 3.10.1.2.1 NotificationDetails. The structure of various predefined NotificationDetails-types and their descriptions are listed in the following sections.

J.1 Predefined NotificationDetails

This section defines elements that are derived from the abstract element.

J.1.1 Barcode

A bar code has been scanned.

Table J. 1 Contents of the Barcode element

	Name
	Data Type
	Description

	Code
	string
	Contains the scanned bar code.

J.1.2 FCNKey

A function key has been activated at a console.

Table J. 2 Contents of the FCNKey element

	Name
	Data Type
	Description

	Key
	integer
	Contains the number of that function key.

J.1.3 SystemTimeSet

The system time of a device/controller/agent has been set, e.g., readjusted, changed to daylight saving time, etc..

Table J. 3 Contents of the SystemTimeSet element

	Name
	Data Type
	Description

	NewTime
	dateTime
	Contains the new time.

	OldTime ?
	dateTime
	Contains the old time.

J.1.4 CounterReset

The production counter of a device has been reset.

Table J. 4 Contents of the CounterReset element

	Name
	Data Type
	Description

	CounterID ?
	string
	Identification of the counter that has been set.

	LastCount ?
	integer
	Last counter value before reset.

J.1.5 Error

This element provides additional information for common errors.

Table J. 5 Contents of the Error element, derived from NotificationDetails

	Name
	Data Type
	Description

	ErrorID
	string
	Internal Error ID of the application that declares the error.

Appendix K Examples

Note that these examples were generated using prototype tools and should be used for general overview only. The emphasis is not on the individual bytes, e.g., capitalization or exact keywords. Normative examples will be provided at http://www.CIP4.org when available.

K.1 Brief Example

K.1.1 Before Processing

This is a simple example of a JDF that describes color conversion for one file.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="ColorTest" Type="ColorSpaceConversion" JobID="ColorJob" Status="Waiting" Version="1.1" xmlns="http://www.CIP4.org/JDFSchema_1_1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <NodeInfo/>

 <ResourcePool>

 <RunList ID="Link0003" Class="Parameter" Status="Available" Pages="0~-1">

 <LayoutElement>

 <FileSpec URL=“File://in/colortest.pdf"/>

 </LayoutElement>

 </RunList>

 <ColorSpaceConversionParams ID="Link0004" Class="Parameter" Status="Available">

 <FileSpec ResourceUsage=”FinalTargetDevice” URL=”File://SMProcessCMYK.icc”/>

 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="ImagePhotographic ImageScreenShot SmoothShades" SourceProfile="File:://image.icc" RenderingIntent="Perceptual"/>

 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="Text LineArt" SourceProfile="File://text.icc" RenderingIntent="Perceptual"/>

 </ColorSpaceConversionParams>

 <ColorPool ID="Link0005" Class="Parameter" Status="Available">

 <Color CMYK="1 0 0 0" Name="Cyan"/>

 <Color CMYK="0 1 0 0" Name="Magenta"/>

 <Color CMYK="0 0 1 0" Name="Yellow"/>

 <Color CMYK="0 0 0 1" Name="Black"/>

 <Color CMYK="0.8 0.8 0 0" Name="Blue"/>

 </ColorPool>

 <ColorantControl ID="Link0006" Class="Parameter" rRefs="Link0005" Status="Available" ProcessColorModel="DeviceCMYK">

 <ColorPoolRef rRef="Link0005"/>

 </ColorantControl>

 <RunList ID="Link0007" Class="Parameter" Status=“Unavailable" Pages="0~-1">

 <LayoutElement>

 <FileSpec URL=“File://out/colortest.pdf"/>

 </LayoutElement>

 </RunList>

 </ResourcePool>

 <ResourceLinkPool>

 <RunListLink rRef="Link0003" Usage=“Input"/>

 <ColorSpaceConversionParamsLink rRef="Link0004" Usage=“Input"/>

 <ColorPoolLink rRef="Link0005" Usage=“Input"/>

 <ColorantControlLink rRef="Link0006" Usage=“Input"/>

 <RunListLink rRef="Link0007" Usage=“Output"/>

 </ResourceLinkPool>

 <AuditPool>

 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T10:26:11+01:00"/>

 </AuditPool>

</JDF>

K.1.2 After Processing

This is a simple example of a JDF that describes color conversion for one file after the color conversion process has been executed.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="ColorTest " Type="ColorSpaceConversion" JobID=”ColorJob" Status="Completed" Version="1.1" xmlns="http://www.CIP4.org/JDFSchema_1_1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <ResourcePool>

 <RunList ID="Link0003" Class="Parameter" Status="Available" Pages="0~-1">

 <LayoutElement>

 <FileSpec URL=“File://in/colortest.pdf"/>

 </LayoutElement>

 </RunList>

 <ColorSpaceConversionParams ID="Link0004" Class="Parameter" Status="Available">

 <FileSpec ResourceUsage=”FinalTargetDevice” URL=”File://SMProcessCMYK.icc”/>

 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="ImagePhotographic ImageScreenShot SmoothShades" SourceProfile="File://image.icc" RenderingIntent="Perceptual"/>

 <ColorSpaceConversionOp SourceCS="RGB" Operation="Convert" SourceObjects="Text LineArt" SourceProfile="File://text.icc" RenderingIntent="Perceptual"/>

 </ColorSpaceConversionParams>

 <ColorPool ID="Link0005" Class="Parameter" Status="Available">

 <Color CMYK="1 0 0 0" Name="Cyan"/>

 <Color CMYK="0 1 0 0" Name="Magenta"/>

 <Color CMYK="0 0 1 0" Name="Yellow"/>

 <Color CMYK="0 0 0 1" Name="Black"/>

 <Color CMYK="0.8 0.8 0 0" Name="Blue"/>

 </ColorPool>

 <ColorantControl ID="Link0006" Class="Parameter" rRefs="Link0005" Status="Available" ProcessColorModel="DeviceCMYK">

 <ColorPoolRef rRef="Link0005"/>

 </ColorantControl>

 <RunList ID="Link0007" Class="Parameter" Status="Available" Pages="0~-1">

 <LayoutElement>

 <FileSpec URL=“File://out/colortest.pdf"/>

 </LayoutElement>

 </RunList>

 </ResourcePool>

 <ResourceLinkPool>

 <RunListLink rRef="Link0003" Usage=“Input"/>

 <ColorSpaceConversionParamsLink rRef="Link0004" Usage=“Input"/>

 <ColorPoolLink rRef="Link0005" Usage=“Input"/>

 <ColorantControlLink rRef="Link0006" Usage=“Input"/>

 <RunListLink rRef="Link0007" Usage=“Output"/>

 </ResourceLinkPool>

 <AuditPool>

 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T10:26:11+01:00"/>

 <Modified Author="EatJDF Complete: task=*" TimeStamp="2000-11-01T10:26:57+01:00"/>

 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00" Status="Setup" TimeStamp="2000-11-01T10:26:57+01:00"/>

 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00" Status="InProgress" TimeStamp="2000-11-01T10:26:57+01:00"/>

 <PhaseTime End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00" Status="Cleanup" TimeStamp="2000-11-01T10:26:57+01:00"/>

 <ProcessRun End="2000-11-01T10:26:57+01:00" Start="2000-11-01T10:26:57+01:00" EndStatus="Completed" TimeStamp="2000-11-01T10:26:57+01:00"/>

 </AuditPool>

</JDF>

K.2 Product JDF

The following example describe a pair of college textbooks, one teachers edition and one students edition as product intent. Most intent resources are intentionally left empty.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="bookTest" Type="Product" JobID="bookJob" Status="Waiting" Version="1.1" xmlns="http://www.CIP4.org/JDFSchema_1_1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <ResourcePool>

 <Component ID="Link0003" Class="Quantity" Amount="100" Status=“Unavailable" DescriptiveName="Teacher's Book"/>

 <Component ID="Link0005" Class="Quantity" Amount="2000" Status=“Unavailable" DescriptiveName="Cover">

 <!--This cover is reused by both-->

 </Component>

 <LayoutIntent ID="Link0006" Class="Intent" Status="Available">

 <Dimensions Range="576 756~648 828" DataType="NumberSpan" Preferred="612 792"/>

 </LayoutIntent>

 <LayoutIntent ID="Link0008" Class="Intent" Status="Available">

 <Dimensions Range="576 756~648 828" DataType="NumberSpan" Preferred="612 792"/>

 <Pages DataType="IntegerSpan" Preferred="240"/>

 </LayoutIntent>

 <Component ID="Link0011" Class="Quantity" Amount="1000" Status=“Unavailable" DescriptiveName="Student's Book">

 <!--Students Book Intent-->

 </Component>

 <LayoutIntent ID="Link0014" Class="Intent" Status="Available">

 <Dimensions Range="576 756~648 828" DataType="NumberSpan" Preferred="612 792"/>

 <Pages DataType="IntegerSpan" Preferred="198"/>

 </LayoutIntent>

 </ResourcePool>

 <AuditPool>

 <Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-11-01T12:46:56+01:00"/>

 </AuditPool>

 <JDF ID="Link0002" Type="Product" Status="waiting" JobPartID="0" DescriptiveName="Teacher's Edition">

 <ResourcePool>

 <Component ID="Link0009" Class="Quantity" Amount="100" Status=“Unavailable" DescriptiveName="Insert"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ComponentLink rRef="Link0003" Usage=“Output" Amount="100"/>

 <ComponentLink rRef="Link0009" Usage=“Input" Amount="100"/>

 <ComponentLink rRef="Link0005" Usage=“Input" Amount="100"/>

 </ResourceLinkPool>

 <JDF ID="Link0007" Type="Product" Status="waiting" JobPartID="2" DescriptiveName="Teacher's Insert">

 <ResourceLinkPool>

 <LayoutIntentLink rRef="Link0008" Usage=“Input"/>

 <ComponentLink rRef="Link0009" Usage=“Output" Amount="100"/>

 </ResourceLinkPool>

 </JDF>

 </JDF>

 <JDF ID="Link0004" Type="Product" Status="waiting" JobPartID="1" DescriptiveName="Cover">

 <ResourceLinkPool>

 <ComponentLink rRef="Link0005" Usage=“Output" Amount="2000"/>

 <LayoutIntentLink rRef="Link0006" Usage=“Input"/>

 </ResourceLinkPool>

 </JDF>

 <JDF ID="Link0010" Type="Product" Status="waiting" JobPartID="3" DescriptiveName="Student's Edition">

 <ResourcePool>

 <Component ID="Link0013" Class="Quantity" Amount="1000" Status=“Unavailable" DescriptiveName="Insert"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ComponentLink rRef="Link0011" Usage=“Output" Amount="1000"/>

 <ComponentLink rRef="Link0013" Usage=“Input" Amount="1000"/>

 <ComponentLink rRef="Link0005" Usage=“Input" Amount="1000"/>

 </ResourceLinkPool>

 <JDF ID="Link0012" Type="Product" Status="waiting" JobPartID="4" DescriptiveName="Student's Insert">

 <ResourceLinkPool>

 <ComponentLink rRef="Link0013" Usage=“Output" Amount="1000"/>

 <LayoutIntentLink rRef="Link0014" Usage=“Input"/>

 </ResourceLinkPool>

 </JDF>

 </JDF>

</JDF>

K.3 Spawning and Merging

The following set of examples show a JDF job in the relevant stages of spawning and merging. One example defines a simple brochure with a cover and an insert. The red node, which defines the cover, is spawned, modified, and subsequently merged. Blue elements represent metadata that apply to spawning and merging.

K.3.1 Example 2 Component JDF before Spawning

The following JDF file describes a two-component brochure. The resources are not fleshed out.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1" JobPartID="Part1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <AuditPool>

 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/>

 </AuditPool>

 <ResourcePool>

 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>

 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>

 <ProductionIntent ID="r0045" Class="Intent" Status="Available">

 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>

 </ProductionIntent>

 <Component ID="r0047" Class="Quantity" Status="Unavailable"/>

 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ComponentLink rRef="r0043" Usage="Output"/>

 <BindingIntentLink rRef="r0044" Usage="Input"/>

 <ProductionIntentLink rRef="r0045" Usage="Input"/>

 <ComponentLink rRef="r0047" Usage="Input"/>

 <ComponentLink rRef="r0051" Usage="Input"/>

 </ResourceLinkPool>

 <JDF ID="n0046" Type="Product" Status="Waiting" JobPartID="Part2" DescriptiveName="Cover">

 <ResourceLinkPool>

 <ComponentLink rRef="r0047" Usage="Output"/>

 <LayoutIntentLink rRef="r0048" Usage="Input"/>

 <ColorIntentLink rRef="r0049" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>

 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>

 </ResourcePool>

 </JDF>

 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3" DescriptiveName="Insert">

 <ResourceLinkPool>

 <ComponentLink rRef="r0051" Usage="Output"/>

 <LayoutIntentLink rRef="r0052" Usage="Input"/>

 <ColorIntentLink rRef="r0053" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>

 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>

 </ResourcePool>

 </JDF>

</JDF>

K.3.2 Example 2 Component JDF Parent after spawning the cover node

The following JDF is the parent JDF after spawning. The Component that describes the cover is marked as SpawnedRW, since it was copied into the spawned node and may be modified. A Spawned audit was inserted into the Cover nodes parent’s AuditPool, and the Spawned node itself has a Status of Spawned.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1" JobPartID="Part1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <AuditPool>

 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/>

 <Spawned URL="File://spawn.jdf" jRef="n0046" TimeStamp="2002-04-05T15:34:43+02:00" NewSpawnID="Sp0057" rRefsRWCopied="r0047"/>

 </AuditPool>

 <ResourcePool>

 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>

 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>

 <ProductionIntent ID="r0045" Class="Intent" Status="Available">

 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>

 </ProductionIntent>

 <Component ID="r0047" Class="Quantity" Status="Unavailable" SpawnIDs="Sp0057" SpawnStatus="SpawnedRW"/>

 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ComponentLink rRef="r0043" Usage="Output"/>

 <BindingIntentLink rRef="r0044" Usage="Input"/>

 <ProductionIntentLink rRef="r0045" Usage="Input"/>

 <ComponentLink rRef="r0047" Usage="Input"/>

 <ComponentLink rRef="r0051" Usage="Input"/>

 </ResourceLinkPool>

 <JDF ID="n0046" Type="Product" Status="Spawned" JobPartID="Part2" DescriptiveName="Cover">

 <ResourceLinkPool>

 <ComponentLink rRef="r0047" Usage="Output"/>

 <LayoutIntentLink rRef="r0048" Usage="Input"/>

 <ColorIntentLink rRef="r0049" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <LayoutIntent ID="r0048" Class="Intent" Status="Available" SpawnIDs="Sp0057" SpawnStatus="SpawnedRO"/>

 <ColorIntent ID="r0049" Class="Intent" Status="Available" SpawnIDs="Sp0057" SpawnStatus="SpawnedRO"/>

 </ResourcePool>

 </JDF>

 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3" DescriptiveName="Insert">

 <ResourceLinkPool>

 <ComponentLink rRef="r0051" Usage="Output"/>

 <LayoutIntentLink rRef="r0052" Usage="Input"/>

 <ColorIntentLink rRef="r0053" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>

 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>

 </ResourcePool>

 </JDF>

 <AncestorPool/>

</JDF>

K.3.3 Example 2 Component JDF spawned node

The Component that represents the cover was copied into the spawned node, since it is the output resource. It is not locked, since it was spawned in RW mode. The existence of an AncestorPool denotes the node as spawned and defines the parent node.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="n0046" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" SpawnID="Sp0057" Version="1.1" JobPartID="Part2" DescriptiveName="Cover">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <AuditPool>

 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:34:43+02:00"/>

 </AuditPool>

 <ResourceLinkPool>

 <ComponentLink rRef="r0047" Usage="Output"/>

 <LayoutIntentLink rRef="r0048" Usage="Input"/>

 <ColorIntentLink rRef="r0049" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>

 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>

 <Component ID="r0047" Class="Quantity" Status="Available" SpawnIDs="Sp0057"/>

 </ResourcePool>

 <AncestorPool>

 <Ancestor NodeID="SpawnTest" FileName="testjdf4.jdf"/>

 </AncestorPool>

</JDF>

K.3.4 Example 2 Component JDF after merging

In this example, it is assumed that the cover output component was created by some processor that processed the spawned node. This resulted in the Component becoming available. The Component was also removed from the copy of the spawned node, since it would otherwise exist twice.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="SpawnTest" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1" JobPartID="Part1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <AuditPool>

 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:27:58+02:00"/>

 <Spawned URL="File://spawn.jdf" jRef="n0046" TimeStamp="2002-04-05T15:34:43+02:00" NewSpawnID="Sp0057" rRefsRWCopied="r0047"/>

 <Merged URL="File://spawn.jdf" jRef="n0046" MergeID="Sp0057" TimeStamp="2002-04-05T15:40:20+02:00" rRefsOverwritten="r0047"/>

 </AuditPool>

 <ResourcePool>

 <Component ID="r0043" Class="Quantity" Amount="10000" Status="Unavailable"/>

 <BindingIntent ID="r0044" Class="Intent" Status="Available"/>

 <ProductionIntent ID="r0045" Class="Intent" Status="Available">

 <PrintProcess Range="Gravure" DataType="EnumerationSpan"/>

 </ProductionIntent>

 <Component ID="r0047" Class="Quantity" Status="Available"/>

 <Component ID="r0051" Class="Quantity" Status="Unavailable"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ComponentLink rRef="r0043" Usage="Output"/>

 <BindingIntentLink rRef="r0044" Usage="Input"/>

 <ProductionIntentLink rRef="r0045" Usage="Input"/>

 <ComponentLink rRef="r0047" Usage="Input"/>

 <ComponentLink rRef="r0051" Usage="Input"/>

 </ResourceLinkPool>

 <JDF ID="n0046" Type="Product" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1" JobPartID="Part2" DescriptiveName="Cover">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <AuditPool>

 <Created Author="CIP4 JDFWriter 1.0.01 beta" TimeStamp="2002-04-05T15:34:43+02:00"/>

 </AuditPool>

 <ResourceLinkPool>

 <ComponentLink rRef="r0047" Usage="Output"/>

 <LayoutIntentLink rRef="r0048" Usage="Input"/>

 <ColorIntentLink rRef="r0049" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <LayoutIntent ID="r0048" Class="Intent" Status="Available"/>

 <ColorIntent ID="r0049" Class="Intent" Status="Available"/>

 </ResourcePool>

 </JDF>

 <JDF ID="n0050" Type="Product" Status="Waiting" JobPartID="Part3" DescriptiveName="Insert">

 <ResourceLinkPool>

 <ComponentLink rRef="r0051" Usage="Output"/>

 <LayoutIntentLink rRef="r0052" Usage="Input"/>

 <ColorIntentLink rRef="r0053" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <LayoutIntent ID="r0052" Class="Intent" Status="Available"/>

 <ColorIntent ID="r0053" Class="Intent" Status="Available"/>

 </ResourcePool>

 </JDF>

 <AncestorPool/>

</JDF>

K.3.5 Example of a Partitioned ImageSetting Node before Spawning

The following example shows a simple ImageSetting node that is partitioned by Separation. The resources are not filled with data. The input resources are Available.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01 beta-->

 <ResourcePool>

 <ImageSetterParams ID="r0052" Class="Parameter" Locked="false" Status="Available"/>

 <Media ID="r0053" Class="Consumable" Locked="false" Status="Available" PartIDKeys="Separation">

 <Media Separation="Cyan"/>

 <Media Separation="Magenta"/>

 <Media Separation="Yellow"/>

 <Media Separation="Black"/>

 </Media>

 <ExposedMedia ID="r0054" Class="Handling" Locked="false" Status="Unavailable" PartIDKeys="Separation">

 <ExposedMedia Separation="Cyan"/>

 <ExposedMedia Separation="Magenta"/>

 <ExposedMedia Separation="Yellow"/>

 <ExposedMedia Separation="Black"/>

 </ExposedMedia>

 <RunList ID="r0055" Class="Parameter" Locked="false" Status="Available"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>

 <MediaLink rRef="r0053" Usage="Input"/>

 <ExposedMediaLink rRef="r0054" Usage="Output"/>

 <RunListLink rRef="r0055" Usage="Input"/>

 </ResourceLinkPool>

</JDF>

K.3.6 The Spawned Cyan Partition of the ImageSetting Node

The following example shows the spawned Cyan partition of the ImageSetting node from the previous example.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" SpawnID="Sp0059" Version="1.1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01 beta-->

 <AuditPool/>

 <ResourcePool>

 <ImageSetterParams ID="r0052" Class="Parameter" Locked="true" Status="Available"/>

 <Media ID="r0053" Class="Consumable" Locked="true" Status="Available" PartIDKeys="Separation">

 <Media Separation="Cyan"/>

 </Media>

 <ExposedMedia ID="r0054" Class="Handling" Locked="true" Status="Unavailable" PartIDKeys="Separation">

 <ExposedMedia Separation="Cyan"/>

 </ExposedMedia>

 <RunList ID="r0055" Class="Parameter" Locked="true" Status="Available"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>

 <MediaLink rRef="r0053" Usage="Input">

 <Part Separation="Cyan"/>

 </MediaLink>

 <ExposedMediaLink rRef="r0054" Usage="Output">

 <Part Separation="Cyan"/>

 </ExposedMediaLink>

 <RunListLink rRef="r0055" Usage="Input"/>

 </ResourceLinkPool>

 <AncestorPool>

 <Part Separation="Cyan"/>

 <Ancestor Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1" NodeID="n20020701190951" Status="Waiting" Version="1.1" FileName="testjdf5.jdf"/>

 </AncestorPool>

</JDF>

K.3.7 The Root Partitioned ImageSetting Node after Spawning

Note …

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Pool" Version="1.1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.1.01 beta-->

 <AuditPool>

 <Spawned URL="File://spawnIS.jdf" jRef="n20020701190951" Status="Waiting" TimeStamp="2002-07-01T19:18:03+02:00" NewSpawnID="Sp0059">

 <Part Separation="Cyan"/>

 </Spawned>

 </AuditPool>

 <ResourcePool>

 <ImageSetterParams ID="r0052" Class="Parameter" Locked="false" Status="Available" SpawnIDs="Sp0059" SpawnStatus="SpawnedRO"/>

 <Media ID="r0053" Class="Consumable" Locked="false" Status="Available" SpawnIDs="Sp0059" PartIDKeys="Separation">

 <Media Locked="true" Separation="Cyan" SpawnStatus="SpawnedRW"/>

 <Media Separation="Magenta"/>

 <Media Separation="Yellow"/>

 <Media Separation="Black"/>

 </Media>

 <ExposedMedia ID="r0054" Class="Handling" Locked="false" Status="Unavailable" SpawnIDs="Sp0059" PartIDKeys="Separation">

 <ExposedMedia Locked="true" Separation="Cyan" SpawnStatus="SpawnedRW"/>

 <ExposedMedia Separation="Magenta"/>

 <ExposedMedia Separation="Yellow"/>

 <ExposedMedia Separation="Black"/>

 </ExposedMedia>

 <RunList ID="r0055" Class="Parameter" Locked="false" Status="Available" SpawnIDs="Sp0059" SpawnStatus="SpawnedRO"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>

 <MediaLink rRef="r0053" Usage="Input"/>

 <ExposedMediaLink rRef="r0054" Usage="Output"/>

 <RunListLink rRef="r0055" Usage="Input"/>

 </ResourceLinkPool>

 <StatusPool Status="Waiting">

 <PartStatus Status="Spawned">

 <Part Separation="Cyan"/>

 </PartStatus>

 </StatusPool>

</JDF>

K.3.8 The Merged ImageSetting Node

The Node has now been executed and merged.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="n20020701190951" Type="ImageSetting" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Pool" Version="1.1">

 <AuditPool>

 <Spawned URL="File://spawnIS.jdf" jRef="n20020701190951" Status="Waiting" TimeStamp="2002-07-01T20:25:03+02:00" NewSpawnID="Sp0059">

 <Part Separation="Cyan"/>

 </Spawned>

 <Merged URL="File://spawnIS2.jdf" jRef="n20020701190951" MergeID="Sp0059" TimeStamp="2002-07-01T20:27:51+02:00">

 <Part Separation="Cyan"/>

 </Merged>

 </AuditPool>

 <ResourcePool>

 <ImageSetterParams ID="r0052" Class="Parameter" Status="Available"/>

 <Media ID="r0053" Class="Consumable" Status="Available" PartIDKeys="Separation">

 <Media Separation="Cyan" Status="Unavailable"/>

 <Media Separation="Magenta"/>

 <Media Separation="Yellow"/>

 <Media Separation="Black"/>

 </Media>

 <ExposedMedia ID="r0054" Class="Handling" Status="Unavailable" PartIDKeys="Separation">

 <ExposedMedia Status="Available" Separation="Cyan"/>

 <ExposedMedia Separation="Magenta"/>

 <ExposedMedia Separation="Yellow"/>

 <ExposedMedia Separation="Black"/>

 </ExposedMedia>

 <RunList ID="r0055" Class="Parameter" Status="Available"/>

 </ResourcePool>

 <ResourceLinkPool>

 <ImageSetterParamsLink rRef="r0052" Usage="Input"/>

 <MediaLink rRef="r0053" Usage="Input"/>

 <ExposedMediaLink rRef="r0054" Usage="Output"/>

 <RunListLink rRef="r0055" Usage="Input"/>

 </ResourceLinkPool>

 <StatusPool Status="Waiting">

 <PartStatus Status="Completed">

 <Part Separation="Cyan"/>

 </PartStatus>

 </StatusPool>

</JDF>

K.4 Conversion of PJTF to JDF

K.4.1 PJTF input

The following code defines 4-up duplex impositioning of a 17 page pdf document in Adobe PJTF format:

%JTF-1.2

1 0 obj

<<

/A [3 0 R]

/V 1.1

/Cn [2 0 R]

>>

endobj

2 0 obj

<<

/Type /JobTicketContents

/D [6 0 R]

/PL 8 0 R

>>

endobj

3 0 obj

<<

/D (D:19991111173640)

/JTM (Default JT Creator)

/C (JT created)

>>

endobj

4 0 obj

<<

/Type /Catalog

/JT 1 0 R

>>

endobj

5 0 obj

<<

/Producer (HD PDFWrite vs. 0.1)

>>

endobj

6 0 obj

<<

/Fi [7 0 R]

>>

endobj

7 0 obj

<<

/Fi (panrt17a.pdf)

>>

endobj

8 0 obj

<<

/Si 9 0 R

>>

endobj

9 0 obj

<<

/S 10 0 R

>>

endobj

10 0 obj

[11 0 R]

endobj

11 0 obj

<<

/MS

<<

/Cl (sheet of paper)

/Me 12 0 R

>>

/Fr 13 0 R

/B 18 0 R

>>

endobj

12 0 obj

<<

/Dm [842 1191 842 1191]

>>

endobj

13 0 obj

<<

/PO [14 0 R 15 0 R 16 0 R 17 0 R]

>>

endobj

14 0 obj

<<

/CTM [0.45 0 0 0.45 21 624]

/O 0

/Cl [21 624 399 1159]

>>

endobj

15 0 obj

<<

/CTM [0.45 0 0 0.45 442 624]

/O 1

/Cl [442 624 820 1159]

>>

endobj

16 0 obj

<<

/CTM [0.45 0 0 0.45 21 29]

/O 2

/Cl [21 29 399 564]

>>

endobj

17 0 obj

<<

/CTM [0.45 0 0 0.45 442 29]

/O 3

/Cl [442 29 820 564]

>>

endobj

18 0 obj

<<

/PO [19 0 R 20 0 R 21 0 R 22 0 R]

>>

endobj

19 0 obj

<<

/CTM [0.45 0 0 0.45 21 624]

/O 4

/Cl [21 624 399 1159]

>>

endobj

20 0 obj

<<

/CTM [0.45 0 0 0.45 442 624]

/O 5

/Cl [442 624 820 1159]

>>

endobj

21 0 obj

<<

/CTM [0.45 0 0 0.45 21 29]

/O 6

/Cl [21 29 399 564]

>>

endobj

22 0 obj

<<

/CTM [0.45 0 0 0.45 442 29]

/O 7

/Cl [442 29 820 564]

>>

endobj

xref

0 23

0000000000 65535 f

0000000009 00000 n

0000000071 00000 n

0000000146 00000 n

0000000233 00000 n

0000000283 00000 n

0000000338 00000 n

0000000377 00000 n

0000000419 00000 n

0000000453 00000 n

0000000487 00000 n

0000000516 00000 n

0000000608 00000 n

0000000660 00000 n

0000000722 00000 n

0000000810 00000 n

0000000900 00000 n

0000000985 00000 n

0000001072 00000 n

0000001134 00000 n

0000001222 00000 n

0000001312 00000 n

0000001397 00000 n

trailer

<<

/Root 4 0 R

/Info 5 0 R

/Size 23

>>

startxref

1484

%%EOF

K.4.2 JDF output

This JDF file describes the Imposition process defined by the PJTF file.

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="PJTFJob" Type="Impositioning" JobID="Job" Status="Waiting" xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <NodeInfo/>

 <ResourcePool>

 <Layout ID="Link0002" Class="Parameter" Status=”Available">

 <Signature ID="Cos9">

 <SheetRef rRef="Cos11"/>

 </Signature>

 </Layout>

 <Surface ID="Cos13" Side="Front">

 <ContentObject ID="Cos14" CTM="0.45 0 0 0.45 21 624" Ord="0" ClipBox="21 624 399 1159"/>

 <ContentObject ID="Cos15" CTM="0.45 0 0 0.45 442 624" Ord="1" ClipBox="442 624 820 1159"/>

 <ContentObject ID="Cos16" CTM="0.45 0 0 0.45 21 29" Ord="2" ClipBox="21 29 399 564"/>

 <ContentObject ID="Cos17" CTM="0.45 0 0 0.45 442 29" Ord="3" ClipBox="442 29 820 564"/>

 </Surface>

 <Surface ID="Cos18" Side="Back">

 <ContentObject ID="Cos19" CTM="0.45 0 0 0.45 21 624" Ord="4" ClipBox="21 624 399 1159"/>

 <ContentObject ID="Cos20" CTM="0.45 0 0 0.45 442 624" Ord="5" ClipBox="442 624 820 1159"/>

 <ContentObject ID="Cos21" CTM="0.45 0 0 0.45 21 29" Ord="6" ClipBox="21 29 399 564"/>

 <ContentObject ID="Cos22" CTM="0.45 0 0 0.45 442 29" Ord="7" ClipBox="442 29 820 564"/>

 </Surface>

 <Sheet ID="Cos11" rRefs="Cos18 Cos13">

 <SurfaceRef rRef="Cos18"/>

 <SurfaceRef rRef="Cos13"/>

 </Sheet>

 <Media ID="Cos12" Dimensions="842 1191 842 1191"/>

 <RunList ID="Link0003" Class="Parameter" NPage="17" Status=”Available" Pages="0~16">

 <LayoutElement>

 <FileSpec URL=“File://panrt17a.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList ID="Link0004" Class="Parameter" Status=“Unavailable"/>

 </ResourcePool>

 <ResourceLinkPool>

 <RunListLink rRef="Link0003" Usage=“Input"/>

 <LayoutLink rRef="Link0002" Usage=“Input"/>

 <RunListLink rRef="Link0004" Usage=“Output"/>

 </ResourceLinkPool>

 <AuditPool>

 <Created Author="PJTF2JDF" TimeStamp="2000-11-07T17:42:15+01:00"/>

 </AuditPool>

</JDF>

K.5 Conversion of PPF to JDF

Simple example of a PPF.

%!PS-Adobe-3.0

%%CIP3-File Version 2.0

CIP3BeginSheet

(This example was manually created by Stefan Daun) CIP3Comment

/CIP3AdmJobName (8 pages with workturn and 5 color separations) def

/CIP3AdmSoftware (Text editor) def

/CIP3AdmCreationTime (Wed Feb 19 12:00:00 1997) def

/CIP3AdmArtist (Joerg Zedler) def

/CIP3AdmCopyright (Copyright by Fraunhofer-IGD, 1997) def

/CIP3AdmSheetName (E08P5C) def

/CIP3AdmSheetLay /Left def

/CIP3AdmPSExtent [40 inch 27 inch] def

/CIP3TransferFilmCurveData [0.0 0.0 1.0 1.0] def

/CIP3TransferPlateCurveData [0.0 0.0 1.0 1.0] def

/CIP3AdmFilmTrf [0 1 -1 0 1944 0] def

/CIP3AdmPlateTrf [0 -1 1 0 0 2880] def

CIP3BeginFront

/CIP3AdmSeparationNames [(Cyan) (Magenta) (Yellow) (Black) (Pantone Green CV)] def

CIP3BeginPreviewImage

CIP3BeginSeparation

(First separation of Front) CIP3Comment

/CIP3PreviewImageWidth 2030 def

/CIP3PreviewImageHeight 1370 def

/CIP3PreviewImageBitsPerComp 8 def

/CIP3PreviewImageComponents 1 def

/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def

/CIP3PreviewImageResolution [50.75 50.75] def

/CIP3PreviewImageEncoding /Binary def

/CIP3PreviewImageCompression /RunLengthDecode def

/CIP3PreviewImageByteAlign 4 def

CIP3PreviewImage

... <image data>

CIP3EndSeparation

CIP3BeginSeparation

(Second separation of Front) CIP3Comment

/CIP3PreviewImageWidth 2030 def

/CIP3PreviewImageHeight 1370 def

/CIP3PreviewImageBitsPerComp 8 def

/CIP3PreviewImageComponents 1 def

/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def

/CIP3PreviewImageResolution [50.75 50.75] def

/CIP3PreviewImageEncoding /Binary def

/CIP3PreviewImageCompression /RunLengthDecode def

/CIP3PreviewImageByteAlign 4 def

CIP3PreviewImage

... <image data>

CIP3EndSeparation

CIP3BeginSeparation

(Fourth separation of Front) CIP3Comment

/CIP3PreviewImageWidth 2030 def

/CIP3PreviewImageHeight 1370 def

/CIP3PreviewImageBitsPerComp 8 def

/CIP3PreviewImageComponents 1 def

/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def

/CIP3PreviewImageResolution [50.75 50.75] def

/CIP3PreviewImageEncoding /Binary def

/CIP3PreviewImageCompression /RunLengthDecode def

/CIP3PreviewImageByteAlign 4 def

CIP3PreviewImage

... <image data>

CIP3EndSeparation

CIP3BeginSeparation

(Fifth separation of Front) CIP3Comment

/CIP3PreviewImageWidth 2030 def

/CIP3PreviewImageHeight 1370 def

/CIP3PreviewImageBitsPerComp 8 def

/CIP3PreviewImageComponents 1 def

/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def

/CIP3PreviewImageResolution [50.75 50.75] def

/CIP3PreviewImageEncoding /Binary def

/CIP3PreviewImageCompression /RunLengthDecode def

/CIP3PreviewImageByteAlign 4 def

CIP3PreviewImage

CIP3BeginSeparation

(Second separation of Front) CIP3Comment

/CIP3PreviewImageWidth 2030 def

/CIP3PreviewImageHeight 1370 def

/CIP3PreviewImageBitsPerComp 8 def

/CIP3PreviewImageComponents 1 def

/CIP3PreviewImageMatrix [0 1370 -2030 0 1370 0] def

/CIP3PreviewImageResolution [50.75 50.75] def

/CIP3PreviewImageEncoding /Binary def

/CIP3PreviewImageCompression /RunLengthDecode def

/CIP3PreviewImageByteAlign 4 def

CIP3PreviewImage

... <image data>

CIP3EndSeparation

CIP3EndSeparation

CIP3EndPreviewImage

CIP3BeginRegisterMarks

20 inch 0 0 /cross&circle CIP3PlaceRegisterMark

CIP3EndRegisterMarks

CIP3BeginColorControl

/C100 << /CIE-L* 62 /CIE-a* -31 /CIE-b* -48 /Diameter 4.7 mm /Light /D65 /Observer 2 /Tolerance 5 /Type /CIELAB >> def

/M100 << /CIE-L* 48 /CIE-a* 83 /CIE-b* -3 /Diameter 4.7 mm /Light /D65 /Observer 2 /Tolerance 5 /Type /CIELAB >> def

/Y100 << /CIE-L* 94 /CIE-a* -14 /CIE-b* 100 /Diameter 4.7 mm /Light /D65 /Observer 2 /Tolerance 5 /Type /CIELAB >> def

/K100 << /CIE-L* 0 /CIE-a* 0 /CIE-b* 0 /Diameter 4.7 mm /Light /D65 /Observer 2 /Tolerance 5 /Type /CIELAB >> def

0 0 0 360 18

[

 [14.77 0 C100]

 [41.85 0 Y100]

 [68.92 0 M100]

 [177.23 0 K100]

] /PrepsColorBar CIP3PlaceColorControlStrip

CIP3EndColorControl

CIP3BeginCutData

CIP3BeginCutBlock

/CIP3BlockTrf [1 0 0 1 44 mm 45.9 mm] def

/CIP3BlockSize [420 mm 594 mm] def

/CIP3BlockType /CutBlock def

/CIP3BlockName (Front Sides) def

/CIP3BlockFoldingProcedure /F08-07_li_2x2_1 def

CIP3EndCutBlock

CIP3BeginCutBlock

/CIP3BlockTrf [1 0 0 1 552 mm 45.9 mm] def

/CIP3BlockSize [420 mm 594 mm] def

/CIP3BlockType /CutBlock def

/CIP3BlockName (Back Sides) def

/CIP3BlockFoldingProcedure /F08-07_li_2x2_1 def

400 400 /RightHorizontalCutMark CIP3PlaceCutMark

CIP3EndCutBlock

100 200 /TopVerticalCutMark CIP3PlaceCutMark

CIP3EndCutData

CIP3BeginFoldProcedures

/F08-07_li_2x2_1 <<

/CIP3FoldDescription (F8-7)

/CIP3FoldSheetIn [210 mm 297 mm]

/CIP3FoldProc

[

297.638 /Front /Up Fold

420.945 /Left /Up Fold

]

>> def

CIP3EndFoldProcedures

CIP3EndFront

CIP3EndSheet

%%CIP3EndOfFile
The translated JDF:

<?xml version='1.0' encoding='utf-8' ?>

<JDF ID="PPFJDF" Type="Product" JobID="MyJob" xmlns="http://www.CIP4.org/JDFSchema_1_1" Status="Waiting" Version="1.1">

 <!--Generated by the CIP4 C++ open source JDF Library version CIP4 JDFWriter 1.0.01 beta-->

 <JDF ID="n1152" Type="InkZoneCalculation" Status="Waiting">

 <ResourceLinkPool>

 <LayoutLink rRef="r1106" Usage="Input"/>

 <PreviewLink rRef="r1116" Usage="Input"/>

 <TransferCurvePoolLink rRef="r1111" Usage="Input"/>

 <InkZoneCalculationParamsLink rRef="r1118" Usage="Input"/>

 <InkZoneProfileLink rRef="r1119" Usage="Output"/>

 </ResourceLinkPool>

 <ResourcePool>

 <Layout ID="r1106" Class="Parameter" rRefs="r1107" Status="Available">

 <Signature Name="HDM">

 <SheetRef rRef="r1107"/>

 </Signature>

 </Layout>

 <Sheet ID="r1107" Name="E08P5C" Class="Parameter" rRefs="r1112" Status="Unavailable" SurfaceContentsBox="0 0 2880 1944">

 <SurfaceRef rRef="r1112"/>

 </Sheet>

 <Surface ID="r1112" Side="Front" Class="Parameter" rRefs="r1114 r1115 r1130 r1134" Status="Unavailable">

 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">

 <ColorControlStripRef rRef="r1114"/>

 </MarkObject>

 <MarkObject CTM="1 0 0 1 0 0">

 <RegisterMarkRef rRef="r1115"/>

 </MarkObject>

 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">

 <CutMarkRef rRef="r1130"/>

 </MarkObject>

 <MarkObject CTM="1 0 0 1 0 0" Type="Mark">

 <CutMarkRef rRef="r1134"/>

 </MarkObject>

 </Surface>

 <ColorControlStrip ID="r1114" Size="360 18" Class="Parameter" Center="0 0" Status="Unavailable" Rotation="0">

 <CIELABMeasuringField rRefs=”RCMC” Center="14.77 0" CIE_Lab="62 -31 -48" Diameter="13.3228346457" Observer="2" Tolerance="5">

 <ColorMeasurementConditionsRef rRef=”RCMC”/>

 <CIELABMeasuringField(>

 <CIELABMeasuringField rRefs=”RCMC” Center="41.85 0" CIE_Lab="94 -14 100" Diameter="13.3228346457" Tolerance="5">

 <ColorMeasurementConditionsRef rRef=”RCMC”/>

 <CIELABMeasuringField(>

 <CIELABMeasuringField rRefs=”RCMC” Center="68.92 0" CIE_Lab="48 83 -3" Diameter="13.3228346457" Tolerance="5">

 <ColorMeasurementConditionsRef rRef=”RCMC”/>

 <CIELABMeasuringField(>

 <CIELABMeasuringField rRefs=”RCMC” Center="177.23 0" CIE_Lab="0 0 0" Diameter="13.3228346457" Tolerance="5">

 <ColorMeasurementConditionsRef rRef=”RCMC”/>

 <CIELABMeasuringField(>

 </ColorControlStrip>

 <ColorMeasurementConditions ID=”RCMC” Illumination="D65" Observer="2"/>

 <RegisterMark ID="r1115" Class="Parameter" Center="1440 0" Status="Unavailable" MarkType="cross&circle" Rotation="0"/>

 <CutMark ID="r1130" Class="Parameter" Status="Available" MarkType="TopVerticalCutMark" Position="100 200"/>

 <CutMark ID="r1134" Class="Parameter" Blocks="Back_Sides" Status="Available" MarkType="RightHorizontalCutMark" Position="400 400"/>

 <Preview ID="r1116" Class="Parameter" Status="Available" PartIDKeys="SheetName Side Separation" PreviewType="Separation">

 <Preview SheetName="E08P5C">

 <Preview Side="Front">

 <Preview URL="file://Bild0000.png" Separation="Cyan"/>

 <Preview URL="file://Bild0001.png" Separation="Magenta"/>

 <Preview URL="file://Bild0002.png" Separation="Yellow"/>

 <Preview URL="file://Bild0003.png" Separation="Black"/>

 <Preview URL="file://Bild0004.png" Separation="Pantone Green CV"/>

 </Preview>

 </Preview>

 </Preview>

 <TransferCurvePool ID="r1111" Class="Parameter" Status="Available">

 <TransferCurveSet CTM="0 1 -1 0 1944 0" Name="Film">

 <TransferCurve Curve="0 0 1 1"/>

 </TransferCurveSet>

 <TransferCurveSet CTM="1 0 0 1 0 0" Name="Press">

 <TransferCurve Curve="0 0 1 1"/>

 </TransferCurveSet>

 <TransferCurveSet CTM="0 -1 1 0 0 2880" Name="Plate"/>

 <TransferCurveSet CTM="1 0 0 1 0 0" Name="Paper"/>

 </TransferCurvePool>

 <InkZoneCalculationParams ID="r1118" Class="Parameter" Status="Available"/>

 <InkZoneProfile ID="r1119" Class="Parameter" Status="Unavailable"/>

 </ResourcePool>

 </JDF>

 <JDF ID="n1153" Type="ConventionalPrinting" Status="Waiting">

 <ResourceLinkPool>

 <LayoutLink rRef="r1106" Usage="Input"/>

 <ColorantControlLink rRef="r1113" Usage="Input"/>

 <InkZoneProfileLink rRef="r1119" Usage="Input"/>

 <ComponentLink rRef="r1125" Usage="Output" ProcessUsage="Good"/>

 <MediaLink rRef="r1108" Usage="Input"/>

 <ConventionalPrintingParamsLink rRef="r1126" Usage="Input"/>

 <InkLink rRef="r1127" Usage="Input"/>

 <ExposedMediaLink rRef="r1123" Usage="Input"/>

 </ResourceLinkPool>

 <ResourcePool>

 <ColorantControl ID="r1113" Class="Parameter" Status="Available" PartIDKeys="SheetName Side" ProcessColorModel=”DeviceCMYK”>

 <ColorantControl SheetName="E08P5C">

 <ColorantControl Side="Front">

 <ColorantParams>

 <SeparationSpec Name="Pantone Green CV"/>

 </ColorantParams>

 <ColorantOrder>

 <SeparationSpec Name="Cyan"/>

 <SeparationSpec Name="Magenta"/>

 <SeparationSpec Name="Yellow"/>

 <SeparationSpec Name="Black"/>

 <SeparationSpec Name="Pantone Green CV"/>

 </ColorantOrder>

 </ColorantControl>

 </ColorantControl>

 </ColorantControl>

 <Component ID="r1125" Class="Quantity" rRefs="r1107" Status="Unavailable" PartIDKeys="SheetName">

 <Component SheetName="E08P5C" ComponentType="Sheet">

 <SheetRef rRef="r1107"/>

 </Component>

 </Component>

 <Media ID="r1108" Class="Consumable" Status="Available" MediaType="Paper" PartIDKeys="SheetName Side">

 <Media Dimension="2880 1944" SheetName="E08P5C">

 <Media Side="Front" Dimension="2880 1944"/>

 </Media>

 </Media>

 <ConventionalPrintingParams ID="r1126" Class="Parameter" Status="Available" PartIDKeys="SheetName Side">

 <ConventionalPrintingParams SheetLay="Left" SheetName="E08P5C">

 <ConventionalPrintingParams Side="Front"/>

 </ConventionalPrintingParams>

 </ConventionalPrintingParams>

 <Ink ID="r1127" Class="Consumable" Status="Draft"/>

 <ExposedMedia ID="r1123" Class="Handling" rRefs="r1110" Status="Unavailable">

 <MediaRef rRef="r1110"/>

 </ExposedMedia>

 <Media ID="r1110" Class="Consumable" Status="Available" MediaType="Plate" PartIDKeys="SheetName Side">

 <Media Dimension="2880 1944" SheetName="E08P5C">

 <Media Side="Front" Dimension="2880 1944"/>

 </Media>

 </Media>

 </ResourcePool>

 </JDF>

 <JDF ID="n1154" Type="Cutting" Status="Waiting">

 <ResourceLinkPool>

 <ComponentLink rRef="r1125" Usage="Input">

 <Part SheetName="E08P5C"/>

 </ComponentLink>

 <CuttingParamsLink rRef="r1129" Usage="Input"/>

 <ComponentLink rRef="r1131" Usage="Output"/>

 </ResourceLinkPool>

 <ResourcePool>

 <CuttingParams ID="r1129" Class="Parameter" rRefs="r1130 r1132 r1133 r1134" Status="Available">

 <CutMarkRef rRef="r1130"/>

 <CutBlockRef rRef="r1132"/>

 <CutBlockRef rRef="r1133"/>

 <CutMarkRef rRef="r1134"/>

 </CuttingParams>

 <CutBlock ID="r1132" Class="Parameter" Status="Available" BlockTrf="1 0 0 1 124.724409449 130.110236221" BlockName="Front_Sides" BlockSize="1190.55118111 1683.77952756" BlockType="CutBlock"/>

 <CutBlock ID="r1133" Class="Parameter" Status="Available" BlockTrf="1 0 0 1 1564.72440945 130.110236221" BlockName="Back_Sides" BlockSize="1190.55118111 1683.77952756" BlockType="CutBlock"/>

 <Component ID="r1131" Class="Quantity" rRefs="r1107" Status="Unavailable" PartIDKeys="BlockName">

 <Component BlockName="Front_Sides" SourceSheet="E08P5C" ComponentType="Block">

 <SheetRef rRef="r1107"/>

 </Component>

 <Component BlockName="Back_Sides" SourceSheet="E08P5C" ComponentType="Block">

 <SheetRef rRef="r1107"/>

 </Component>

 </Component>

 </ResourcePool>

 </JDF>

 <JDF ID="n1155" Type="ImageSetting" Status="Waiting">

 <ResourceLinkPool>

 <ImageSetterParamsLink rRef="r1121" Usage="Input"/>

 <MediaLink rRef="r1110" Usage="Input"/>

 <RunListLink rRef="r1122" Usage="Input"/>

 <ExposedMediaLink rRef="r1123" Usage="Output"/>

 </ResourceLinkPool>

 <ResourcePool>

 <ImageSetterParams ID="r1121" Class="Parameter" Status="Available"/>

 <RunList ID="r1122" Class="Parameter" Status="Available"/>

 </ResourcePool>

 </JDF>

 <JDF ID="n1158" Type="Folding" Status="Waiting">

 <ResourceLinkPool>

 <FoldingParamsLink rRef="r1136" Usage="Input"/>

 <ComponentLink rRef="r1131" Usage="Input">

 <Part BlockName="Front_Sides"/>

 </ComponentLink>

 <ComponentLink rRef="r1138" Usage="Output"/>

 </ResourceLinkPool>

 <ResourcePool>

 <FoldingParams ID="r1136" Class="Parameter" Status="Available" DescriptionType="FoldProc">

 <Fold To="Up" From="Front" Travel="297.638"/>

 <Fold To="Up" From="Left" Travel="420.945"/>

 </FoldingParams>

 <Component ID="r1138" Class="Quantity" Status="Unavailable" ComponentType="Block" DescriptiveName="Front_Sides"/>

 </ResourcePool>

 </JDF>

 <JDF ID="n1159" Type="Folding" Status="Waiting">

 <ResourceLinkPool>

 <FoldingParamsLink rRef="r1140" Usage="Input"/>

 <ComponentLink rRef="r1131" Usage="Input">

 <Part BlockName="Back_Sides"/>

 </ComponentLink>

 <ComponentLink rRef="r1142" Usage="Output"/>

 </ResourceLinkPool>

 <ResourcePool>

 <FoldingParams ID="r1140" Class="Parameter" Status="Available" DescriptionType="FoldProc">

 <Fold To="Up" From="Front" Travel="297.638"/>

 <Fold To="Up" From="Left" Travel="420.945"/>

 </FoldingParams>

 <Component ID="r1142" Class="Quantity" Status="Unavailable" ComponentType="Block" DescriptiveName="Back_Sides"/>

 </ResourcePool>

 </JDF>

</JDF>

K.6 Runlist

The following example shows the various separation types, all mixed into one big RunList. Both in-line and ResourceRef versions of LayoutElement are used.

<ResourcePool>

 <Runlist ID="Link0003" Class="Parameter" NPage="10" rRefs="Link0004 Link0005" Status=“Available" PartIDKeys=“Run Separation“>

 <Comment>Preseparated Runs in multiple files

 All LayoutElements are inline resources

 </Comment>

 <RunList Run=“1“ NPage="1" FirstPage="0">

 <RunList Separation="Cyan">

 <LayoutElement Status=“Unavailable">

 <FileSpec URL=“File://Cyan.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation="Magenta">

 <LayoutElement Status=“Unavailable">

 <FileSpec URL=“File://Magenta.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation="Yellow">

 <LayoutElement Status=“Unavailable">

 <FileSpec URL=“File://Yellow.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation="Black">

 <LayoutElement Status=“Unavailable">

 <FileSpec URL=“File://Black.pdf"/>

 </LayoutElement>

 </RunList>

 <RunList Separation="SpotGreen">

 <LayoutElement Status=“Unavailable">

 <FileSpec URL=“File://Green.pdf"/>

 </LayoutElement>

 </RunList>

 </RunList>

 <RunList Run=“2“ NPage="2" SkipPage="4">

 <Comment>

 Preseparated Runs in one file CMYKGCMYKG

 LayoutElements are inter-resource links

 </Comment>

 <RunList FirstPage="0" Separation="Cyan">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="1" Separation="Magenta">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="2" Separation="Yellow">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="3" Separation="Black">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="4" Separation="SpotGreen">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 </RunList>

 <RunList Run=“3“ NPage="1" SkipPage="3">

 <Comment>

 No Magenta, the missing sep does not exist as a page

 </Comment>

 <RunList FirstPage="10" Separation="Cyan">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="11" Separation="Yellow">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="12" Separation="Black">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="13" Separation="Green">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 </RunList>

 <RunList Run=“4“ NPage="2" SkipPage="4">

 <Comment>

 Continuation of Preseparated Runs in one file CMYKGCMYKG –

 the missing sep of the previous page does not exist as a page

 </Comment>

 <RunList FirstPage="14" Separation="Cyan">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="15" Separation="Magenta">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="16" Separation="Yellow">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="17" Separation="Black">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 <RunList FirstPage="18" Separation="SpotGreen">

 <LayoutElementRef rRef="Link0004"/>

 </RunList>

 </RunList>

 <RunList Run=“5“ NPage="2">

 <Comment>

 Preseparated Runs in one file CCMMYYKKGG

 </Comment>

 <RunList FirstPage="0" Separation="Cyan">

 <LayoutElementRef rRef="Link0005"/>

 </RunList>

 <RunList FirstPage="2" Separation="Magenta">

 <LayoutElementRef rRef="Link0005"/>

 </RunList>

 <RunList FirstPage="4" Separation="Yellow">

 <LayoutElementRef rRef="Link0005"/>

 </RunList>

 <RunList FirstPage="6" Separation="Black">

 <LayoutElementRef rRef="Link0005"/>

 </RunList>

 <RunList FirstPage="8" Separation="SpotGreen">

 <LayoutElementRef rRef="Link0005"/>

 </RunList>

 </RunList>

 <RunList Run=“6“ NPage="2">

 <Comment>

 Combined Runs in one file

 </Comment>

 <LayoutElement ElementType="document">

 <FileSpec URL=“File://Combined.pdf"/>

 </LayoutElement>

 </RunList>

 </Runlist>

 <LayoutElement ID="Link0004" Class="Parameter" Status=“Available">

 <FileSpec URL=“File://PreSepCMYKG.pdf"/>

 </LayoutElement>

 <LayoutElement ID="Link0005" Class="Parameter" Status=“Available">

 <FileSpec URL=“File://PreSepCCMMYYKKGG.pdf"/>

 </LayoutElement>

</ResourcePool>

K.7 Messages

K.7.1 Simple KnownMessages

The following simple example shows a KnownMessages Query and the Response sent by a fairly dumb controller:

Query:

<?xml version='1.0' encoding='utf-8' ?>

<JMF SenderID="JMFClient" TimeStamp="2000-11-07T13:15:56+01:00" xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">

 <Query ID="Q0001" Type="KnownMessages">

 <KnownMsgQuParams ListQueries="true" ListSignals="false" ListCommands="true"/>

 </Query>

</JMF>

Response:

<?xml version='1.0' encoding='utf-8' ?>

<JMF SenderID="JMFClient #2" TimeStamp="2000-11-07T13:15:56+01:00" xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">

 <Response ID="R0001" Type="KnownMessages" refID="Q0001">

 <KnownMessages>

 <MessageService Type="KnownMessages" Query="true"/>

 <MessageService Type="Status" Query="true" Persistent="true"/>

 <MessageService Type="StopPersistentChannel" Command="true"/>

 </KnownMessages>

 </Response>

</JMF>

K.7.2 Simple persistent channel

The following query requests a persistent channel for Status messages. An update is requested whenever an attribute changes.

<?xml version='1.0' encoding='utf-8' ?>

<JMF SenderID="JMFClient" TimeStamp="2000-11-07T16:02:09+01:00" xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">

 <Query ID="Q0011" Type="Status">

 <Subscription URL="http:://123.123.123.123/message/recipient">

 <ObservationTarget Attributes="*"/>

 <StatusQuParams JobDetails="brief"/>

 </Query>

</JMF>

The following four examples are a set of typical, simple responses that are emitted whenever DeviceStatus changes.

This is the Response that is sent immediately within the same HTTP connection as the Query.

<?xml version='1.0' encoding='utf-8' ?>

<JMF SenderID="JMFClient #2" TimeStamp="2000-11-07T16:02:19+01:00" xmlns="http://www.CIP4.org/JDFSchema_1_1" Version="1.1">

 <Response ID="R0013" Type="Status" refID="Q0011">

 <DeviceInfo DeviceStatus="Idle"/>

 </Response>

</JMF>

Appendix L JDF/CIP4 Hole Pattern Catalog

The following table defines the specifics of the predefined holes in HoleMakingParams and HoleMakingIntent.
Notes:

1. All patterns are centered on the sheet along the process edge.

2. Process Edge is always defined relative to a portrait orientation of the medium, regardless of the orientation of the printed image or processing path.

3. Thumbcuts are available in various standard shapes (labeled "No. N" where N is minimally ranging from 2..7). "No. 3" seems to be the most widely used.

4. Single thumbcuts appear always in the center of the process edge.

5. Oval shape holes actually look sometimes more like rectangular holes with rounded corners.

Sources:

1. Printer Finishing MIB, IETF Draft, 2001-10-01 (http://www.ietf.org/internet-drafts/draft-ietf-printmib-finishing-12.txt)

Naming Scheme:

	General
	<m|i>: m = metric (millimeter is used), i = imperial (inch, where 1 inch = 25.4 mm)

	Ring Binding
	R<#holes><m|i>-<variant>
Example: R2m-DIN = RingBind, 2 hole, metric, DIN

	
	

	Plastic Comb
	P<pitch><m|i>-<shape>-<#thumbcuts>t
Example: P16:9m-round-0t = Plastic Comb, 9/16" pitch (16:9), round, no thumbcut

	
	

	Wire Comb
	W<pitch><m|i>-<shape>-<#thumbcuts>t
Example: W2:1i-square-1t = Wire Comb, 1/2" pitch (2:1), square, one thumbcut

	
	

	Coil/Spiral
	C<pitch><m|i>-<shape>-<#thumbcuts>t
Example: C9.5m-round-0t = Coil, 9.5 mm, round, no thumbcut

	
	

	JDF Hole

Pattern Catalog ID
	Description
	#Holes
	Hole Shape
	Hole Extent
	Pattern

Geometry
	Pattern Axis Offset from Process Edge
	JDF Default Pattern Axis Offset from

Process Edge
in pt (!)
	Default
Process Edge
	Usage Notes
	Source

Standard

	RING BINDING (R...)

	2 Holes (R2...)

	R2-generic
	Generic request of a 2-hole pattern
	2
	(
	5 - 13 mm

0.2-0.51”
	N/A
	4.5 – 13 mm

0.18 - 0.51"
	34.02 ( 12 mm)
	Left
	See note (7).
	N/A

	R2m-DIN
	DIN 2-hole

MIB: 6 = twoHoleDIN and
10 = twoHoleMetric
	2
	(
	5.5 ± 0.1 mm
	80 ± 0.1 mm
	7 or 11 ± 0.3 mm
7 mm for blocks of <= 15 mm thick
	31.18 ( 11 mm)
	Left
	A4 and A5
	DIN 5005:1991
DIN 821:1973

	R2m-ISO
	ISO 2-hole

MIB: 6 = twoHoleDIN and
10 = twoHoleMetric
	2
	(
	6 ± 0.5 mm
	80 ± 0.5 mm
	12 ± 1 mm

Australian Standard
AS P5-1969: 10 ± 1 mm
	34.02 ( 12 mm)
	Left
	Also used in Japan
	ISO 838:1974 (E)

	R2m-MIB
	Printer Finishing MIB twoHoleDIN and twoHoleMetric
	2
	(
	5-8 mm
	80 ± 0.5 mm
	4.5 – 13 mm
	31.18 ( 11 mm)
	Left
	
	Printer Finishing MIB

	R2i-US-a
	US 2-hole, Variant A

MIB: 4 = twoHoldUSTop and
12 = twoHoleUSSide
	2
	(
	0.2 - 0.32"
	2.75"
	0.18 - 0.51"
	29.25 ( 13/32")
	Left for letter
Top for ledger
	
	Printer Finishing MIB

	R2i-US-b
	US 2-hole, Variant B
	2
	(
	0.2-0.5"
default: 5/16"
typical: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"
	6"
	0.25" + ½ diameter

range: 6/16" - 1/2"
	29.25 ( 13/32")
	Left
	
	

	3 Holes (R3...)

	R3-generic
	Generic request of a 3-hole pattern.
	3
	(
	5 - 13 mm

0.2-0.51”
	N/A
	4.5 – 13 mm

0.18 - 0.51"
	29.25 ( 13/32")
	Left
	See note (7).
	N/A

	R3i-US
	US 3-hole

MIB: 5 = threeHoleUS
	3
	(
	std: 5/16"
rng: 0.2-0.5"
typ: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"
	4.25"
	0.25" + ½ diameter

range: 6/16" - 1/2"
	29.25 ( 13/32")
	Left
	
	Printer Finishing MIB

	4 Holes (R4...)

	R4-generic
	Generic request of a 4-hole pattern.
	4
	(
	5 - 13 mm

0.2-0.51”
	N/A
	4.5 – 13 mm

0.18 - 0.51"
	31.18 ( 11 mm)
	Left
	See note (7).
	N/A

	R4m-DIN-A4
	DIN 4-hole for A4
	4
	(
	5.5 ± 0.1 mm
	80 ± 0.1 mm
	7 or 11 ± 0.3 mm
7 mm for blocks of 15 mm or less
	31.18 ( 11 mm)
	Left
	A4
	DIN 5005:1991
DIN 821:1973

	R4m-DIN-A5
	DIN 4-Hole for A5
	4
	(
	5.5 ± 0.1 mm
	45-65-45 mm
	7 or 11 ± 0.3 mm
7 mm for blocks of 15 mm or less
	31.18 ( 11 mm)
	Left
	A5
	DIN 5005:1991

	R4m-swedish
	Swedish 4-hole

MIB: 11 = swedish4Hole
	4
	(
	5 - 8 mm
	21-70-21 mm
	4.5 - 13 mm
	31.18 ( 11 mm)
	Left for A4
Top for A3
	A4, A3
	Printer Finishing MIB

	R4i-US
	US 4-Hole
	4
	(
	0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"
	1.375-4.25-1.375"
	0.25" + ½ diameter

range: 6/16" - 1/2"
	29.25 ( 0.25" + ½ x 5/16" = 13/32")
	Left
	
	

	5 Holes (R5...)

	R5-generic
	Generic request of a 5-hole pattern.
	5
	(
	5 - 13 mm

0.2-0.51”
	N/A
	4.5 – 13 mm

0.18 - 0.51"
	29.25 ( 13/32")
	Left
	See note (7).
	N/A

	R5i-US-a
	US 5-hole, Variant A

MIB: 13 = fiveHoleUS
	5
	(
	0.2 - 0.32"
	2-2.25-2.25-2"
	0.18 - 0.51"
	29.25 ( 13/32")
	Left for letter

Top for ledger
	
	Printer Finishing MIB

	R5i-US-b
	US 5-hole, Variant B
	5
	(
	0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"
	0.75-3.5-3.5-0.75"
	0.25" + ½ diameter
0.375 - 0.5"
	29.25 ( 0.25" + ½ x 5/16" = 13/32")
	Left
	
	

	R5i-US-c
	Combination of
R2i-US-a and R3i-US
	5
	(
	0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"
	1.25-3-3-1.25"
	0.25" + ½ diameter
0.375 - 0.5"
	29.25 ( 0.25" + ½ x 5/16" = 13/32")
	Left
	
	

	6 Holes (R6...)

	R6-generic
	Generic request of a 6-hole pattern.
	6
	(
	5 - 13 mm

0.2-0.51”
	N/A
	4.5 – 13 mm

0.18 - 0.51"
	31.18 ( 11 mm)
	Left for A4/A5

Top for A3
	See note (7).
	N/A

	R6m-4h2s
	Norwegian 4-hole (round) mixed with 2 slots (rectangular)

MIB: 16 = norweg6Hole
	6
	H:(S:((
	Holes: 5 - 8 mm
Slots: 10 x 5.5 mm
	4 holes/2 slots
Pattern: H-H-S-S-H-H
64-18.5-75-18.5-64 mm
	4.5 - 13 mm
	31.18 ( 11 mm)
	Left for A4
Top for A3
	
	Printer Finishing MIB

	R6m-DIN-A5
	DIN 6-Hole for A5
	6
	(
	5.5 ± 0.1 mm
	37.5-7.5-65-7.5-37.5 mm
	7 or 11 ± 0.3 mm
7 mm for blocks of <= 15 mm thick
	31.18 ( 11 mm)
	Left
	Only used with A5
	DIN 5005:1991

	7 Holes (R7...)

	R7-generic
	Generic request of a 7-hole pattern.
	7
	(
	5 - 13 mm

0.2-0.51”
	N/A
	4.5 – 13 mm

0.18 - 0.51"
	29.25 ( 13/32")
	Left for letter

Top for ledger
	See note (7).
	N/A

	R7i-US-a
	US 7-hole, Variant A

MIB: 14 = sevenHoleUS
	7
	(
	0.2 - 0.32"
	1-1-2.25-2.25-1-1"
	0.18 - 0.51"
	29.25 ( 13/32")
	Left for letter

Top for ledger
	
	Printer Finishing MIB

	R7i-US-b
	US 7-hole, Bell/AT&T Systems. Combination of R3i-US, R4i-US, R5i-US-b
	7
	(
	0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"
	0.75-1.375-2.125-2.125-1.375-0.75"
	0.25" + ½ diameter
0.375 - 0.5"
	29.25 ( 0.25" + ½ x 5/16" = 13/32")
	Left for letter

Top for ledger
	
	

	R7i-US-c
	US 7-hole, Variant C
	7
	(
	0.2 - 0.5"
std: 5/16"
typ: 1/4", 9/32", 11/32", 3/8", 13/32", 1/2"
	1.25-0.875-2.125-2.125-0.875-1.25"
	0.25" + ½ diameter
0.375 - 0.5"
	29.25 ( 13/32")
	Left for letter

Top for ledger
	
	

	11 Holes (R11...)

	R11m-7h4s
	7-hole (round) mixed with 4 slots (rectangular)

MIB: 15 = mixed7H4S
	11
	H:(S:((
	Holes: 5 - 8 mm
Slots: 12 x 6 mm
	7 holes/2slots
Pattern: H-S-H-H-S-H-S-H-H-S-H
15-25-23-20-37-37-20-23-25-15 mm
	4.5 - 13 mm
	31.18 ( 11 mm)
	Left for A4

Top for A3
	
	Printer Finishing MIB

	PLASTIC COMB BINDING (P...)

	P16_9i-rect-0t
	US spacing, no thumbcut

MIB: 9 = nineteenHoleUS
	A4: 21
Letter: 19
	((
	5/16" x 1/8"
(8 x 3.2 mm)
	9/16"
	3/16"
	13.54 ( 0.188")
	Left
	
	Printer Finishing MIB

	P12m-rect-0t
	European spacing, no thumbcut
	
	((
	7 x 3 mm
	12 mm
	4.5 mm
	12.76 ( 4.5 mm)
	Left
	
	

	WIRE COMB BINDING (W...)

	W2_1i-round-0t
	2:1, round, no thumbcut

MIB: 8 = twentyTwoHoleUS
	A4: 23
Letter: 21
	(
	0.2 - 0.32"
std: 1/4"
Europe typ: 6 or 6.4 mm
	1/2"
	3 mm + ½ diameter
0.318 - 0.438"
Europe: 6 - 6.2 mm
	17.50 ( 0.243")
	Left
	
	Printer Finishing MIB

	W2_1i-square-0t
	2:1, square, no thumbcut
	A4: 23
Letter: 21
	(
	0.2 - 0.32"
std: 1/4"
Europe typ: 6 or 6.4 mm
	1/2"
	3 mm + ½ diameter
0.318 - 0.438"
Europe: 6 - 6.2 mm
	17.50 ( 0.243")
	Left
	
	

	W3_1i-square-0t
	3:1, square, no thumbcuts
	A4: 34
A5: 24
Letter: 32
	(
	5/32 x 5/32"
(4x4 mm)
	1/3"
	0.2"
	14.40 ( 0.2")
	Left
	
	

	COIL/SPIRAL BINDING (C...)

	C9.5m-round-0t
	9.5 mm, round, no thumbcut

MIB: 17 - metric26Hole and
18 - metric30Hole
	A4/A3: 30
JIS B5/B4: 26
	(
	5 - 8 mm
	9.5 mm
	4.5 - 13 mm
	31.18 ( 11 mm)
	Left for A4/JIS B5

Top for A3/JIS B4
	
	Printer Finishing MIB

	SPECIAL (S...)

	
	
	
	
	
	
	
	
	
	
	Reserved for future extensions

Appendix M North American Media Weight Explained

New in JDF 1.2

In North America, each grade of paper has one basic size used to compute its basis weight. For example, bond basic size is 17" x 22", text basic size is 25" x 38", offset basic size is 25" x 38", coated basic size is 25" x 38", and cover basic size is 20" x 26".

A paper's basis weight is the weight of five hundred sheets of its basic size. For example, if five hundred 25" x 38" sheets of offset paper weigh 60 pounds, it is called 60# offset. Paper mills outside of North America use the metric system to designate paper weight. The basis weight of foreign papers is grams per square meter (g/m2) known as the sheet's grammage. Papers made to metric standards don't convert to basis weights familiar to North Americans. For example, 100 gm2 equals a basis weight of 67.5. Following is the English/grammage conversion formula:

(Basis Weight (lb) x 1406.5) / (Square inches in basic size) = grams per square meter

For example. the grammage of 65 lb. cover stock when the cover is 20 x 26 can be calculated as follows:

(65 x 1406.5) / (20 x 26) = 176 m2

In the following table, the right columns list common basis weights for North American papers while the left columns list their corresponding grammages. Basis weights for bond, book, cover, and other grades of papers are computed using different basic sizes, so the progression of weights down the right columns is untidy.

Table 8‑1- Grammage and equivalent North American Paper Weigth

	Grammage

(g/m2)
	Basis Weight
	Grammage

(g/m2)
	Basis Weight

	30
	20# book
	150
	40# ledger

	34
	9# manifold
	162
	60# cover

	36
	24# book
	163
	90# index

	44
	30# book
	163
	100# tag

	45
	12# manifold
	175
	80# bristol

	49
	13# bond
	176
	65# cover

	49
	33# book
	178
	120# book

	52
	35# book
	197
	90# bristol

	59
	40# book
	199
	110# index

	60
	16# bond
	216
	80# cover

	67
	45# bond
	218
	125# tag

	74
	50# book
	219
	100# bristol

	75
	20# bond
	244
	150# tag

	81
	55# book
	253
	140# index

	89
	60# book
	263
	120# bristol

	90
	24# bond
	270
	100# cover

	104
	70# book/text
	285
	175# tag

	105
	28# ledger
	307
	140# bristol

	108
	40# cover
	307
	170# index

	118
	80# book/text
	325
	200# tag

	120
	32# ledger
	350
	160# bristol

	133
	90# book
	352
	130# cover

	135
	36# ledger
	394
	180# bristol

	135
	50# cover
	398
	220# index

	147
	67# bristol
	407
	250# tag

	148
	100# book/text
	438
	200# bristol

	
	
	88
	300# tag

Appendix N New, Deprecated, Modified, Illegal, and Removed Items
N.1 New Items

[ACTION (Jim): Add the JDF/1.2 new items]
	Location
	Section Title
	Comments

	Preface
	User Overview
	Provides information and guides for understanding the objectives, value, and purpose of JDF.

	Section 1.1
	Background on JDF
	History and benefits of JDF.

	Section 1.4.1
	Conformance Terminology
	Clarification of language used in this specification.

	Section 1.4.2
	Conformance Requirements for JDF Entities
	Definition of general conformance requirement for JDF entities.

	Section 2.5
	Coordinate Systems in JDF
	How coordinate systems are defined and used in JDF>

	Section 4.9
	Dynamic State Machines Using ResourceUpdate
	

	Section 6.5.45
	Postpress Processes Structure
	Revision of Packaging Processes. Merges all the process for making a book block.

	Section 7.1.1.2
	Structure of the Duration Span Subelement
	Describes a selection of instances in time.

	Section 7.1.1.8
	Structure of the ShapeSpan Subelement
	Describes ranges of numerical value pairs.

	Section 7.1.6
	Embossing Intent
	Specifies the embossing and/or foil stamping intent.

	Section 7.1.13
	NumberingIntent
	Describes the parameters of stamping or applying variable marks to produce unique components.

	Section 7.2.29
	ContactCopyParams
	Describes the parameters of ContactCopying.

	Section 7.2.53
	FitPolicy
	Specifies how to fit content into a receiving container.

	Section 7.2.54
	Fold
	Describes an individual folding operation of the Component.

	Section 7.2.60
	GlueApplication
	Specifies glue application in hard and soft cover book production

	Section 7.2.63
	HeadBandApplicationParams
	Specifies how to apply headbands in hard cover book production.

	Section 7.2.64
	Hole
	Describes an individual hole.

	Section 7.2.65
	HoleLine
	Specifies parameters for holes series for transporting paper through continuous-feed printers and finishing devices.

	Section 7.2.126
	SpinePreparationParams
	Describes the preparation of the spine of book blocks for hard and soft cover book production.

	Section 7.2.143
	StripBindingParams
	Describes details of the StripBinding process.

	Section 7.3
	Device Capability Definitions
	Specifies capabilities of devices.

	Appendix A.2.2
	DurationRange
	Describes XML attributes of DurationRange.

	Appendix A.2.16
	ShapeRange
	Describes XML attributes of ShapeRange.

	Appendix A.2.17
	ShapeRangeList
	Describes XML attributes of ShapeRangeList.

N.2 Deprecated Items

[ACTION (Jim): Add the deprecated items from JDF/1.2.]
	Location
	Table Info
	Comments

	Section 3.4

Customer Information

Table 3.6
	Company ?

refelement
	Company affiliation of Contacts is specified in Contact.

	Section 3.5

Node Information

Table 3.7
	MergeTarget ?

boolean
	Avoiding concurrent access to the ancestor node is ill defined and cannot be implemented in an open system without proprietary locking mechanisms.

	Section 3.7.1.6
	Selector Resources
	Resources of class Selector have been removed. Note that they are not only deprecated but actually removed from the format including the schema and must not be supported by a JDF 1.1 conforming agent

	Section 3.8

Resource Links

Table 3.17
	CombinedProcessType
	Replaced by CombinedProcessIndex.

	Section 6.2.7

Packing
	
	Replaced by the individual processes defined in Section 6.5.45.5 Packaging Processes

	Section .3.7

FilmToPlate Copying
	
	Replaced by the more generic ContactCopying.

	Section 6.3.21

Rendering
	Input Resources Media
	

	Section 6.4.3

IDPrinting
	
	Controls for IDPrinting are provided in the IDPrintingParams resource. These controls are intended to be somewhat limited in their scope. If greater control over various aspects of the printing process is required, IDPrinting should not be used.

	Section 6.5.1

Adhesive Binding
	
	The AdhesiveBinding has been split into:

· CoverApplication,

· Gluing

· SpinePreparation,

· SpineTaping.

The parameters of the GlueApplication ABOperations have been moved into CoverApplicationParams and SpineTapingParams as GlueApplication refelements. The generic GlueApplication ABOperation is now described by the Gluing process.

	Section 6.5.12

Dividing
	
	Dividing has been replaced by Cutting.

	Section 6.5.24

Longitudinal Ribbon Operations
	
	In-line finishing is described using the “standard” finishing processes, e.g., Creasing, Cutting, or Folding in a combined node with ConventionalPrinting.

	Section 6.5.30

Saddle Stitching
	
	Replaced by Stitching.

	Section 6.5.33

SideSewing
	
	Replaced by ThreadSewing.

	Section 7.1.2

ArtDelivery Intent
	Resource Structure

Company ?

refelement
	

	
	Structure of ArtDelivery Elements

Company ?

refelement
	

	
	Structure of ArtDelivery Elements

Component ?

refelement
	

	Section 7.1.3

BindingIntent
	Resource Structure

BindingType

EnumerationSpan
	Replaced with SoftCover or HardCover.

	
	Resource Structure

AdhesiveBinding ?

element
	

	
	Resource Structure

BookCase ?

element
	

	
	Structure of the AdhesiveBinding Subelement
	

	
	Structure of the BookCase Subelement
	

	
	Structure of the RingBinding Subelement

RingSystem

NameSpan
	2HoleEuro, 3HoleUS, 4HoleEuro have been replaced by HoleType.

	Section 7.1.5

DeliveryIntent
	Resource Structure

Pickup ?

boolean
	

	
	Resource Structure

Company ?
refelement
	

	
	Structure of DeliveryIntent Elements: DropIntent

Pickup?

boolean
	

	
	Structure of DeliveryIntent Elements: DropIntent

Company?

refelement
	

	Section 7.1.7

FoldingIntent
	Resource Structure

Folds?

XYPair
	

	Section 7.1.8

HoleMakingIntent
	Resource Structure

HoleType

StringSpan
	2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5.

	Section 7.1.9

InsertingIntent
	Structure of Insert Subelement

SheetOffset?

XYPair
	

	Section .1.10

LaminatingIntent
	Resource Structure

Laminated

OptionSpan
	

	Section 7.1.11

LayoutIntent
	Resource Structure

FinishedPage Orientation

enumeration
	In JDF 1.1, the page orientation is implied by the value of Dimensions and FinishedDimensions. If height (X) > width (Y), the product is portrait.

	Section .1.12

MediaIntent
	Resource Structure

HoleType ?

StringSpan
	2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5.

	
	Resource Structure

HoleType ?

IntegerSpan
	

	Section 7.1.18

SizeIntent
	
	All contents have been moved to LayoutIntent.

	Section 7.2.3

AdhesiveBinding Params
	
	

	Section 7.2.15

CIELABMeasuring Field
	Resource Structure

Light

NMTOKEN
	

	
	Resource Structure

Observer

integer
	

	
	Resource Structure

ScreenRuling ?

NumberList
	

	
	Resource Structure

ScreenShape ?

string
	

	
	Resource Structure

Setup ?

string
	

	Section 7.2.21

ColorCorrection Params
	Resource Structure

FileSpec ?

refelement
	

	Section 7.2.24

ColorSpace ConversionParams
	Resource Structure

FileSpec ?

refelement
	

	Section .2.26

Company
	Resource Structure

Contact *

refelement
	

	Section 7.2.27

Component
	Resource Structure

Transformation ?

matrix
	Use ResourceLink::Transformation.

	Section 7.2.41

DeliveryParams
	Resource Structure

Company ?

refelement
	

	
	Structure of the Drop Subelement

Company ?

refelement
	

	Section 7.2.44

Device
	Resource Structure

DeviceFamily ?

string
	DeviceFamily is replaced by the appropriate ModelXXX attributes in this list.

	Section 7.2.46

Disjointing
	Resource Structure

Overfold ?

double
	Moved to Component.

	Section 7.2.47

DividingParams
	
	

	Section 7.2.55

FoldingParams
	Resource Structure

FoldSheetIn ?

XYPair
	

	Section .2.66

HoleMakingParams
	Resource Structure

HoleType

enumerations
	2HoleEuro – Replace by either R2m-DIN or R2m-ISO.
3HoleUS – Replace by R3I-US
4HoleEuro – Replace by R4m-DIN-A4 or R4m-DIN-A5

	Section 7.2.68

IDPrintingParams
	Structure of the Cover Subelement
	

	
	Properties of the IDPFinishing Subelement
	

	
	Structure of IDPFolding Subelement
	

	
	Structure of IDPHoleMaking Subelement
	

	
	Structure of the IDPLayout Subelement
	

	
	Structure of IDPStitching Subelement
	

	
	Structure of IDPTrimming Subelement
	

	
	Structure of the ImageShift Subelement
	

	
	Structure of the JobSheet Subelement
	

	Section 7.2.69

ImageCompression Params
	Structure of ImageCompression Subelement

EncodeColorImages ?

boolean
	Replaced with EncodeImages

	Section 7.2.70

ImageReplacement Params
	Resource Structure

MaxResolution ?

double
	Replaced with a link to ImageCompressionParams in the process.

	
	Resource Structure

ResolutionReduction Strategy ?

enumeration
	Replaced with a link to ImageCompressionParams in the process.

	
	Resource Structure

SearchPath +

telem
	

	Section 7.2.75

InsertingParams
	Resource Structure

SheetOffset

XYPair
	SheetOffset is implied by the Transformation matrix in ResourceLink:Transformation of the child’s ComponentLink.

	Section 7.2.78

InterpretingParams
	Structure of the InterpretingParams Resource

FitToPage ?

boolean
	Replaced by FitPolicy ? refelement.

	Section 7.2.86

LongitudinalRibbon OperationParams
	LROperation
	

	
	LongFold
	

	
	LongGlue
	

	
	LongPerforate
	

	
	LongSlit
	

	Section 7.2.88

Media
	Resource Structure

HoleCount ?

integer
	

	Section 7.2.89

MediaSource
	
	

	Section 7.2.93

PackingParams
	
	Replaced by the individual resources used by the processes defined in Section 6.5.45.5 Packaging Processes

	Section 7.2.96

PDFToPSConversionParams
	Resource Structure
IgnoreDeviceExtGState ?

boolean
	

	Section 7.2.102

PlateCopyParams
	
	

	Section 7.2.113

ResourceDefinition Params
	Resource Structure

DefaultID ?

NMTOKEN
	

	Section 7.2.114

RingBindingParams
	Resource Structure

RingSystem ?

enumeration
	

	Section 7.2.116

SaddleStitching Params
	
	

	Section 7.2.125

SideSewingParams
	
	

	Section 7.2.132

Surface
	Structure of the Abstract Placed Object Subelement

Type

enumeration
	

	
	Structure of Dynamic Field Subelement

InputField ?

string
	

N.3 Modified Items

[ACTION (Jim): Add the Modified items for JDF/1.2]
	Location
	Table Info
	Comments

	Section 1.4
	
	Glossary of Terminology has been expanded to accommodate document additions.

	Table 3.9
	Part

element
	Specifies the selected part that the PartStatus is valid for. If a Part refers to less PartIDKeys than are available in the resource, the unspecified PartIDKeys are implied to be accepted.

N.4 Illegal Items

	Location
	Table Info
	Comments

	Section 3.7.1.4

Physical Resources

Table 3.13
	Weight ?

double
	This parameter collides with Media::Weight.

N.5 Removed Items

	Location
	Table Info
	Comments

	Section 3.7.1.6

Selector Resources
	
	Resources are not only deprecated but actually removed from the format including the schema and must not be supported by a JDF 1.1 conforming agent

	Section 4.1.2.1 Request for Quote
	
	

N.6 New/Modified Attributes and Elements

[ACTION (Jim): Add the New/Modified Attributes and Elements]
N.6.1 Structure of JDF Nodes and Jobs

	Location
	Name
	Data Type
	Comment

	Table 3‑1 Generic Contents of elements
	BestEffortExceptions ?
	NMTOKENS
	New

	
	MustHonorExceptions ?
	NMTOKENS
	New

	
	OperatorInterventionExceptions ?
	NMTOKENS
	New

	Table 3‑2 Contents of the Comment element
	Attribute ?
	NMTOKEN
	New

	Table 3‑3 Contents of a JDF node

	ProjectID ?
	string
	New

	
	SpawnID ?
	NMTOKEN
	New

	
	SettingsPolicy ?
	enumeration
	New

	
	Template ?
	boolean
	New

	
	Version ?
	string
	New

	
	xmlns ?
	URI
	New

	Table 3‑4 Contents of the AncestorPool element
	Part *
	Element
	New

	Table 3‑5 Attributes of the Ancestor element

	SpawnID ?
	NMTOKEN
	New

	
	CustomerInfo ?
	element
	New

	
	NodeInfo ?
	element
	New

	Table 3‑6 Contents of the CustomerInfo element

	Company ?
	refelement
	Deprecated. Company affiliation of Contacts is specified in Contact.

	
	Contact *
	refelement
	New

	Table 3‑7 Contents of the NodeInfo element

	CleanupDuration ?
	duration
	Data Type modified.

	
	End ?
	dateTime
	Data Type modified.

	
	FirstEnd ?
	dateTime
	Data Type modified.

	
	FirstStart ?
	dateTime
	Data Type modified.

	
	IPPVersion ?
	dateTime
	New

	
	JobPriority ?
	integer
	New

	
	LastEnd ?
	dateTime
	Data Type modified.

	
	LastStart ?
	dateTime
	Data Type modified.

	
	NaturalLang ?
	language
	New

	
	MergeTarget ?
	boolean
	Deprecated. Avoiding concurrent access to the ancestor node is ill defined and cannot be implemented in an open system without proprietary locking mechanisms.

	
	SetupDuration ?
	duration
	Data Type modified.

	
	Start ?
	dateTime
	Data Type modified.

	
	TotalDuration ?
	duration
	Data Type modified.

	Table 3‑9 Contents of the PartStatus element

	Part
	element
	Modified. The cardinality of Part in PartStatus has been changed from * to none.

	Table 3‑11 Contents of the abstract Resource element
	SettingsPolicy ?
	enumeration
	New

	
	SpawnIDs ?
	NMTOKENS
	New

	
	Status
	enumeration
	modified value list. Added Complete

	
	UpdateID ?
	NMTOKEN
	New

	Table 3‑12 Additional contents of the abstract parameter Resource elements
	NoOp ?
	boolean
	New

	Table 3‑13 Additional contents of the abstract physical Resource elements
	ResourceWeight ?
	double
	New

	
	Weight ?
	double
	Illegal. Collides with Media::Weight.

	
	IdentificationField *
	refelement
	New

	Table 3‑14 Contents of the Location element
	LocationName ?
	string
	New

	Table 3‑15 Contents of the abstract ResourceUpdate
	UpdateID
	NMTOKEN
	New

	Table 3‑17 Contents of the abstract ResourceLink element

	CombinedProcessIndex ?
	IntegerList
	New

	
	CombinedProcessType ?
	NMTOKEN
	Deprecated. Replaced by CombinedProcessIndex.

	
	PipeProtocol ?
	NMTOKEN
	New

	
	AmountPool ?
	element
	New

	Table 3‑18 Contents of the AmountPool element

	PartAmount *
	element
	New

	Table 3‑19 General contents of the PartAmount element

	DraftOK ?
	boolean
	New

	
	PipeURL ?
	URL
	New

	
	Part
	element
	New

	Table 3‑20 Contents of the abstract ImplementationLink or PartAmount element

	Duration ?
	duration
	New and modified.

	
	Recommendation ?
	boolean
	New (PartAmount)

	
	Start ?
	dateTime
	New and modified.

	
	StartOffset ?
	duration
	New and modified.

	Table 3‑21 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool element

	Amount ?
	number
	New (PartAmount and AmountPool)

	
	Orientation ?
	enumeration
	New

	
	PipePause ?
	number
	New (PartAmount and AmountPool)

	
	PipeResume ?
	number
	New (PartAmount and AmountPool)

	
	RemotePipeEndPause ?
	number
	New (PartAmount and AmountPool)

	
	RemotePipeEndResume ?
	number
	New (PartAmount and AmountPool)

	
	Transformation ?
	matrix
	New

	Table 3‑23 Contents of the abstract ResourceRef element

	Part ?
	element
	New

	Table 3‑25 Contents of the Part element
	BlockName ?
	NMTOKEN
	New

	
	LayerIDs ?
	IntegerRange List
	New

	
	PageNumber ?
	IntegerRangeList
	Data type modified.

	
	PreviewType ?
	enumeration
	New

	
	Run ?
	string
	Data type modified.

	
	RunTags ?
	NMTOKENS
	New

	
	RunPage ?
	integer
	New

	
	SetIndex ?
	IntegerRangeList
	New

	 REF _Ref7250739 \h
 * MERGEFORMAT
	Top, Middle, Bottom, Side, Left, Right, Center, Rear, FaceUp, FaceDown, FitMedia, LargeCapacity, Mailbox-N, Stacker-N, Tray-N, SystemSpecified
	New

	Contents of the Selector resource
	Part +
	element
	Deleted

	Table 3‑29 Contents of the abstract Audit type
	SpawnID ?
	NMTOKEN
	New

	
	TimeStamp
	dateTime
	Data type modified.

	Table 3‑30 Contents of the ProcessRun element
	Duration ?
	duration
	Data type modified.

	
	End
	dateTime
	Data type modified.

	
	Start
	dateTime
	Data type modified.

	
	Part *
	element
	New

	Table 3‑31 Contents of the Notification element
	Part *
	element
	New

	Table 3‑33 Contents of the PhaseTime element

	End
	dateTime
	Data type modified.

	
	Start
	dateTime
	Data type modified.

	
	ResourceLink *
	element
	New

	Table 3‑34 Contents of the ModulePhase element
	End
	dateTime
	Data type modified.

	
	Start
	dateTime
	Data type modified.

	Table 3‑35 Contents of the ResourceAudit element
	Reason ?
	enumeration
	New

	Table 3‑38 Contents of the Spawned element

	NewSpawnID
	NMTOKEN
	New

	
	Status ?
	enumeration
	New

	
	URL ?
	URL
	New

	Table 3‑39 Contents of the Merged element
	MergeID
	NMTOKEN
	New

	
	URL ?
	URL
	New

N.6.2 JDF Messaging with the Job Messaging Format

	Location
	Name
	Data Type
	Comment

	Table 5‑1 Contents of the JMF root
	TimeStamp
	dateTime
	Data type modified.

	
	xmlns ?
	URI
	New

	Table 5‑2 Contents of the abstract Message element
	Time ?
	dateTime
	Data type modified.

	Table 5‑10 Contents of the Command message element
	AcknowledgeType ?
	enumerations
	New

	Table 5‑11 Contents of the Acknowledge message element
	AcknowledgeType ?
	enumerations
	New

	Table 5‑22 Contents of the DeviceFilter element
	DeviceDetails ?
	enumeration
	New

	Table 5‑25 Contents of the JDFService element
	CombinedMethod ?
	enumeration
	New

	
	TypeOrder ?
	enumeration
	New

	Table 5‑27 Contents of the KnownMsgQuParams element
	Exact ?
	boolean
	New

	Table 5‑28 Contents of the MessageService element
	Acknowledge ?
	boolean
	New

	
	DevCaps *
	element
	New

	Table 5‑30 Contents of the MsgFilter element
	After ?
	dateTime
	Data type modified.

	
	Before ?
	dateTime
	Data type modified.

	Table 5‑40 Contents of the ResourceCmdParams element
	Activation ?
	enumeration
	New

	
	UpdateIDs ?
	NMTOKENS
	New

	Table 5‑44 Contents of the DeviceInfo element
	HourCounter ?
	duration
	Data type modified.

	
	PowerOnTime ?
	dateTime
	Data type modified.

	Table 5‑45 Contents of the JobPhase element
	Activation ?
	enumeration
	New

	
	RestTime ?
	duration
	New

	
	StartTime ?
	dateTime
	New

	
	TotalAmount ?
	number
	New

	
	Waste ?
	number
	New

	
	Part *
	element
	Modified to *.

	Table 5‑81 Contents of the QueueEntry element
	JobID ?
	string
	Modified to optional.

	
	StartTime ?
	dateTime
	New

	
	SubmissionTime ?
	dateTime
	Data type modified.

N.6.3 Processes

	Location
	Name
	Comment

	6.2.2 Buffer
	BufferParams
	New section.

	
	Resource
	

	Output Resources
	Resource
	

	6.2.5 ManualLabor: Input Resources
	Resource *
	New section.

	
	ManualLaborParams
	

	Output Resources
	Resource
	

	6.2.6 Ordering: Output Resources
	Resource +
	Modified name; allow multiple output resources.

	6.2.7 Packing
	
	Deprecated. Replaced by the individual processes defined in Section 6.5.44.5 Packaging Processes.

	6.2.8 ResourceDefinition: Input Resources
	Resource *
	Modified to optional multiple.

	Output Resources
	Resource +
	Modified to required.

	6.3.1 ColorCorrection Input Resources
	ColorCorrectionParams
	New

	6.3.3 ContactCopying:
	
	New section.

	6.3.4 ContoneCalibration: Input Resources
	ScreeningParams ?
	Modified to optional.

	
	TransferFunctionControl ?
	Modified to optional.

	6.3.7 FilmToPlateCopying
	
	Deprecated. Replaced by ContactCopying

	6.3.8 FormatConversion
	
	New section.

	6.3.9 ImageReplacement: Input Resources
	ImageCompressionParams ?
	New

	6.3.10 ImageSetting: Input Resources
	DevelopingParams ?
	New

	
	ImageSetterParams ?
	Modified to optional.

	
	TransferCurvePool ?
	New

	6.3.12 InkZoneCalculation: Input Resources
	Layout ?
	New

	
	Sheet ?
	Deleted

	6.3.13 Interpreting: Input Resources
	ColorantControl ?
	Modified to optional.

	6.3.15 LayoutPreparation
	
	New section.

	6.3.18 PreviewGeneration: Input Resources
	ColorantControl ?
	New

	
	Preview ?
	New

	
	TransferCurvePool ?
	New

	6.3.21 Rendering Input Resources
	Media
	Deprecated.

	6.3.24 Screening: Input Resources
	ScreeningParams ?
	Modified to optional.

	6.3.28 Trapping: Input Resources
	FontPolicy ?
	New

	6.4.1 ConventionalPrinting: Input Resources
	Ink ?
	Modified to optional

	
	Layout ?
	New

	
	Sheet *
	Deprecated

	
	TransferCurvePool ?
	New

	
	Layout ?
	New

	
	Sheet *
	Deprecated

	
	TransferCurvePool ?
	New

	6.4.3 IDPrinting
	
	Deprecated section.

	Input Resources
	Ink ?
	New

	6.5.1 AdhesiveBinding
	
	Deprecated section. Split into: CoverApplication, Gluing, SpinePreparation, SpineTaping.

	6.5.2 BlockPreparation
	
	New section. Modifies Block Production.

	6.5.3 BoxPacking
	
	New section.

	6.5.4 CaseMaking
	
	New section.

	6.5.5 CasingIn
	
	New section.

	6.5.9 CoverApplication
	
	New section

	6.5.10 Creasing
	
	New section.

	6.5.11 Cutting : Input Resources
	CuttingParams ?
	New. Replaces CutBlock * and CutMark *.

	6.5.12 Dividing
	
	Deprecated

	6.5.13 Embossing
	
	New section.

	6.5.15 Folding: Output Resources
	Component
	Modified from required.

	6.5.17 Gluing
	
	New section

	6.5.18 HeadBandApplication
	
	New section.

	6.5.21 Jacketing
	
	New section.

	6.5.22 Labeling
	
	New section

	6.5.23 Laminating
	
	New section

	6.5.24 Longitudinal​Ribbon​Operations
	
	Deprecated. In-line finishing is described using the “standard” finishing processes.

	6.5.26 Palletizing
	
	New section.

	6.5.27 Perforating
	
	New section.

	6.5.30 SaddleStitching
	
	Deprecated. Replaced by Stitching.

	6.5.31 ShapeCutting
	
	New section.

	6.5.32 Shrinking
	
	New section.

	6.5.33 SideSewing
	
	Deprecated. Replaced by ThreadSewing.

	6.5.34 SpinePreparation
	
	New section

	6.5.35 SpineTaping
	
	New section

	6.5.36 Stacking
	
	New section.

	6.5.38 Strapping
	
	New section.

	6.5.39 StripBinding
	
	New section. Renamed from VeloBinding.

	6.5.40 ThreadSealing
	
	New section.

	6.5.44 Wrapping
	
	New section.

N.6.4 Resources

	Location
	Name
	Data Type
	Comment

	7.1.1.2 Structure of the DurationSpan Subelement
	
	element
	New section.

	7.1.1.8 Structure of the ShapeSpan Subelement
	
	element
	New section

	7.1.1.10 Structure of the TimeSpan Subelement
	Actual ?
	dateTime
	Modified data type.

	
	Preferred ?
	dateTime
	Modified data type.

	7.1.2 ArtDeliveryIntent: Resource Structure
	ArtDeliveryDate ?
	TimeSpan
	New

	
	ArtDeliveryDuration ?
	DurationSpan
	New

	
	ArtHandling ?
	EnumerationSpan
	New

	
	DeliveryCharge ?
	EnumerationSpan
	New

	
	PreflightStatus ?
	enumeration
	New

	
	ReturnList ?
	NMTOKENS
	New

	
	ReturnMethod ?
	NameSpan
	New

	
	Transfer ?
	EnumerationSpan
	New

	
	ArtDelivery +
	element
	Modified to required (+).

	
	Company ?
	refelement
	Deprecated

	
	Contact *
	refelement
	New

	Structure of ArtDelivery Elements
	ArtDeliveryDate ?
	TimeSpan
	New

	
	ArtDeliveryDuration ?
	DurationSpan
	New

	
	ArtDeliveryType
	NMTOKEN
	Modified data type.

	
	ArtHandling ?
	EnumerationSpan
	New

	
	DeliveryCharge ?
	EnumerationSpan
	New

	
	PreflightOutput ?
	URL
	New

	
	PreflightStatus ?
	enumeration
	New

	
	ReturnMethod ?
	NameSpan
	New

	
	Transfer ?
	EnumerationSpan
	New

	
	Company ?
	refelement
	Deprecated

	
	Component ?
	refelement
	Deprecated

	
	Contact *
	refelement
	New

	
	Tool ?
	refelement
	New

	7.1.3 BindingIntent: Resource Structure
	BackCoverColor ?
	EnumerationSpan
	New

	
	BindingOrder ?
	enumeration
	New

	
	AdhesiveBinding ?
	element
	Deprecated

	
	BindList ?
	element
	New

	
	BookCase ?
	element
	Deprecated

	
	EdgeGluing ?
	element
	New

	
	HardCoverBinding ?
	element
	New

	
	SoftCoverBinding ?
	element
	New

	
	Tape ?
	element
	New

	
	StripBinding ?
	element
	New

	
	VeloBinding ?
	element
	Renamed to StripBinding.

	Structure of BindList Subelement
	
	
	New section.

	Structure of BindItem Subelement
	
	
	New section

	Structure of the AdhesiveBinding Subelement
	
	
	Deprecated section.

	Structure of the BookCase Subelement
	
	
	Deprected section.

	Structure of the EdgeGluing Subelement
	
	
	New section.

	Structure of the HardCoverBinding Subelement
	
	
	New section.

	Structure of the RingBinding Subelement
	HoleType
	EnumerationSpan
	New

	
	RingSystem
	NameSpan
	Deprecated

	Structure of the PlasticComb Subelement
	PlasticCombType ?
	NameSpan
	modified

	Structure of the SaddleStitching Subelement
	StitchNumber ?
	IntegerSpan
	New

	Structure of the SoftCoverBinding Subelement
	
	
	New section.

	Structure of the Tape Subelement
	
	
	New section.

	Structure of the VeloBinding Subelement
	
	
	Renamed to StripBinding

	7.1.4 ColorIntent: Resource Properties
	Partition
	
	Modified

	Resource Structure
	Coatings ?
	StringSpan
	Modified data type.

	
	ColorPool ?
	refelement
	New

	7.1.5 DeliveryIntent: Resource Structure
	DeliveryCharge ?
	EnumerationSpan
	New

	
	Pickup ?
	boolean
	Deprecated

	
	ReturnMethod ?
	NameSpan
	New

	
	SurplusHandling ?
	EnumerationSpan
	New

	
	Transfer ?
	EnumerationSpan
	New

	
	Company ?
	refelement
	Deprecated

	
	Contact *
	refelement
	New

	Structure of DeliveryIntent Elements: DropIntent
	Pickup ?
	boolean
	Deprecated

	
	ReturnMethod ?
	NameSpan
	New

	
	SurplusHandling ?
	EnumerationSpan
	New

	
	Transfer ?
	EnumerationSpan
	New

	
	Company ?
	refelement
	Deprecated

	
	Contact *
	refelement
	New

	Structure of the DropItemIntent Subelement
	Proof ?
	string
	New

	
	Component
	refelement
	Deleted. Replaced by PhysicalResource, which has Component as an instance.

	
	PhysicalResource ?
	refelement
	New

	Contents of the CreditCard Subelement
	
	
	New section.

	Contents of the Payment Subelement
	
	
	New section

	Contents of the Pricing Subelement
	Payment ?
	element
	New

	7.1.6 EmbossingIntent
	
	
	New section

	7.1.7 FoldingIntent: Resource Structure
	Folds ?
	XYPair
	Deprecated

	
	Fold *
	element
	New

	7.1.8 HoleMakingIntent: Resource Structure
	HoleReferenceEdge ?
	enumeration
	New

	
	HoleType
	StringSpan
	Modified data type; some values are deprecated.

	Structure of the HoleList Subelement
	Hole *
	refelement
	Modified data type.

	
	HoleLine *
	refelement
	New

	Structure of the Hole Subelement
	
	
	Deleted section. Moved to Hole resource.

	7.1.9 InsertingIntent: Structure of Insert Subelement
	SheetOffset ?
	XYPair
	Deprecated

	
	WrapPages ?
	IntegerRangeList
	New

	
	GlueLine *
	element
	New

	7.1.10 LaminatingIntent: Resource Structure
	Laminated
	OptionSpan
	Deprecated

	7.1.11 LayoutIntent: Resource Structure
	Dimensions ?
	XYPairSpan
	New

	
	FinishedDimensions ?
	ShapeSpan
	New

	
	FinishedPageOrientation ?
	enumeration
	Deprecated. Page orientation is implied by the value of Dimensions and FinishedDimensions.

	
	FolioCount ?
	enumeration
	New

	
	Pages ?
	IntegerSpan
	New

	
	PageVariance ?
	IntegerSpan
	New

	
	Layout ?
	refelement
	New

	7.1.12 MediaIntent: Resource Properties

	Resource reference by
	
	Modified

	Resource Structure
	HoleType ?
	StringSpan
	New.

	
	HoleCount ?
	IntegerSpan
	Deprecated

	
	Thickness ?
	NumberSpan
	New

	7.1.16 ProofingIntent: Resource Properties
	Partition
	
	Modified

	
	ProofItem *
	element
	New

	
	PageIndex ?
	IntegerRangeList
	New

	
	ProofName ?
	string
	New

	Structure of the ProofItem Element
	SeparationSpec *
	EnumerationSpan
	New

	
	Amount ?
	IntegerSpan
	Moved

	
	BrandName ?
	StringSpan
	Moved

	
	ColorType ?
	EnumerationSpan
	Moved

	
	Contract ?
	boolean
	Moved

	
	HalfTone ?
	OptionSpan
	Moved

	7.1.18 ShapeCuttingIntent: Structure of ShapeCut Subelement
	CutType ?
	EnumerationSpan
	Modified data type

	
	ShapeDepth ?
	NumberSpan
	New

	
	ShapeType
	EnumerationSpan
	New

	7.1.19 SizeIntent
	
	
	deprecated section

	7.2.3 Adhesive​Binding​Params
	
	
	Deprecated section. Split into: CoverApplicationParams, GlueApplication, SpinePreparationParams, SpineTapingParams.

	7.2.4 ApprovalParams: Resource Properties
	Output of processes
	
	Modified

	7.2.5 ApprovalSuccess: Resource Properties
	Partition, Output of processes
	
	Modified

	7.2.7 Block​Preparation​Params
	
	
	New section.

	7.2.8 BoxPackingParams
	
	
	New section.

	7.2.9 BufferParams
	
	
	New section.

	7.2.10 Bundle
	
	
	New section.

	7.2.12 Case​Making​Params
	
	
	New section

	7.2.13 CasingInParams
	
	
	New section.

	7.2.15 CIELABMeasuringField: Resource Properties
	Resource referenced by, Output of processes
	
	Modified

	Resource Structure
	Diameter ?
	double
	Modified to optional

	
	DensityStandard ?
	enumeration
	Deprecated

	
	Light
	NMTOKEN
	Deprecated

	
	Observer
	integer
	Deprecated

	
	Setup ?
	string
	Deprecated

	
	Tolerance ?
	double
	Modified to optional

	
	ColorMeasurementConditions ?
	refelement
	New

	7.2.18 Color: Resource Structure
	ColorName ?
	NamedColor
	New

	
	ColorMeasurementConditions ?
	refelement
	New

	
	TransferCurve *
	refelement
	modified data type to refelement, removed TransferCurve subelement which is now a resource.

	7.2.20 ColorantControl: Resource Properties
	Resource referenced by, Partition, Input of Processes, Output of processes
	
	Modified

	7.2.21 ColorControlStrip: Resource Properties
	Output of processes
	
	Modified

	Resource Structure
	CIELABMeasuringField *
	refelement
	New

	
	DensityMeasuringField *
	refelement
	New

	7.2.22 ColorCorrectionParams: Resource Properties
	Partition
	
	Modified

	Resource Structure
	FileSpec ? (assumed characterization of CMYK, RGB, and Gray)
	refelement
	Deprecated

	7.2.23 Color​Measurement​Conditions
	
	
	New section.

	7.2.26 ColorSpaceConversionParams:: Resource Properties
	Partition
	
	Modified

	Resource Structure
	FileSpec ? (assumed characterization of CMYK, RGB, and Gray)
	refelement
	Deprecated

	
	PreserveBlack ?
	boolean
	New

	7.2.28 Company: Resource Properties
	Resource referenced by
	
	Modified

	Resource Structure
	Contact *
	refelement
	Deprecated

	7.2.29 Component : Resource Structure
	Overfold ?
	double
	New

	
	OverfoldSide ?
	enumeration
	New

	
	ReaderPageCount ?
	integer
	New

	
	SurfaceCount ?
	integer
	New

	
	Transformation ?
	matrix
	Deprecated

	
	Bundle ?
	refelement
	New

	7.2.30 Contact: Resource Properties
	Resource referenced by
	
	Modified

	Resource Structure
	Company ?
	refelement
	New

	7.2.31 ContactCopyParams
	
	
	New section.

	7.2.32 Conventional​Printing​Params: Resource Properties
	Partition
	
	Modified

	Resource Structure
	ModuleAvailableIndex ?
	IntegerRangeList
	New

	
	PerfectingModule ?
	integer
	New

	7.2.34 CoverApplicationParams:
	
	
	New. Replaces CoverApplication.

	Resource Structure
	GlueApplication *
	refelement
	New

	7.2.35 CreasingParams
	
	
	New section. Replaces Crease Subelement of FoldingParams.

	7.2.36 CutBlock: Resource Properties
	Resource referenced by, Input of processes, Output of processes
	
	Modified

	7.2.37 CutMark: Resource Properties
	Resource referenced by, Input of processes, Output of processes
	
	Modified

	Resource Structure
	Blocks ?
	NMTOKENS
	Modified to optional

	7.2.38 CuttingParams
	
	
	New section. Replaces Cut Subelement of FoldingParams.

	7.2.43 DeliveryParams: Resource Structure
	Earliest ?
	dateTime
	Modified data type

	
	Required ?
	dateTime
	Modified data type

	
	Company ?
	refelement
	Deprecated

	
	Contact *
	refelement
	New

	Structure of the Drop Subelement
	Earliest ?
	dateTime
	Modified data type

	
	Required ?
	dateTime
	Modified data type

	
	Company ?
	refelement
	Deprected

	
	Contact *
	refelement
	New

	7.2.44 DensityMeasuringField: Resource Properties
	Output of processes
	
	Modified

	Resource Structure
	ColorMeasurementConditions ?
	refelement
	New

	7.2.45 DevelopingParams
	
	
	New section

	7.2.46 Device: Resource Structure
	DeviceFamily ?
	string
	Deprecated. Replaced by the appropriate ModelXXX attributes

	
	Directory ?
	URL
	New

	
	FriendlyName ?
	string
	New

	
	JDFVersions ?
	string
	New

	
	JMFSenderID ?
	string
	New

	
	JMFURL ?
	URL
	New

	
	Manufacturer ?
	string
	New

	
	ManufacturerURL ?
	string
	New

	
	ModelDescription ?
	string
	New

	
	ModelName ?
	string
	New

	
	ModelNumber ?
	string
	New

	
	ModelURL ?
	string
	New

	
	SerialNumber ?
	string
	New

	
	PresentationURL ?
	string
	New

	
	UPC ?
	string
	New

	
	DeviceCap *
	element
	New

	
	IconList ?
	element
	New

	Structure of the IconList Subelement
	
	
	New section.

	Structure of the Icon Subelement
	
	
	New section.

	7.2.48 DigitalPrintingParams Resource Properties
	Partition
	
	Modified

	Resource Structure
	Collate ?
	enumeration
	New

	
	OutputBin ?
	MNTOKEN
	New

	
	ManualFeed ?
	boolean
	New

	
	PageDelivery ?
	enumeration
	New

	
	PrintQuality ?
	enumeration
	Deprecated

	
	PrintingType ?
	enumeration
	Modified to optional

	
	Component ?
	refelement
	New

	
	Disjointing ?
	refelement
	New

	
	Media ?
	refelement
	New

	
	MediaSource ?
	refelement
	Deprecated.

	7.2.49 Disjointing: Resource Properties
	Resource referenced by
	
	Modified

	Resource Structure
	Overfold ?
	double
	Deprecated

	
	IdentificationField *
	element
	Modified to optional multiple

	7.2.50 DividingParams
	
	
	Deprecated section.

	Resource Properties
	Partition
	
	Modified

	7.2.51 Embossing​Params
	
	
	New section.

	7.2.54 ExposedMedia: Resource Properties
	Partition, Input of processes, Output of processes
	
	Modified

	7.2.55 FileSpec: Resource Structure
	CheckSum ?
	integer
	New

	
	FileVersion ?
	string
	New

	
	UID ?
	string
	New

	7.2.56 FitPolicy
	
	
	New section.

	7.2.57 Fold
	
	
	New section. Replaces Fold Subelement of FoldingParams

	7.2.58 FoldingParams: Resource Properties
	Partition, Output of processes
	
	Modified. Split into CuttingParams, CreasingParams, Fold, GluingParams, PerforatingParams, ThreadSealingParams.

	Resource Structure
	FoldSheetIn ?
	XYPair
	Deprecated

	
	Fold *
	element
	Modified to new section.

	
	FoldOperation *
	element
	Deprecated

	7.2.59 FontParams: Resource Properties
	Partition
	
	Modified

	7.2.60 FontPolicy: Resource Properties
	Partition, Input of processes
	
	Modified

	7.2.61 FormatConversionParams
	
	
	New section.

	7.2.63 GlueApplication
	
	
	New section.

	7.2.64 GluingParams
	
	
	New section. Replaces Glue Subelement of FoldingParams.

	7.2.65 GlueLine: Resource Properties
	Resource referenced by
	
	Modified

	Resource Structure
	AreaGlue ?
	boolean
	New

	7.2.66 HeadBand​Application​Params
	
	
	New section

	7.2.67 Hole
	
	
	New section

	7.2.68 HoleLine
	
	
	New section

	7.2.69 HoleMakingParams: Resource Properties
	Input of processes
	
	Modified

	Resource Structure
	Center ?
	XYPair
	Modified to optional

	
	CenterReference ?
	enumeration
	New

	
	HoleReferenceEdge ?
	enumeration
	New

	
	HoleType
	enumerations
	New. Some values are deprecated.

	
	Shape ?
	enumeration
	Modified to optional.

	
	HoleLine *
	element
	New

	
	RegistrationMark ?
	refelement
	New

	7.2.70 IdentificationField: Resource Properties
	Resource referenced by, Output of processes
	
	Modified

	Resource Structure
	Value ?
	string
	New

	7.2.71 IDPrintingParams
	
	
	Deprecated section.

	Resource Properties
	Partition
	
	Modified

	Structure of the Cover Subelement
	
	
	Deprecated section.

	Properties of the IDPFinishing Subelement
	
	
	Deprecated section.

	Structure of IDPFolding Subelement
	
	
	Deprecated section.

	Structure of IDPHoleMaking Subelement
	
	
	Deprecated section

	Structure of the IDPLayout Subelement
	
	
	Deprecated section.

	Structure of IDPStitching Subelement
	
	
	Deprecated section.

	Structure of IDPTrimming Subelement
	
	
	Deprecated section.

	Structure of the ImageShift Subelement
	
	
	Deprecated section.

	Structure of the JobSheet Subelement
	
	
	Deprecated section.

	7.2.72 Image​Compression​Params : Resource Properties
	Partition, Input of processes
	
	Modified

	Resource Structure
	EncodeColorImages ?
	boolean
	Deprecated

	
	EncodeImages ?
	boolean
	New

	7.2.73 Image​Replacement​Params: Resource Properties
	Partition, Input of processes
	
	Modified

	Resource Structure
	MaxResolution ?
	double
	Deprecated. Replaced with a link to ImageCompressionParams in the process.

	
	ResolutionReductionStrategy ?
	enumberation
	Deprecated. Replaced with a link to ImageCompressionParams in the process.

	
	IgnoreExtensions ?
	NMTOKENS
	Modified to optional.

	
	FileSpec +
	refelement
	New

	
	SearchPath +
	telem
	Deprecated

	7.2.74 ImageSetterParams: Resource Structure
	BurnOutArea ?
	XYPair
	New

	
	Media ?
	refelement
	New

	7.2.75 Ink: Resource Structure
	InkName ?
	string
	Modified to optional.

	7.2.78 InsertingParams: Resource Structure
	SheetOffset
	XYPair
	Deprecated

	7.2.79 InsertSheet: Resource Properties
	Resource referenced by
	
	Modified

	Resource Structure
	MarkList ?
	NMTOKENS
	New

	
	SheetFormat ?
	NMTOKEN
	New

	
	SheetType
	enumeration
	New

	
	SheetUsage
	enumeration
	New

	
	Usage
	enumeration
	Renamed to SheetUsage and modified.

	7.2.81 InterpretingParams: Resource Properties
	Partition
	
	Modified

	Resource Structure
	FitToPage ?
	boolean
	Deprecated

	
	PrintQuality ?
	enumeration
	New

	
	FitPolicy ?
	refelement
	New

	
	Media ?
	refelement
	New

	
	PDFInterpretingParams ?
	refelement
	New

	7.2.82 JacketingParams
	
	
	New section.

	7.2.83 JobField
	
	
	New section.

	7.2.84 LabelingParams
	
	
	New section.

	7.2.85 LaminatingParams
	
	
	New section.

	7.2.86 Layout: Resource Properties
	Input of processes
	
	Modified

	Resource Structure
	MaxDocOrd ?
	integer
	New

	
	MaxSetOrd ?
	integer
	New

	
	Name ?
	string
	New

	
	LayerList ?
	element
	New

	
	Media ?
	refelement
	New

	
	MediaSource ?
	refelement
	Deprecated

	
	TransferCurvePool ?
	refelement
	New

	Structure of LayerList Subelement
	
	
	New section.

	Structure of LayerDetails Subelement
	
	
	New section

	Structure of Signature Subelement
	Media ?
	refelement
	New

	
	MediaSource ?
	refelement
	Deprecated

	7.2.87 LayoutElement: Resource Properties
	Output of processes
	
	Modified

	Resource Structure
	IgnorePDLCopies ?
	boolean
	New

	
	IgnorePDLImposition ?
	boolean
	New

	7.2.88 LayoutPreparation​Params
	
	
	New section.

	7.2.89 Longitudinal​Ribbon​Operation​Params
	
	
	Deprecated section.

	Resource Properties
	Partition
	
	Modified

	Structure of LongitudinalRibbonOperationParams Elements
	LROperation
	
	Deprecated section.

	
	LongFold
	
	Deprecated section.

	
	LongGlue
	
	Deprecated section.

	
	LongPerforate
	
	Deprecated section.

	
	LongSlit
	
	Deprecated section.

	7.2.90 ManualLaborParams
	
	
	New section.

	7.2.91 Media: Resource Properties
	Resource reference by, Input of processes
	
	Modified

	Resource Structure
	ColorName ?
	string
	New

	
	Dimension ?
	XYPair
	Modified to optional

	
	GrainDirection ?
	enumeration
	New

	
	HoleCount ?
	integer
	Deprecated

	
	HoleType ?
	enumerations
	New

	
	MediaColorName ?
	NamedColor
	Modified data type.

	
	ShrinkIndex ?
	XYPair
	New

	
	StockType ?
	NMTOKEN
	New

	
	Texture ?
	NMTOKEN
	New

	
	UserMediaType ?
	NMTOKEN
	Deprecated

	
	Color ?
	refelement
	Deprecated, replaced by ColorName.

	7.2.92 MediaSource
	
	
	Deprecated section.

	Resource Structure
	SheetLay ?
	enumeration
	New

	
	Component ?
	refelement
	New

	7.2.94 ObjectResolution: Resource Properties
	Resource referenced by
	
	Modified

	7.2.95 OrderingParams: Resource Structure
	Company ?
	refelement
	Deprecated

	
	Contact *
	refelement
	New

	7.2.96 PackingParams
	
	
	Deprecated section.

	7.2.97 PalletizingParams
	
	
	New section.

	7.2.98 Pallet
	
	
	New section.

	7.2.99 PDFToPSConversion​Params: Resource Properties
	Partition
	
	Modified

	Resource Structure
	IgnoreBG ?
	boolean
	New

	
	IgnoreDeviceExtGState ?
	boolean
	Deprecated

	
	IgnoreOverprint ?
	boolean
	New

	
	IgnoreTransfers ?
	boolean
	New

	
	IgnoreUCR ?
	boolean
	New

	7.2.101 PerforatingParams
	
	
	New section. Replaces Perforate Subelement of FoldingParams.

	7.2.104 PlasticCombBindingParams
	Type ?
	enumeration
	Modified list

	7.2.105 PlateCopyParams
	
	
	Deprecated section.

	7.2.106 PreflightAnalysis: Structure of PreflightInstance Subelement
	PageRefs
	IntegerRangeList
	Modified data type.

	
	PreflightInstanceDetail
	element
	Properties renamed to PreflightInstanceDetail

	7.2.109 Preview: Resource Properties
	Resource referenced by, Partition
	
	Modified

	Resource Structure
	CTM ?
	matrix
	New

	
	Directory ?
	URL
	New

	7.2.110 PreviewGeneration​Params: Resource Properties
	Partition
	
	Modified

	Resource Structure
	AspectRatio ?
	enumeration
	New

	
	PreviewType
	enumeration
	Deleted. Replaced by PreviewUsage ?

	
	PreviewUsage ?
	enumeration
	New

	
	ImageSetterParams ?
	refelement
	New

	7.2.111 ProofingParams: Resource Properties
	Partition
	
	Modified

	Resource Structure
	ManualFeed?
	boolean
	New

	
	ProofRenderingIntent ?
	enumeration
	New

	
	Media ?
	refelement
	New

	7.2.112 PSToPDFConversionParams: Resource Properties
	Partition, Input of processes
	
	Modified

	Resource Structure
	InitialPageSize ?
	XYPair
	New

	
	IntialResolution ?
	XYPair
	New

	Structure of AdvancedParams Subelement
	PreserveHaltoneInfo ?
	boolean
	New

	
	PreserveOverprintSettings ?
	boolean
	New

	
	TransferFunctionInfo ?
	enumeration
	New

	
	UCRandBGInfo ?
	enumeration
	New

	7.2.113 RegisterMark: Resource Properties
	Output of processes
	
	Modified

	Resource Structure
	MarkUsage ?
	enumerations
	New

	7.2.114 RegisterRibbon
	
	
	New section.

	7.2.115 RenderingParams: Resource Properties
	Partition, Input of processes
	
	Modified

	Resource Structure
	Media ?
	refelement
	New

	7.2.116 Resource​Definition​Params: Resource Structure
	DefaultID ?
	NMTOKEN
	Deprecated

	
	ResourceParam +
	refelement
	New

	Structure of the ResourceParam Subelement
	
	
	New section.

	7.2.117 RingBindingParams: Resource Structure
	RingSystem ?
	enumeration
	Deprecated

	7.2.118 RunList: Resource Properties
	Partition
	
	Modified

	Resource Structure
	DocCopies ?
	integer
	New

	
	EndOfDocument ?
	boolean
	New

	
	EndOfSet ?
	boolean
	New

	
	NDoc ?
	integer
	New

	
	NSet ?
	integer
	New

	
	PageCopies ?
	integer
	New

	
	RunTag ?
	NMTOKEN
	New

	
	SetCopies ?
	integer
	New

	
	SetNames ?
	NameRangeList
	New

	
	Sets ?
	IntegerRangeList
	New

	7.2.119 SaddleStitchingParams
	
	
	Deprecated section

	7.2.121 ScavengerArea
	
	
	New section.

	7.2.122 ScreeningParams: Resource Properties
	Input of processes
	
	Modified

	Resource Structure
	ScreenSelector *
	element
	Modified to optional multiple

	Structure of ScreenSelector Subelement
	AngleMap ?
	string
	New

	
	DotSize ?
	double
	New

	7.2.125 ShapeCuttingParams
	
	
	New section.

	7.2.126 Sheet: Resource Properties
	Input of processes
	
	Modified

	Resource Structure
	Media ?
	refelement
	New

	
	MediaSource ?
	refelement
	Deprecated

	7.2.127 ShrinkingParams
	
	
	New section.

	7.2.128 SideSewingParams
	
	
	Deprecated section

	7.2.129 SpinePreparationParams
	
	
	New section. Replaces BackPreparation.

	7.2.130 SpineTapingParams
	
	
	New. Replaces SpineTaping.

	Resource Structure
	GlueApplication *
	refelement
	New

	7.2.131 StackingParams
	
	
	New section.

	7.2.132 Stitching​Params: Resource Properties
	Resource referenced by
	
	Modified

	Resource Structure
	ReferenceEdge ?
	enumeration
	New

	7.2.133 Strap
	
	
	New section

	7.2.134 StrappingParams
	
	
	New section

	7.2.135 StripBindingParams
	
	
	New section

	7.2.136 Surface: Structure of the Abstract PlacedObject Subelement
	LayerID ?
	integer
	New

	
	OrdID ?
	integer
	New

	
	Trim CTM ?
	matrix
	New

	
	Type
	enumeration
	Deprecated

	Structure of ContentObject Subelement
	DocOrd ?
	integer
	New

	
	SetOrd ?
	integer
	New

	Structure of MarkObject Elements
	LayoutElementPageNum ?
	integer
	New

	
	ColorControlStrip *
	refelement
	Modified to optional multiple

	
	CutMark *
	refelement
	Modified to optional multiple

	
	DensityMeasuringField *
	refelement
	Modified to optional multiple

	
	DeviceMark ?
	refelement
	New

	
	JobField *
	refelement
	New

	
	RegisterMark *
	refelement
	Modified to optional multiple

	
	ScavengerArea *
	refelement
	New

	Structure of DeviceMark Subelement
	
	
	New section

	Structure of DynamicField Subelement
	InputField ?
	string
	Deprecated

	
	DeviceMark ?
	refelement
	New

	7.2.137 ThreadSealingParams
	
	
	New section. Replaces ThreadSeal Subelement of FoldingParams.

	7.2.138 ThreadSewingParams: Resource Structure
	Offset ?
	double
	New

	7.2.140 Tool
	
	
	New section.

	7.2.141 TransferCurve
	
	
	Moved from Structure of TransferCurvePool Subelement and made resource

	
	CTM ?
	matrix
	New

	
	Name
	NMTOKEN
	Moved from Structure of TransferCurvePool Subelement

	7.2.142 TransferCurvePool: Structure of TransferCurvePool Subelement
	
	
	Deleted section. Contents moved to Structure of TransferCurveSet Subelement.

	Structure of TransferCurve Subelement
	Curve
	TransferFunction
	Moved from Structure of TransferCurveSet Subelement

	
	Separation ?
	string
	Moved from Structure of TransferCurveSet Subelement

	7.2.143 TransferFunctionControl: Resource Properties
	Resource referenced by, Input of processes
	
	Modified

	7.2.144 TrappingDetails: Resource Properties
	Resource referenced by, Partition, Input of processes
	
	Modified

	Resource Structure
	ObjectResolution *
	refelement
	New

	7.2.145 TrappingParams: Resource Properties
	Resource referenced by, Partition
	
	Modified

	7.2.146 TrapRegion
	Input of processes
	
	Modified

	7.2.147 TrimmingParams: Resource Structure
	TrimmingType
	enumeration
	New

	VeloBindingParams
	
	
	Deleted section. Renamed to StripBindingParams

	7.2.149 WireComb​Binding​Params: Resource Structure
	FlipBackCover ?
	boolean
	New

	7.2.150 WrappingParams
	
	
	New section.

	7.3 Device Capability Definitions
	
	
	New section.

Appendix O Table of Tables

6Table 1‑1 Conformance Terminology

8Table 1‑2 JDF data types

9Table 1‑3 Units used in JDF

15Table 2‑1 Information contained in JDF nodes, arranged numerically

16Table 2‑2 Information contained in JDF nodes, arranged by group

21Table 2‑3 Matrices and names used to describe the orientation of a Component

31Table 3‑1 Generic Contents of elements

32Table 3‑2 Contents of the Comment element

34Table 3‑3 Contents of a JDF node

41Table 3‑4 Contents of the AncestorPool element

41Table 3‑5 Attributes of the Ancestor element

42Table 3‑6 Contents of the CustomerInfo element

43Table 3‑7 Contents of the NodeInfo element

45Table 3‑8 Contents of the StatusPool element

45Table 3‑9 Contents of the PartStatus element

45Table 3‑10 Contents of the ResourcePool element

45Table 3‑11 Contents of the abstract Resource element

49Table 3‑12 Additional contents of the abstract parameter Resource elements

50Table 3‑13 Additional contents of the abstract physical Resource elements

50Table 3‑14 Contents of the Location element

52Table 3‑15 Contents of the abstract ResourceUpdate Element

55Table 3‑16 Contents of the ResourceLinkPool element

55Table 3‑17 Contents of the abstract ResourceLink element

56Table 3‑18 Contents of the AmountPool element

56Table 3‑19 General contents of the PartAmount element

57Table 3‑20 Contents of the abstract ImplementationLink or PartAmount element

58Table 3‑21 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool element

60Table 3‑22 Contents of the abstract ResourceElement

60Table 3‑23 Contents of the abstract ResourceRef element

65Table 3‑24 Contents of the partitionable Resource element

66Table 3‑25 Contents of the Part element

69Table 3‑26 Printer input tray names

77Table 3‑28 Contents of the AuditPool element

77Table 3‑29 Contents of the abstract Audit type

78Table 3‑30 Contents of the ProcessRun element

79Table 3‑31 Contents of the Notification element

79Table 3‑32 Redundant table removed

80Table 3‑33 Contents of the PhaseTime element

80Table 3‑34 Contents of the ModulePhase element

81Table 3‑35 Contents of the ResourceAudit element

83Table 3‑36 Contents of the Created element

83Table 3‑37 Contents of the Modified element

83Table 3‑38 Contents of the Spawned element

84Table 3‑39 Contents of the Merged element

90Table 4‑1. Business Objects as defined by PrintTalk

96Table 4‑2 Examples of resource and process states in the case of simple process routing

112Table 5‑1 Contents of the JMF root

113Table 5‑2 Contents of the abstract Message element

115Table 5‑3 Contents of the Query message element

115Table 5‑4 Contents of the Response message element

116Table 5‑5 Contents of the Signal message element

117Table 5‑6 Contents of the Trigger element

117Table 5‑7 Contents of the ChangedAttribute element

117Table 5‑8 Contents of the Added element

117Table 5‑9 Contents of the Removed element

118Table 5‑10 Contents of the Command message element

119Table 5‑11 Contents of the Acknowledge message element

120Table 5‑12 Contents of the Subscription element

120Table 5‑13 Contents of the ObservationTarget element

122Table 5‑14 Messaging table template

123Table 5‑15 Process registration and communication messages

123Table 5‑16 Contents of the Events message

124Table 5‑17 Contents of the NotificationFilter element

124Table 5‑18 Contents of the NotificationDef element

125Table 5‑19 Contents of the KnownControllers message

125Table 5‑20 Contents of the JDFController element

125Table 5‑21 Contents of the KnownDevices message

126Table 5‑22 Contents of the DeviceFilter element

126Table 5‑23 Contents of the DeviceList element

126Table 5‑24 Contents of the KnownJDFServices message

127Table 5‑25 Contents of the JDFService element

127Table 5‑26 Contents of the KnownMessages message

128Table 5‑27 Contents of the KnownMsgQuParams element

128Table 5‑28 Contents of the MessageService element

129Table 5‑29 Contents of the RepeatMessages message

129Table 5‑30 Contents of the MsgFilter element

130Table 5‑31 Contents of the StopPersistentChannel message

130Table 5‑32 Contents of the StopPersChParams element

130Table 5‑33 Status and progress messages

131Table 5‑34 Contents of the Occupation message

131Table 5‑35 Contents of the EmployeeDef element

131Table 5‑36 Contents of the Occupation element

132Table 5‑37 Contents of the Resource query message

132Table 5‑38 Contents of the ResourceQuParams element

133Table 5‑39 Contents of the Resource command message

133Table 5‑40 Contents of the ResourceCmdParams element

134Table 5‑41 Contents of the ResourceInfo element

136Table 5‑42 Contents of the Status message

136Table 5‑43 Contents of the StatusQuParams element

137Table 5‑44 Contents of the DeviceInfo element

138Table 5‑45 Contents of the JobPhase element

139Table 5‑46 Contents of the ModuleStatus element

140Table 5‑47 Contents of the Track message

140Table 5‑48 Contents of the TrackFilter element

141Table 5‑49 Contents of the TrackResult element

141Table 5‑50 Dynamic pipe messages

141Table 5‑51 Contents of the PipeClose message

142Table 5‑52 Contents of the PipePull message

143Table 5‑53 Contents of the PipeParams element

144Table 5‑54 Contents of the PipePause message

145Table 5‑55 QueueEntry handling messages

145Table 5‑56 Contents of the AbortQueueEntry message

145Table 5‑57 Contents of the HoldQueueEntry message

146Table 5‑58 Contents of the RemoveQueueEntry message

146Table 5‑59 Contents of the ResubmitQueueEntry message

146Table 5‑60 Contents of the ResubmissionParams element

146Table 5‑61 Contents of the ResumeQueueEntry message

147Table 5‑62 Contents of the SetQueueEntry message

147Table 5‑63 Contents of the QueueEntryPosParams element

147Table 5‑64 Contents of the SetQueueEntryPriority element

147Table 5‑65 Contents of the QueueEntryPriParams element

147Table 5‑66 Contents of the SubmitQueueEntry message

148Table 5‑67 Contents of the QueueSubmissionParams element

149Table 5‑68 Global queue-handling commands

149Table 5‑69 Contents of the CloseQueue message

150Table 5‑70 Contents of the FlushQueue message

150Table 5‑71 Contents of the HoldQueue message

150Table 5‑72 Contents of the OpenQueue message

150Table 5‑73 Contents of the QueueEntryStatus message

151Table 5‑74 Contents of the QueueEntryDefList element

151Table 5‑75 Contents of the QueueStatus message

151Table 5‑76 Contents of the ResumeQueue message

151Table 5‑77 Contents of the SubmissionMethods message

151Table 5‑78 Contents of the SubmissionMethods element

152Table 5‑79 Definition of the Queue Status Attribute values

153Table 5‑80 Contents of the Queue element

154Table 5‑81 Contents of the QueueEntry element

154Table 5‑82 Contents of the QueueEntryDef element

294Table 7‑1 –Mapping of SourceCS enumeration values to color spaces in the most common input file formats.Appendix XXX contains a detailed description of the color spaces supported by each one of these formats.

295Table 7‑2 - Efect of color spoace conversion operations on color spaces.

306Table 7‑3 Terms and definitions for components

335Table 7‑4 Predefined variables used in FileTemplate

453Table 7‑5 Parameters in Stacking

462Table 7‑6 Example 1 of Ord in PlacedObjects

462Table 7‑7 Example 2 of Ord in PlacedObjects

566Table 8‑1- Grammage and equivalent North American Paper Weigth

Appendix P Terminology Usage

This document contains many terms specific to its interpretation and intent. Many of the terms are described in relation to various processes, components, and values throughout the document. The more prominent terms are listed below to make it easier for the casual user to locate precise definitions and usage.

	Term
	Term Type
	Glossary of Terminology

(Sect. 1.4)
	Data Structures

(Sect. 1.5)
	Job Components

(Sect. 2.1.1)
	Workflow Components

(Sect. 2.1.2
	Relation ships

(Sect. 2.1.1.4)
	Other

	Acknowledge
	message
	
	
	
	
	
	Section 5.2.1.5

	Activation
	enumeration
	
	
	
	
	
	Table 3.3, Table 5.38

	Agent(s)
	consumer
	X
	
	
	Section 2.1.2.3
	
	

	Ancestor
	element
	
	
	
	
	X
	

	AncestorPool
	element
	
	
	
	
	
	Sect. 3.3

Table 3.4

	Attribute(s)
	attribute
	X
	
	Section 2.1.1.3
	
	
	Sect. 3.1.2

	AuditPool
	elements
	
	
	
	
	
	Sect. 3.10

	Big job
	
	X
	
	
	
	
	

	boolean
	data type
	
	X
	
	
	
	Table A.1

	Branch
	node
	
	
	
	
	X
	

	Child
	element
	
	
	
	
	X
	

	Class
	data type
	X
	
	
	
	
	

	CMYK color
	data type
	
	X
	
	
	
	A.2.1

	Command
	message
	
	
	
	
	
	Section

5.2.1.4

	Controllers
	consumer
	X
	
	
	Section 2.1.2.4
	
	

	Coordinate systems
	
	
	
	
	
	
	Section 2.5

	Customer
	node
	
	
	
	
	
	Section 3.4

	Date
	data type
	
	X
	
	
	
	Table A.1

	DateTime
	data type
	
	X
	
	
	
	Table A.1

	Default
	value
	X
	
	
	
	
	Sect. 1.4.2.1

	Deprecated
	
	X
	
	
	
	
	

	Descendent
	element
	
	
	
	
	X
	

	Devices
	consumer
	X
	
	
	Section 2.1.2.2
	
	

	Document set
	
	X
	
	
	
	
	

	Double
	data type
	
	X
	
	
	
	Table A.1

	Duration
	data type
	
	X
	
	
	
	Table A.1

	DurationRange
	data type
	
	X
	
	
	
	A. 2.2

	Element(s)
	job component
	X
	X
	Section 2.1.1.2
	
	
	

	Enumeration(s)
	data type
	
	X
	
	
	
	

	Finished page
	job component
	X
	
	
	
	
	

	gYearMonth
	data type
	
	X
	
	
	
	Table A.1

	ID/IDREF(s)
	
	
	X
	
	
	
	Table A.1

	IfraTrack modeling
	
	
	
	
	
	
	App. E

	Instance document
	job component
	X
	
	
	
	
	

	Integer
	data type
	
	X
	
	
	
	Table A.1

	IntegerList
	data type
	
	X
	
	
	
	A.2.3

	IntegerRange
	data type
	
	X
	
	
	
	A.2.4

	IntegerRangeList
	data type
	
	X
	
	
	
	A.2.5

	intent resources
	
	
	
	
	
	
	3.2.1, 7.1.1.1

	IPP mapping
	
	
	
	
	
	
	App. F

	iterative processing
	
	
	
	
	
	
	2.3

	JDF consumer
	
	X
	
	
	
	
	

	JMF
	
	X
	
	
	
	
	Chapt. 5

	Job(s)
	job component
	X
	
	Section 2.1.1.1
	
	
	

	Job part
	node
	X
	
	
	
	
	

	LabColor
	data type
	
	X
	
	
	
	A.2.6

	Language
	data type
	
	X
	
	
	
	Table A.1

	Leaf
	element
	
	
	
	
	X
	

	Links
	job components
	X
	
	Section 2.1.1.5
	
	
	A.3.1

	Machines
	job components
	X
	
	
	Section 2.1.2.1
	
	

	Matrix
	data type
	
	X
	
	
	
	A.2.7

	Merging
	process
	
	
	
	
	
	Section 4.4

	MIME File Packaging
	
	
	
	
	
	
	A.4.1

	MIS
	
	X
	
	
	Sesction 2.1.2.5
	
	

	NamedColor
	data type
	
	X
	
	
	
	A.2.8

	NameRange
	data type
	
	X
	
	
	
	A.2.9

	NameRangeList
	data type
	
	X
	
	
	
	A.2.10

	NMTOKEN(S)
	data type
	
	X
	
	
	
	Table A.1

	Node(s)
	element
	X
	
	Section 2.1.1.1
	
	
	Table 3.3

	Number
	data type
	
	X
	
	
	
	

	NumberList
	data type
	
	X
	
	
	
	A.2.11

	NumberRange
	data type
	
	X
	
	
	
	A.2.12

	NumberRangeList
	data type
	
	X
	
	
	
	A.2.13

	Parent
	element
	
	
	
	
	X
	

	Partitioned resource
	resource
	X
	
	
	
	
	

	Path
	data type
	
	X
	
	
	
	A.2.14

	PDL
	
	X
	
	
	
	
	

	PJTF conversion
	
	
	
	
	
	
	App. C

	PNG format
	
	
	
	
	
	
	A.4.3

	PPF conversion
	
	
	
	
	
	
	App. D

	Process
	consumer
	X
	
	
	
	
	

	Process nodes
	
	
	
	
	
	
	Section 3.2 Chapter 6

	Product intent nodes
	node
	
	
	
	
	
	Section 3.2.1

	Query
	message
	
	
	
	
	
	Section 5.2.1.1

	Queue
	consumer
	X
	
	
	
	
	

	Reader page
	value
	X
	
	
	
	
	

	Rectangle
	data type
	
	X
	
	
	
	A.2.15

	Refelement
	data type
	
	X
	
	
	
	

	Relationships
	job components
	
	
	Section 2.1.1.4
	
	
	

	Resource(s)
	job component
	X
	
	
	
	
	

	Response
	message
	
	
	
	
	
	Section 5.2.1.2

	Root
	element
	
	
	
	
	X
	

	Shape
	data type
	
	X
	
	
	
	

	ShapeRange
	data type
	
	X
	
	
	
	A.2.16

	ShapeRangeList
	data type
	
	X
	
	
	
	A.2.17

	Sibling
	element
	
	
	
	
	X
	

	Signal
	message
	
	
	
	
	
	Section 5.2.1.3

	Small job
	
	X
	
	
	
	
	

	Spawning
	process
	
	
	
	
	
	Section 4.4

	sRGBcolor
	data type
	
	X
	
	
	
	A.2.18

	String
	data type
	
	X
	
	
	
	Table A.1

	Support
	value
	X
	
	
	
	
	

	System interaction
	job components
	
	
	
	Section 2.1.2.6
	
	

	Tag
	value
	X
	
	
	
	
	

	Telem
	data type
	
	X
	
	
	
	

	Text
	data type
	
	X
	
	
	
	

	TimeRange
	data type
	
	X
	
	
	
	A.2.19

	TransferFunction
	data type
	
	X
	
	
	
	A.2.20

	URI
	data type
	
	X
	
	
	
	Table A.1

	URL
	data type
	
	X
	
	
	
	Table A.1

	Work center
	
	X
	
	
	
	
	

	Workflow components
	job components
	
	
	
	Section 2.1.2
	
	

	XYPair
	data type
	
	X
	
	
	
	A.2.21

	XYPairRange
	data type
	
	X
	
	
	
	A.2.22

	XYPair/RangeList
	data type
	
	X
	
	
	
	A.2.23

Appendix Q Errata

The following section summarizes errata that were found after publication of JDF 1.1. Note that trivial changes such as font changes are not tracked in this table. Although the table may seam quite long, the authors spent a great deal of effort in ensuring that changes were as transparent as possible to implementations of JDF 1.1. The bulk of changes consists of clarifications of ambiguities. Modifications that require a change to the XML schema are the exception and limited to situations where implementation would have otherwise been inhibited.

	Location
	Date
	Comments

	Table 3‑19 General contents of the PartAmount element
	May 2 2002-
	Table grid formatting

	3.9.2 Description of Partitionable Resources
	
	Missing quotes in example added

	N.1 New Items
	
	RunTag has data type NMTOKENS

	Table 3‑3 Contents of a JDF node
	
	Activation, Status. added Modified in JDF 1.1 flag.

	3.7 Resources
	
	UpdateID has data type NMTOKEN

	Table 3‑32 Redundant table removed
	May 3 2002-
	Removed redundant table (it was part of table 3-30) The heading was kept to avoid renumbering

	7.2.91 Media
	May 6 2002
	Put deprecated Color refelement back. It had accidentally been removed instead of deprecated.

	
	June 24 2002
	Grade: Definition modified to refer to ISO 12647-2 ff

	K.5 Conversion of PPF to JDF
	May 8 2002
	Modified example ColorantControl to include ProcessColorModel and ColorantParams

	3.9.2 Description of Partitionable Resources
	May 8 2002
	Modified example #4 of the ResourceRef to contain explicit Part elements.

Added clarifying text on how the Part elements are combined.

	3.8.6 Inter-Resource Linking Using ResourceRef
	May 15 2002
	Added a restriction that the Part element in a ResourceRef must reference a resource leaf.

	Table 3‑25 Contents of the Part element
	May 16 2002
	PreviewType. added New in JDF 1.1 flag.;

Reordered DocCopies and DocIndex

	7.2.130 SpineTapingParams
	May 16 2002
	Added a ? to HorizontalExcess, StripLength, TopExcess

	A.2.17 ShapeRange
A.2.23 XYPairRange
	May 21 2002
	Clarified definition of reverse order and changed < to <= in the algorithm definition.

	4.4.1 Case 1: Standard Spawning and Merging
	May 22 2002
	Clarified the attributes that must be left when removing the spawned node from the parent node.

	Table 3‑9 Contents of the PartStatus element
Table 3‑19 General contents of the PartAmount element
	May 22 2002
	Clarified that the Part element in a PartStatus or PartAmount element must refer to a leaf resource.

	7.2.125 ShapeCuttingParams
	June 3 2002
	Data type of ShapeDepth changed from NumberSpan to double. (Copy/Paste error from ShapeCut)

	7.1.3 BindingIntent
	June 3 2002
	Removed default reference in BindList

	7.2.136 Surface
	June 6 2002
	PlacedObject::ClipPath Replaced clip path with clipping rectangle in the description.

	
	July 9 2002
	PlacedObject::Ord Clarified usage and added example tables.

	
	August 9 2002
	PlacedObject::Ord Clarified zero based.

	
	August 21 2002
	Added remark that partitioning is discouraged.

	7.3.3 Structure of the DevCaps Subelement
	June 11 2002
	DevCaps::DevNS. Data type changed to URI.

Added GenericAttributes.

	
	August 28 2002
	GenericAttributes now has a ?

	7.3.4 Structure of the DevCap Subelement
	June 11 2002
	Removed Restricted, Supported

	
	August 28 2002
	Added DevNS

	7.3.5 Structure of the Abstract State Subelement
	June 11 2002
	Removed Restricted, Supported

Added Span

	
	August 5 2002
	Removed DataType

	
	August 28 2002
	Added DevNS

	7.3.5.1 Structure of the BooleanState Subelement
	June 11 2002
	Added AllowedValueList.

	7.3.6 Examples of Device Capabilities
	June 26 2002
	Modified example to reflect the modifications in the JDF device capabilities.

	7.2.83 JobField
	June 11 2002
	JobField::ShowList FriendlyName removed blank from enumeration.

	7.2.88 LayoutPreparation​Params
	June 13 2002

	CreepValue is optional.

	
	June 21 2002
	PageCell::TrimSize Clarified default to be LayoutPreparationParams:SurfaceContentsBox.

	5.5.1.3 KnownDevices
	June 14 2002
	Replace ResponseTypeObj Device * with DeviceList ?

	
	August 14 2002
	Replace contents of DeviceList with DeviceInfo.

	7.2.110 PreviewGeneration​Params
	June 19 2002
	Synchronized PreviewType value list with the PreviewType partition key.

	5.6.3.5 QueueEntryStatus
	June 21 2002
	The QueryTypeObj was changed from QueueEntryDef to QueueEntryDefList in order to resolve a type collision in the XML schema.

	6.5.26 Palletizing
	June 21 2002
	Fixed copy-paste error in the description of the input Component.

	7.1.12 MediaIntent
	June 24 2002
	Grade: Definition modified to refer to ISO 12647-2 ff

	3.8.6.2 Alignment of ResourceLink and ResourceRef
	June 26 2002
	Added Section.

	7.2.55 FileSpec
	June 26 2002
	CheckSum: “RSA MD” now completed to “RSA MD5”

Changed data type to hexBinary.

	
	July 10 2001
	Clarified usage of FileTemplate and FileFormat when UID is present.

	Table 1‑2 JDF data types
	June 26 2002
	Added data type hexBinary.

	A.1 XML Schema Data Types
	June 26 2002
	Added data type hexBinary.

	7.2.81 InterpretingParams
	June 27 2002
	Clarified usage of Center and Scaling in conjunction with FitPolicy.

	6.3.17 Preflight
	June 27 2002
	Added warning that Preflight is under construction.

	7.2.56 FitPolicy
	June 27 2002
	Added clarification for use of ClipOffset.

Added clarification on aspect ratios for SizePolicy.

Removed ResourceUsage. It had been removed fro 1.1 and reappeared in the editing process. Its functionality is achieved by evaluating the context of FitPolicy.

	7.2.44 DensityMeasuringField
	June 28 2002
	Density data type modified to NumberList.

	K.3 Spawning and Merging
	July 1 2002
	Added an example of partitioned Spawning and Merging.

	7.2.118 RunList
	July 9 2002
	Modified the 2. example to use RunList::Directory

Added a reference to Sets in Pages.

Removed erroneous flag stating that EndOfDocument was new in JDF 1.1.

Added a clarifying sentence on documents, pages and sets in the introduction.

	6.1 Process Template
	July 9 2002
	Added Preview to the list of optional input resources.

	6.5.4 CaseMaking
	August 5 2002
	Removed ? from Media (CoverBoard).

	7.2.109 Preview
	August 9 2002
	Clarified usage of RGB PNG files in previews.

	A.4.3 PNG Image Format
	August 9 2002
	Clarified usage of RGB PNG files in previews.

	5.2.1.5 Acknowledge
	August 9 2002
	Added a ? to Notification.

	5.4.1 Pure Event Messages
	August 9 2002
	Added section.

	6.3.1 ColorCorrection
	August 9 2002
	ColorantControl is now an optional input.

	6.3.2 ColorSpaceConversion
	August 9 2002
	ColorantControl is now an optional input.

	6.3.19 Proofing
	August 9 2002
	ColorantControl is now an optional input.

	6.3.25 Separation
	August 9 2002
	ColorantControl is now an optional input.

	6.3.26 SoftProofing
	August 9 2002
	ColorantControl is now an optional input.

	6.3.28 Trapping
	August 9 2002
	ColorantControl is now an optional input.

Wording change for the output RunList.

	7.2.112 PSToPDFConversionParams
	August 14 2002
	Renamed misspelled AutoPostitionEPSInfo to AutoPositionEPSInfo

	7.2.20 ColorantControl
	August 16 2002
	Clarified usage of ColorantOrder.

	7.2.86 Layout
	August 21 2002
	Added remark that partitioning is discouraged.

	7.2.126 Sheet
	August 21 2002
	Added remark that partitioning is discouraged.

	8.2.4 MIME Types and File Extensions
	August 23 2002
	Clarified use of file extensions and renamed MIME type.

	3.10 AuditPool
	August 23 2002
	Clarified use of Audits when creating / modifying a JDF.

	5.6.4 Queue-Handling Elements
	August 27 2002
	Clarified QueueEntry elements for running queues.

	5.3 JMF Messaging Levels
	August 27 2002
	Added an integer level number to the messaging levels.

	3.11.1.1 JDF Namespace
	August 27 2002
	Inserted section header.

	3.11.1.2 JDF Extension Namespace
	August 27 2002
	Inserted section.

	3.10.1 Audit Elements
	August 27 2002
	Inserted extensions for AgentName, AgentVersion

	4.4.5 Case 5: Spawning and Merging of Independent Jobs
	August 30 2002
	Added some clarifications and removed ambiguous naming of nodes and jobs.

Added disclaimer for using case 5.

	4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources
	August 30 2002
	Added some clarifications.

Add odd count to last bundle, then split into to odd bundles of nearly the same size

Add odd count to first or last bundle

MaxAmount - StandardAmount

MinAmount

XML & Databases

To learn more about how XML and database work together, check out the white papers and tutorials available from XML.org at � HYPERLINK "http://www.xml.org/xml/resources_focus_rdbms.shtml" ��http://www.xml.org/xml/resources_focus_rdbms.shtml�.

�

JMF

�

The Job Messaging Format (JMF) functions as a standard interface between your equipment and your information systems, or other equipment already on the shop floor. By buying only equipment that supports JMF you will reduce the cost and complexity of integrating new equipment into your production operations, and you will improve the flexibility and adaptability of your shop.

The JDF schema was validated with the Xerces parser. This parser, as well as other XML tools, is available for free from The Apache Software Foundation open source software community at � HYPERLINK "http://xml.apache.org/" ��http://xml.apache.org/�

Free

Parsers

�

Implementation Strategy

Layer of n components

Stack / Pile / Bundle of n components

XML

Schema

� EMBED Word.Picture.8 ���

Submit Your Extensions to CIP4

� LINK C:\\windows\\JDF_node032.vsd Drawing\\~Split \a \p �Fehler! Keine gültige Verknüpfung.�

StandardAmount

� EMBED Word.Picture.8 ���

Extensibility Caution

� �

JDF’s “Extensibility” simply means that you can add your own XML elements, attributes, and enumerations to a JDF application. Although JDF is quite extensive, odds are you’ll find that your current databases and workflow systems use information elements that are unique to your client market or company … they may have even been defined by your internal MIS staff. CIP4 acknowledges that it can’t define everything, nor should it prevent innovation by codifying everything in a static manner, and JDF’s extensibility provides both printers and technology providers with the flexibility they need to make JDF a success.

However, if you or your technology vendors extend JDF, please do so with caution. JDF’s success depends on the ability of MIS systems and JDF-enabled devices to write, read, parse, and use JDF. Extensions are custom integration applications and great care needs to be made to ensure that extensions made for one systems or device will not jam the JDF workflow or other JDF enabled systems and devices. If they use extensions to JDF, your technology providers should be able to provide you with a fully validated JDF schema and documentation that includes the use of their extensions. Extensions that are not documented, or that may not be disclosed to third parties for integration purposes, should be viewed skeptically.

�

As you read this standard, consider how to make JDF a part of your equipment evaluation and purchasing procedures. Should you add JDF enabled systems slowly with equipment replacement and upgrades, or aggressively as part of a plant reengineering process? What’s your desired competitive position?

XML

Crash Course

�

Extended

Backus-Naur Form

The Extended Backus-Naur Form (EBNF) provides a compact notation that is commonly used in the specifications of programming languages. The official EBNF standard, ISO/IEC 14977:1996(E), is not freely available online. To order a paper copy from ISO, contact:

International Organization for Standardization

Case postale 56

1, rue de Varembé

CH-1211 Genève 20 Switzerland

Phone: +41 22 749 01 11 		

Fax: +41 22 733 34 30

Email: sales@isocs.iso.ch

�

Odd count

Odd count

Create odd count layer

Add odd count to last layer

MinAmount

LayerAmount

Odd count handling “LAYER”

Odd count handling “BUNDLE”

Create odd count bundle

JDF Specification

Release 1.1

Need a crash course in XML? XML101.com provides online tutorials that non-programmers can easily follow. The site includes examples. See � HYPERLINK "http://xml101.com/" ��http://xml101.com/�

Automating Data Flows

�

A JDF-enabled workflow may require a tremendous amount of information. This could seem daunting to anyone who expects to have to enter information into a system, but it need not be the case. From the style information in a layout file, to automatically generated image file header information, to the color profiles tagged onto images automatically by digital cameras or image editing systems, a great deal of information can be captured and passed along from one JDF-enabled application to another. Furthermore, where, in the specification, there are many options, those options can be set to a default that represents your particular plant or workflow. For instance, JDF provides a variety of staple folds. If your plant only supports a crown fold, that becomes the default in your JDF-enabled system and is never manually specified or keyed.

Agents, Controllers & Devices

�

“Agents,” “Controllers,” and “Devices” are special, logical descriptions. You probably won’t ever buy one. An agent (writes and reads JDF) may be any software tool that can parse JDF. Controllers communicate instructions that devices act upon. They are functions that may be embedded into your software, production equipment, or MIS systems.

Trees & Nodes

�

In the real world, if you wanted to scan a photo, you would probably go to the prepress department to find a scanner. JDF uses this same common-sense approach to organization. Processes (nodes) are organized into a hierarchy (tree). Consider your own operations. If you were to group your departments, equipment, and processes into an “org chart,” what would it look like?

Ancestor

Pool

�

An ancestor pool contains the job’s context when the job is spawned. This includes scheduling information and optionally customer information.

Creating Better

Job Tracking & Reporting

�

Customer information within JDF can provide a bridge between your CRM systems and production. How could JDF be used to automate the process of reporting to customers on the status of their jobs?

Parameter &

Intent Resources

�

Parameter and Intent Resources are information about the print job. Intent resources may originate in the customer’s RFQ and may include information such as trim size, paper, the number of colors, and so on. Later on in the process of estimating and scheduling the job, these intents may become parameters for production process.

Automating Inventory Management

�

JDF’s handling of physical resources provides a bridge between your JDF enabled systems and inventory management, ordering and replenishing systems. This opens the door to just-in-time inventory management driven by real-time scheduling and consumption data.

Audit Pools

�

Audit information is the Job’s history and can support your daily, quality control and troubleshooting management reporting needs.

�

�

Writing JDF extensions? CIP4 encourages you to become part of the standard and submit your private extensions for review and possible inclusion in future versions of the JDF standard. Not only may adoption of extensions into the JDF standard help make it easier for customers to decide to buy your products, but CIP4 is also considering adopting a formal review process for extensions with future editions of the JDF standard; by participating in JDF’s development now you could save time and customer confusion in the future.

Product Intent

�

“Product Intent” is another way of saying “Job Specifications.” Rather than describing how a job will be made, “Product Intent” describes what a job (or some aspect of a job) will look like when it is completed. “Product Intents” may initiate with the customer and in rather vague terms and they may be later flushed out or completed by a printer’s customer service representative, estimating department or production planners.

PrintTalk Implementation

�

A PrintTalk implementation guide can be found at � HYPERLINK "http://www.printtalk.org/implementation.html" ��http://www.printtalk.org/implementation.html�

Pipe Resources

�

A pipe resource is simply an input to a process that can be exhausted and may be replenished. Examples may include rolls of paper feeding into a press, ink well levels, fountain solution, or even proofing stock loaded into a proofer.

Another type of pipe resource in every-day use is a “hot-folder” or “watched file.” Hot folders are used to automate functions such as preflighting. When a file is saved to a hot-folder, the system knows to automatically apply a defined process to the new file. When the folder is empty the processing stops.

JMF = ROI

�

In order to automate aspects of your production with out JDF, your technical staff must become proficient in each of the command languages that each of your devices employ. By only buying JDF-enabled devices that use JMF as their control language, you only have to learn one new device command language … eventually, the only one your MIS staff will need.

Response & Acknowledgement

�

The terminology used for message families contradicts common usage but will be retained for backwards compatibility. The Response actually functions as an Acknowledgement that a Command will be acted upon, while the Acknowledge could more properly be named Completion or Result. The naming was defined to be consistent with HTTP naming conventions so that a Response is always transported on an HTTP response.

What’s your JMF SOP?

�

As part of your strategic equipment purchasing procedures and requirements, consider what the JDF Messaging Levels are desired, and what the minimum level of conformance will be for your new equipment purchases.

More on IfraTrack

�

IfraTrack is a specification for the interchange of status and management information between local and global production management systems in newspaper production. For more information on IfraTrack, including a case study paper, please see � HYPERLINK "http://www.ifra.com/WebSite/news.nsf/(StructuredSearchAll)?OpenAgent&IFRATRACK" ��http://www.ifra.com/WebSite/news.nsf/(StructuredSearchAll)?OpenAgent&IFRATRACK�

The JDF Cookbook

�

Chapter 6 and Chapter 7 is “the list of ingredients” in the JDF “cookbook.” The following processes and resources are fairly exhaustive. You can choose to use only what fits your workflow.

Using JDF Schema

�

Your MIS system should be capable of validating whether or not a JDF Job is complete and meets JDF requirements. The schema itself may be sub-setted into multiple schemas that are used for validation purposes at different points in the workflow. For instance, a JMF schema subset may be used to test and operated JDF-compliant devices on your shop floor. A process intent subset may be used to check customer submitted job specifications.

�

It is required to define the default namespace in a JDF document, even if no non-JDF extensions are used. JDF may be defined either in the default namespace or in a qualified namespace.

Using

Namespaces

In JDF

Revision A

� EMBED Word.Picture.8 ���

�

To learn more about XML Schema, including tools, usage, tutorials, and other resources visit � HYPERLINK "http://www.w3.org/XML/Schema" ��http://www.w3.org/XML/Schema�

�

1: Jacket width

2: Folding width

3: Jacket height

� Real-time is the time-scale typically associated with macro-cosmic production control systems. JMF is not intended for real-time, lower level machine control.

� Resources are unique and cannot be overwritten by descendents. Rather, they can only be used by descendents. An exception to this is described in Section 4.4.5 � REF _Ref481571691 \h � * MERGEFORMAT �Case 5: Spawning and Merging of Independent Jobs�. In this case, resources may also be used by a parent node.

� The data type is NMTOKEN and not IDREF because the ID does not reside in the spawned job. The corresponding ID element resides in the original job.

� rRefs also enables spawning and merging if CustomerInfo is extended with private ResourceRef elements.

� rRefs also enables spawning and merging if NodeInfo is extended with private ResourceRef elements.

� The cardinality of Part in PartStatus has been changed from * to none, e.g. exactly one element in version 1.1 of the JDF specification.

� The availability of a resource that is consumed as a whole is given by the Resource attribute �Status = Available. In the case of pipe resources, the availability depends on the individual parameter defining the dynamics of a pipe (for details see Section 4.3.2 � REF _Ref483206915 \h � * MERGEFORMAT �Overlapping Processing Using Pipes�).

� Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without having to include the node that describes the other end in the spawned file.

� Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without having to include the node that describes the other end in the spawned file.

� Note that Sorting is semantically different from the other attributes in this table, as it implies an ordering of parts, whereas the other attributes define a selection of parts.

� Type allows parsers that do not have access to the schema to find the instance of Notification�Details.

� The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

� The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

� Usually resources become locked (Locked = true) if they are referenced by audit elements (see also Section 3.10 � REF _Ref481905849 \h � * MERGEFORMAT �AuditPool�).

� Note that only devices and controllers with agent capabilities can write in a JDF document.

� Note that the restriction to three dimensions is for graphical demonstration purposes only.

� This was Device* prior to version 1.1 a. It was changed due to inconsistencies of the inheritance model in the JDF schema.

� DeviceLink profiles are ICC profiles that map directly from one device color space to another device color space. Therefore, it represents a one-way link or connection between devices. Examples for DeviceLink profiles are CMYK to CMYK print process conversions or RGB to CMYK color separations.

� Note that this will generally be an inter-resource link.

� Note that this must be synchronized with the device output ICC profile.

� This is a regular expression as in UNIX grep.

� In general this will be a CMYK process color, but it can also be another process color, e.g., HexaChromeTM

� This construct is built to be compatible with the XML schema recommendation of minOccurs, maxOccurs.

� Note that the element names were chosen for simplicity and do not imply any naming conventions for targets and links.

� Unless aborted during cleanup

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��tbd jim follow instructions

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��tbd (RP?) verify that all datatypes from Appendix A are includes

�PAGE \# "'Page: '#'�'" ��added,

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��tbd coordinate system wg. Fix

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��rejected, add DirectProof to digitalprintingparams.

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added, TBD clean up version description

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��tbd retain all JDF1.1 values

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��rejected tbd move to LayoutElement as NMTOKEN

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review, tbd discuss exactly which to deprecate

�PAGE \# "'Page: '#'�'" ��rejected tbd move to layoutelement and group with FileSpec

�PAGE \# "'Page: '#'�'" ��rejected tbd move to layoutelement and group with FileSpec

�PAGE \# "'Page: '#'�'" ��rejected tbd move to layoutelement and group with FileSpec

�PAGE \# "'Page: '#'�'" ��rejected tbd move to layoutelement and group with ICCProfileSequence

�PAGE \# "'Page: '#'�'" ��rejected tbd move to layoutelement and group with ICCProfileSequence

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��tbd – will not work

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��tbd discuss the use of Media when BuyerSupplied=true

�PAGE \# "'Page: '#'�'" ��rejected for 1.2, retain for future version

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��rejected for 1.2, retain for future version – make Front + Back

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��rejected for 1.2, retain for future version

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��rejected for 1.2, retain for future version

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��tbd discuss deprecation

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��rejected for 1.2, retain for future version

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��tbd discuss

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��accept pending ecommerce review

�PAGE \# "'Page: '#'�'" ��tbd wordsmith

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��make generic and move to 7.1 introduction

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd wordsmith to define rgb to black, reconcile with rgbgraytoblack

�PAGE \# "'Page: '#'�'" ��tbd define where and when overprint is applied

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��moved from below

�PAGE \# "'Page: '#'�'" ��moved

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��tbd sych with new structure

�PAGE \# "'Page: '#'�'" ��tbd move to Color resource, ok there

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��deleted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��moved to resource

�PAGE \# "'Page: '#'�'" ��tbd finalize for review

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd finalize for review – ranges are typically –1.0 to 1.0 etc, not integer percent

�PAGE \# "'Page: '#'�'" ��tbd discuss

�PAGE \# "'Page: '#'�'" ��tbd demote back to sub element

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd flesh out

�PAGE \# "'Page: '#'�'" ��tbd consolidate with automatedoverprintparams

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted, tbd sych with renderingintent

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd Alberto track down Appendix

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd model using combined process etc

�PAGE \# "'Page: '#'�'" ��do not rename Resourceusage. tbd snch with result of ICCProfileSequence

�PAGE \# "'Page: '#'�'" ��accepted tbd check whether CorSpaceConversionOp is a resource or element

�PAGE \# "'Page: '#'�'" ��elevated to resource : tbd check whether or not

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd tweak description to reflect context.

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted, working group to discuss whether they should be grouped in a subelement

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��added

�PAGE \# "'Page: '#'�'" ��tbd clean up in wg

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��rejected – retain for 1.3 pending IPP decision

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd wordsmith

�PAGE \# "'Page: '#'�'" ��tbd wordsmith that not one, but two less than NUp

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted tbd explain that ColorPool:Color is not appropriate for media.

�PAGE \# "'Page: '#'�'" ��rejected

�PAGE \# "'Page: '#'�'" ��rejected – replace with a table of points vs. name in the Appendix and use Localization

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted ISSUE: Should GlossValue be different attributes, one for Front and another for Back?

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��rejected

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��rejected – don’t fix old deprecated stuff

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��deleted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd define usage for fm threshold arrays

�PAGE \# "'Page: '#'�'" ��concept accepted, rephrase to make very optional

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd revisit

�PAGE \# "'Page: '#'�'" ��concept accepted, rephrase to make very optional

�PAGE \# "'Page: '#'�'" ��tbd move to screeningintent and rephrase

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd define what sourcefrequency means and consolidate

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��tbd cs wg – move to general posistion

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��modified

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted tbd relate X and Y to fast scan and slow scan

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd cs wg

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��do nothing

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��accepted

�PAGE \# "'Page: '#'�'" ��tbd make table

_1076949316.unknown

_1077540558.doc

y

x

_1079352526.doc

4

Sheet 1, Back

Sheet 2, Front

1

7

2

5

Sheet 1, Front

8

Sheet 2, Back

3

6

_1079352632.doc

Y

1

Sheet 2

X

X

Sheet 1

3

Y

_1092231811.doc

JDF-node: bigF		

Status="Waiting"

Type="XYZ"

AuditPool:

 Merged (C, Indep.="true")

 Merged(E, Indep.="true")

JDF-node: E

Status="Spawned"

Type="XYZ"

independent job X

Time

execution phase

JDF-node: E

Status="Waiting "

Type="XYZ"

Activity="Inactive"

JDF-node: C

Status="Waiting"

Type="XYZ"

Activity="Inactive"

JDF-node: C

Status="Spawned"

Type="XYZ"

JDF-node: A

Status=" Waiting "

Nodes A, B, C

small Job X

independent job Y

small Job Y

big job bigZ

JDF-node: D

Status="Waiting"

JDF-node: B

Status=" Waiting "

Nodes D, E

Time

JDF-node: A

Status="waiting"

Spawning Diagram

Node bigF

_1116769791.doc
PAGE

06June2003

[image: image2.emf]

[image: image3.emf]

[image: image1]

Add a new value F6-6 to the FoldCatalog that uses the default (not present) ReferenceEdge and will result as follows:

		

			 1 2

 1/4 1/2

�

�

In the case where you want to perform a z fold that can be included in a book where you can pull it out, specify FoldCatalog="F6-6" and ReferenceEdge="Right" to get the desired z fold as follows:

 2 1

 1/2 1/4

_1079905660.doc

identity transformation

identity transformation

identity transformation

process coordinate system

...

...

resource coordinate system of input resource 2

ResourceLink:Transformation

ResourceLink:Transformation

resource coordinate system of output resource n

resource coordinate system of input resource 1

resource coordinate system of input resource n

ResourceLink:Transformation

resource coordinate system of output resource 2

resource coordinate system of output resource 1�

_1081327238.doc

1

2

3

F

B

_1079355239.doc

ResourceLink:Transformation (or ResourceLink:Orientation)

ResourceLink:Transformation (or ResourceLink:Orientation)

process coordinate system of Collecting

surface coordinate system = layout coordinate system�= process coordinate system of Imposition, Interpreting, Rendering, Screening

resource coordinate system of output component of Folding�= resource coordinate system of input component of Collecting

Transformation according type of fold and�ResourceLink:Transformation (or ResourceLink:Orientation)

page coordinate system�= resource coordinate system of input component

ResourceLink:Transformation (or ResourceLink:Orientation)

Surface:SurfaceContentsBox and CTMPage

TransferCurveSet:CTM (Name = Film)

paper coordinate system �= resource coordinate system of output component of ConventionalPrinting�= resource coordinate system of input component of Folding

process coordinate system of Folding

TransferCurveSet:CTM (Name = Paper)

press coordinate system �= process coordinate system of ConventionalPrinting

TransferCurveSet:CTM (Name = Press)

plate coordinate system �= process coordinate system of ContactCopying

TransferCurveSet:CTM (Name = Plate)

film coordinate system �= process coordinate system of ImageSetting

resource coordinate system of output component of Collecting�= resource coordinate system of input component of Trimming

process coordinate system of Trimming

ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Collecting�= coordinate system of final product

Transformation according trimming parameters and�ResourceLink:Transformation (or ResourceLink:Orientation)

_1079352598.doc

1

Surface

Content object (page 8)

Content object (page 1)

Origin

8

Y

X

Surface contents box

_1077540608.doc

x

y

_1078830502.doc

maximum print area

begin of print

x

direction of paper travel

y�orthogonal to cylinder axis

_1078830809.doc

maximum print area of one single impression

reel width

ribbon

begin of print

x

direction of web travel

cylinder circumference

y�orthogonal to cylinder axis

_1077540628.doc

x

y

_1078773259.doc

Block

Notch

Notching distance

X

Y

Working length

Start position

_1077540582.doc

y

x

_1076950178.unknown

_1077368665.unknown

_1077368966.unknown

_1077369019.unknown

_1077368781.unknown

_1077359012.unknown

_1076949460.unknown

_1076949755.unknown

_1018617322.doc

x

y

_1050477008.doc
[image: image1.png]

_1073110305.doc
Y

 Front	Rear

Sheet lay

Left

Right

X

_1076260556.doc

JDF-node: C

Status="Waiting"

Ancestors := (A, B)

JDF-node: C

Status="Spawned"

Correctly nested

Time

Job B

Job A

Job C

Reversely nested

Job B

Job C

JDF-node: B

Status="Spawned"

JDF-node: B

Status="Waiting"

Ancestors := (A)

Job A

Time

JDF-node: A

Status="Waiting"

Spawning Diagrams

Spawning Depth

_1076259423.doc

0

input PipeResume

output PipePause

R2

R1

Unavailable

Available

Time

R3

Unavailable

Available

amount

P1

Waiting .or.

Ready

InProgress

Completed

P2

Waiting .or.

Ready

InProgress

Completed

End

Start

InUse

Stopped

output PipeResume

Unavailable

R2

Levels

_1061273808.doc
[image: image1.png]SESss8%

_1019315872.unknown

_1019315943.unknown

_1019394981.doc

One for each PPF Sheet

Layout

Sheet

Signature

PlacedObjects

Sheet

MarkObject

Sheet

Surface

Surface

One for each PPF Surface

One for each PPF Mark

MarkObject

MarkObject

...

...

_1018617346.doc

x

y

_1019215677.doc

ThreadSewing

Component

Component

ThreadSewingParams

_952007056.doc

Overlapping pixel

Border between zones

Zone 2

Zone 1

_1018617244.doc

y

x

_1018617282.doc

y

x

_952012295.doc

Product front edge

Product front edge

Binding edge (spine)

Binding edge (spine)

Product front side

Product top edge

Calendar-like product viewed from first page (front side)

Product bottom edge

Book-like product viewed from first page (front side)

Product front side

_952012744.doc

Y

Origin of coordinate

 system B

Y

X

P

Origin of

 coordinate

 system A

X

_1016364763.unknown

_1015933542.doc

Butted

ClinchOut

Eyelet

Overlap

Crown

_952012561.doc

1

X

Y

_952007828.doc

Stitch

Binding edge (spine)

Offset

Y

X

_952012033.doc

Y

X

P

Origin

_952008268.doc

Height

Block before trimming

Trimming offset

Width

Trimmed block

Origin of operation coordinate system

Binding edge

X

Y

_952007760.doc

Binding edge (spine)

Stitch

Glue line�working length

Y

Start position

X

_952006119.doc

X offset

Front end sheet

Y offset

Block

Binding edge

Glue line�start position

Back end sheet

Glue line�working length

X

Y

_952006755.doc

Y

Y

X

Target or operation

coordinate system

X

Source or component

coordinate system

Direction of travel

Height

Width

Collecting chain

_952006954.doc

Glue line

Start position

Block

Back side

Front side

X

X

X

Y

Y

Y

Side gluing on back side

Side gluing on front side

Spine gluing

_952006634.doc

Corner at logical position

Corner at logical position

Corner at logical position

Corner at logical position

Slightly to the right of logical position

Slightly to the left of logical position

Slightly below logical position

Slightly above logical position

Centered at logical position

Position of symbol

Name

Symbol

UpperRightCutMark

LowerRightCutMark

UpperLeftCutMark

LowerLeftCutMark

RightHorizonalCutMark

CrossCutMark

TopVerticalCutMark

LeftHorizonalCutMark

BottomVerticalCutMark

_952004083.doc

Y

X

Source or component

coordinate system

X

Y

Gathering channel

Target or operation

coordinate system

Direction of travel

_952005378.doc

Binding edge (spine)

Stitch width

Y

X

Staple

Stitch position

_952005516.doc

Stitch

Binding edge (spine)

Offset

Y

X

_952004285.doc

Glue line

Start position

Block

Back side

Front side

X

X

X

Y

Y

Y

Side gluing on back side

Side gluing on front side

Spine gluing

_952005358.doc

Reference edge 1

Offset

Stitch position

Stitch width

Y

X

Binding edge

Stitch width

Offset

X

Y

Stitch position

Set of sheets or partial products gathered on a pile that will be folded later

Reference edge 2

Set of folded sheets collected on a saddle

_952001086.doc

Product front edge

Product front edge

Binding edge (spine)

Binding edge (spine)

Product front side

Product top edge

Calendar-like partial product viewed from first page (front side)

Product bottom edge

Book-like partial product viewed from first page (front side)

Product front side

